forked from kuc2477/pytorch-deep-generative-replay
-
Notifications
You must be signed in to change notification settings - Fork 0
/
visual.py
124 lines (100 loc) · 4.03 KB
/
visual.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
import numpy as np
from torch.cuda import FloatTensor as CUDATensor
from visdom import Visdom
_WINDOW_CASH = {}
def _vis(env='main'):
return Visdom(env=env)
def visualize_image(tensor, name, label=None, env='main', w=250, h=250,
update_window_without_label=False):
tensor = tensor.cpu() if isinstance(tensor, CUDATensor) else tensor
title = name + ('-{}'.format(label) if label is not None else '')
_WINDOW_CASH[title] = _vis(env).image(
tensor.numpy(), win=_WINDOW_CASH.get(title),
opts=dict(title=title, width=w, height=h)
)
# This is useful when you want to maintain the most recent images.
if update_window_without_label:
_WINDOW_CASH[name] = _vis(env).image(
tensor.numpy(), win=_WINDOW_CASH.get(name),
opts=dict(title=name, width=w, height=h)
)
def visualize_images(tensor, name, label=None, env='main', w=400, h=400,
update_window_without_label=False):
tensor = tensor.cpu() if isinstance(tensor, CUDATensor) else tensor
title = name + ('-{}'.format(label) if label is not None else '')
_WINDOW_CASH[title] = _vis(env).images(
tensor.numpy(), win=_WINDOW_CASH.get(title), nrow=6,
opts=dict(title=title, width=w, height=h)
)
# This is useful when you want to maintain the most recent images.
if update_window_without_label:
_WINDOW_CASH[name] = _vis(env).images(
tensor.numpy(), win=_WINDOW_CASH.get(name), nrow=6,
opts=dict(title=name, width=w, height=h)
)
def visualize_kernel(kernel, name, label=None, env='main', w=250, h=250,
update_window_without_label=False, compress_tensor=False):
# Do not visualize kernels that does not exists.
if kernel is None:
return
assert len(kernel.size()) in (2, 4)
title = name + ('-{}'.format(label) if label is not None else '')
kernel = kernel.cpu() if isinstance(kernel, CUDATensor) else kernel
kernel_norm = kernel if len(kernel.size()) == 2 else (
(kernel**2).mean(-1).mean(-1) if compress_tensor else
kernel.view(
kernel.size()[0] * kernel.size()[2],
kernel.size()[1] * kernel.size()[3],
)
)
kernel_norm = kernel_norm.abs()
visualized = (
(kernel_norm - kernel_norm.min()) /
(kernel_norm.max() - kernel_norm.min())
).numpy()
_WINDOW_CASH[title] = _vis(env).image(
visualized, win=_WINDOW_CASH.get(title),
opts=dict(title=title, width=w, height=h)
)
# This is useful when you want to maintain the most recent images.
if update_window_without_label:
_WINDOW_CASH[name] = _vis(env).image(
visualized, win=_WINDOW_CASH.get(name),
opts=dict(title=name, width=w, height=h)
)
def visualize_scalar(scalar, name, iteration, env='main'):
visualize_scalars(
[scalar] if isinstance(scalar, float) or len(scalar) == 1 else scalar,
[name], name, iteration, env=env
)
def visualize_scalars(scalars, names, title, iteration, env='main'):
assert len(scalars) == len(names)
# Convert scalar tensors to numpy arrays.
scalars, names = list(scalars), list(names)
scalars = [s.cpu() if isinstance(s, CUDATensor) else s for s in scalars]
scalars = [s.numpy() if hasattr(s, 'numpy') else np.array([s]) for s in
scalars]
multi = len(scalars) > 1
num = len(scalars)
options = dict(
fillarea=True,
legend=names,
width=400,
height=400,
xlabel='Iterations',
ylabel=title,
title=title,
marginleft=30,
marginright=30,
marginbottom=80,
margintop=30,
)
X = (
np.column_stack(np.array([iteration] * num)) if multi else
np.array([iteration] * num)
)
Y = np.column_stack(scalars) if multi else scalars[0]
if title in _WINDOW_CASH:
_vis(env).updateTrace(X=X, Y=Y, win=_WINDOW_CASH[title], opts=options)
else:
_WINDOW_CASH[title] = _vis(env).line(X=X, Y=Y, opts=options)