-
Notifications
You must be signed in to change notification settings - Fork 252
/
Copy pathapp.py
206 lines (155 loc) · 6.55 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
import os
from dotenv import load_dotenv
from langchain import PromptTemplate
from langchain.agents import initialize_agent, Tool
from langchain.agents import AgentType
from langchain.chat_models import ChatOpenAI
from langchain.prompts import MessagesPlaceholder
from langchain.memory import ConversationSummaryBufferMemory
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.chains.summarize import load_summarize_chain
from langchain.tools import BaseTool
from pydantic import BaseModel, Field
from typing import Type
from bs4 import BeautifulSoup
import requests
import json
from langchain.schema import SystemMessage
from fastapi import FastAPI
load_dotenv()
brwoserless_api_key = os.getenv("BROWSERLESS_API_KEY")
serper_api_key = os.getenv("SERP_API_KEY")
# 1. Tool for search
def search(query):
url = "https://google.serper.dev/search"
payload = json.dumps({
"q": query
})
headers = {
'X-API-KEY': serper_api_key,
'Content-Type': 'application/json'
}
response = requests.request("POST", url, headers=headers, data=payload)
print(response.text)
return response.text
# 2. Tool for scraping
def scrape_website(objective: str, url: str):
# scrape website, and also will summarize the content based on objective if the content is too large
# objective is the original objective & task that user give to the agent, url is the url of the website to be scraped
print("Scraping website...")
# Define the headers for the request
headers = {
'Cache-Control': 'no-cache',
'Content-Type': 'application/json',
}
# Define the data to be sent in the request
data = {
"url": url
}
# Convert Python object to JSON string
data_json = json.dumps(data)
# Send the POST request
post_url = f"https://chrome.browserless.io/content?token={brwoserless_api_key}"
response = requests.post(post_url, headers=headers, data=data_json)
# Check the response status code
if response.status_code == 200:
soup = BeautifulSoup(response.content, "html.parser")
text = soup.get_text()
print("CONTENTTTTTT:", text)
if len(text) > 10000:
output = summary(objective, text)
return output
else:
return text
else:
print(f"HTTP request failed with status code {response.status_code}")
def summary(objective, content):
llm = ChatOpenAI(temperature=0, model="gpt-3.5-turbo-16k-0613")
text_splitter = RecursiveCharacterTextSplitter(
separators=["\n\n", "\n"], chunk_size=10000, chunk_overlap=500)
docs = text_splitter.create_documents([content])
map_prompt = """
Write a summary of the following text for {objective}:
"{text}"
SUMMARY:
"""
map_prompt_template = PromptTemplate(
template=map_prompt, input_variables=["text", "objective"])
summary_chain = load_summarize_chain(
llm=llm,
chain_type='map_reduce',
map_prompt=map_prompt_template,
combine_prompt=map_prompt_template,
verbose=True
)
output = summary_chain.run(input_documents=docs, objective=objective)
return output
class ScrapeWebsiteInput(BaseModel):
"""Inputs for scrape_website"""
objective: str = Field(
description="The objective & task that users give to the agent")
url: str = Field(description="The url of the website to be scraped")
class ScrapeWebsiteTool(BaseTool):
name = "scrape_website"
description = "useful when you need to get data from a website url, passing both url and objective to the function; DO NOT make up any url, the url should only be from the search results"
args_schema: Type[BaseModel] = ScrapeWebsiteInput
def _run(self, objective: str, url: str):
return scrape_website(objective, url)
def _arun(self, url: str):
raise NotImplementedError("error here")
# 3. Create langchain agent with the tools above
tools = [
Tool(
name="Search",
func=search,
description="useful for when you need to answer questions about current events, data. You should ask targeted questions"
),
ScrapeWebsiteTool(),
]
system_message = SystemMessage(
content="""You are a world class researcher, who can do detailed research on any topic and produce facts based results;
you do not make things up, you will try as hard as possible to gather facts & data to back up the research
Please make sure you complete the objective above with the following rules:
1/ You should do enough research to gather as much information as possible about the objective
2/ If there are url of relevant links & articles, you will scrape it to gather more information
3/ After scraping & search, you should think "is there any new things i should search & scraping based on the data I collected to increase research quality?" If answer is yes, continue; But don't do this more than 3 iteratins
4/ You should not make things up, you should only write facts & data that you have gathered
5/ In the final output, You should include all reference data & links to back up your research; You should include all reference data & links to back up your research
6/ In the final output, You should include all reference data & links to back up your research; You should include all reference data & links to back up your research"""
)
agent_kwargs = {
"extra_prompt_messages": [MessagesPlaceholder(variable_name="memory")],
"system_message": system_message,
}
llm = ChatOpenAI(temperature=0, model="gpt-3.5-turbo-16k-0613")
memory = ConversationSummaryBufferMemory(
memory_key="memory", return_messages=True, llm=llm, max_token_limit=1000)
agent = initialize_agent(
tools,
llm,
agent=AgentType.OPENAI_FUNCTIONS,
verbose=True,
agent_kwargs=agent_kwargs,
memory=memory,
)
# 4. Use streamlit to create a web app
# def main():
# st.set_page_config(page_title="AI research agent", page_icon=":bird:")
# st.header("AI research agent :bird:")
# query = st.text_input("Research goal")
# if query:
# st.write("Doing research for ", query)
# result = agent({"input": query})
# st.info(result['output'])
# if __name__ == '__main__':
# main()
# 5. Set this as an API endpoint via FastAPI
app = FastAPI()
class Query(BaseModel):
query: str
@app.post("/")
def researchAgent(query: Query):
query = query.query
content = agent({"input": query})
actual_content = content['output']
return actual_content