-
Notifications
You must be signed in to change notification settings - Fork 0
/
CV_function.py
353 lines (272 loc) · 15.7 KB
/
CV_function.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
import numpy as np
import cv2
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
##############################################################################################
#---------------------------CALIBRATION CAMERA + DISTORSION CORRECTION------------------------
def calculation_undistort(image, objpoints, imgpoints):
# get image size
img_size = (image.shape[1], image.shape[0])
# Camera Calibration
ret, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(objpoints, imgpoints, img_size, None, None)
# Distorsion Correction
undist = cv2.undistort(image,mtx,dist,None,mtx)
return undist
################################################################################################
#--------------------------------------GRADIENT------------------------------------------------
def image_computing(image_undistorted):
# Grayscale image to compute the gradient
gray = cv2.cvtColor(image_undistorted, cv2.COLOR_RGB2GRAY)
# HLS color space and separate the S channel for the color
hls = cv2.cvtColor(image_undistorted, cv2.COLOR_RGB2HLS)
l_channel = hls[:,:,1]
s_channel = hls[:,:,2]
#-------------------------------------------------------------------------------------------
# Sobel x
sobelx = cv2.Sobel(gray, cv2.CV_64F, 1, 0)
abs_sobelx = np.absolute(sobelx) # x derivative accentuates lines away from horizontal
scaled_sobelx = np.uint8(255*abs_sobelx/np.max(abs_sobelx))
# Sobel y
sobely = cv2.Sobel(gray, cv2.CV_64F, 0, 1)
abs_sobely = np.absolute(sobely) # y derivative accentuates lines away from horizontal
scaled_sobely = np.uint8(255*abs_sobely/np.max(abs_sobely))
#---------------------------------------------------------------------------------------------
# x-gradient Thresholding
thresh_min = 40
thresh_max = 100
sxbinary = np.zeros_like(scaled_sobelx)
sxbinary[(scaled_sobelx >= thresh_min) & (scaled_sobelx <= thresh_max)] = 1
# y-gradient Thresholding
thresh_min = 40
thresh_max = 100
sybinary = np.zeros_like(scaled_sobely)
sybinary[(scaled_sobely >= thresh_min) & (scaled_sobely <= thresh_max)] = 1
#----------------------------------------------------------------------------------------------
# color channel Thresholding
s_thresh_min = 150
s_thresh_max = 255
s_binary = np.zeros_like(s_channel)
s_binary[(s_channel >= s_thresh_min) & (s_channel <= s_thresh_max)] = 1
l_thresh_min = 150
l_thresh_max = 255
l_binary = np.zeros_like(l_channel)
l_binary[(l_channel >= l_thresh_min) & (l_channel <= l_thresh_max)] = 1
# Gradient direction thresholding
thresh=(0.7, 1.3)
direction = np.arctan2 (abs_sobely, abs_sobelx) # Calculate the direction
dir_binary = np.zeros_like (direction)
dir_binary[(direction >= thresh[0]) & (direction<=thresh[1])] =1
# Gradient magnitude thresholding
mag_thresh=(30, 100)
magnitude = np.sqrt((sobelx)**2 + (sobely)**2) # Calculate the magnitude
scaled_magnitude = np.uint8 (255* magnitude/np.max(magnitude)) # Scale to 8-bit (0 - 255) and convert to type = np.uint8
mag_binary = np.zeros_like (scaled_magnitude) # Create a binary mask where mag thresholds are met
mag_binary[(scaled_magnitude >= mag_thresh[0]) & (scaled_magnitude<=mag_thresh[1])] =1
#-----------------------------------------------------------------------------------------------
#-----------------------------------------------------------------------------------------------
# Combine the two binary thresholds : Only color and sobel x
combined_binary = np.zeros_like(sxbinary)
combined_binary[((s_binary == 1) & (l_binary == 1)) |(sxbinary == 1)] = 1
#-----------------------------------------------------------------------------------------------
# Combine the two binary thresholds : color and sobel x + magnitude/direction gradient
combined_binary_b = np.zeros_like(dir_binary)
combined_binary_b[(sxbinary == 1 | ((mag_binary == 1) & (dir_binary == 1))) | s_binary == 1] = 1
#-----------------------------------------------------------------------------------------------
# return the combinaison color and sobelx
return sxbinary, sybinary, mag_binary, dir_binary, s_binary, l_binary, combined_binary, combined_binary_b
#########################################################################################################
# ----------------------------PERPECTIVE TRANSFORM-------------------------------------------------------
def warper(img, src, dst):
img_size = (img.shape[1], img.shape[0])
M = cv2.getPerspectiveTransform(src, dst)
Minv = cv2.getPerspectiveTransform(dst, src)
warped = cv2.warpPerspective(img, M, img_size, flags=cv2.INTER_NEAREST) # keep same size as input image
return warped,Minv
##################################################################################################
#---------------------------------FIND LANE PIXEL - Methodic : Histrogramm and Window ------------
def find_lanes_pixels(binary_warped):
# Take a histogram of the bottom half of the image
# creation de l'histogramme avec les 2 pics, image coupé en 2
# et prendre en consideration que la demie-partie d'en bas --> shape[0] = axe y
histogram = np.sum(binary_warped[binary_warped.shape[0]//2:,:], axis=0)
#plt.plot(histogram)
# Create an output image to draw on and visualize the result
# creation d'une image resultat nommé out_img
out_img = np.dstack((binary_warped, binary_warped, binary_warped))
# Find the peak of the left and right halves of the histogram
# These will be the starting point for the left and right lines
# analyse de d'histogramme :
# 1) graphe histogramme coupe en 2 en x (partie droite et partie gauche)
# 2) prise de la partie gauche en x et prendre le point le plus haut
# 3) prise de la partie droite en x et prendre le point le plus haut
midpoint = np.int(histogram.shape[0]//2)
leftx_base = np.argmax(histogram[:midpoint])
rightx_base = np.argmax(histogram[midpoint:]) + midpoint
#--------------------------------------------------------
# HYPERPARAMETERS
# Choose the number of sliding windows
# nombre de fenetres qui vont se succeder
nwindows = 9
# Set the width of the windows +/- margin
# tolerance en x
margin = 50
# Set minimum number of pixels found to recenter window
# nombre minimum de pixel trouve pour recentrer la fenetre
minpix = 100
#------------------------------------------------------------
# DERNIERES PARAMETRAGES
# definition de la hauteur des 9 fenetre : taille de la fenetre total / 9
# Set height of windows - based on nwindows above and image shape
window_height = np.int(binary_warped.shape[0]//nwindows)
# position x et y de tous les pixels actives dans l'image
# Identify the x and y positions of all nonzero pixels in the image
nonzero = binary_warped.nonzero()
nonzeroy = np.array(nonzero[0]) # axe y
nonzerox = np.array(nonzero[1]) # axe x
# Current positions to be updated later for each window in nwindows
#position courante des deux fenetres (gauche et droite), ici initalisation
# donc fenetre (ligne) de base = fenetre (ligne) courante, qui va evoluer
leftx_current = leftx_base
rightx_current = rightx_base
# Create empty lists to receive left and right lane pixel indices
# creation de liste vide pour recevoir les indices des pixels des lignes (droite et gauche)
left_lane_inds = []
right_lane_inds = []
#---------------------------------------------------------------
# Step through the windows one by one
for window in range(nwindows):
# iterer de 1 a 9 :
# limites en y pour les fenetres :
#hauteur de l'image/ ((hauteur_fenetre)*fenetre (0->9)),
# Identify window boundaries in x and y (and right and left)
win_y_low = binary_warped.shape[0] - (window+1)*window_height
win_y_high = binary_warped.shape[0] - window*window_height
# limite en x des fenetres : avec les tolerances margin en x a partir
# du positionnement de la courbe
### TO-DO: Find the four below boundaries of the window ###
win_xleft_low = leftx_current - margin
win_xleft_high = leftx_current + margin
win_xright_low = rightx_current - margin
win_xright_high = rightx_current + margin
# ---------------------
# Draw the windows on the visualization image
# tracage de la fenetre dans l'image de sortie avec les coodonnées donnés ci-dessus
cv2.rectangle(out_img,(win_xleft_low,win_y_low),
(win_xleft_high,win_y_high),(0,255,0), 2)
cv2.rectangle(out_img,(win_xright_low,win_y_low),
(win_xright_high,win_y_high),(0,255,0), 2)
#------------------------
# identification des pixels activés en x et y dans la fenetre
good_left_inds = ((nonzeroy >= win_y_low) & (nonzeroy < win_y_high) &
(nonzerox >= win_xleft_low) & (nonzerox < win_xleft_high)).nonzero()[0]
good_right_inds = ((nonzeroy >= win_y_low) & (nonzeroy < win_y_high) &
(nonzerox >= win_xright_low) & (nonzerox < win_xright_high)).nonzero()[0]
# Append these indices to the lists
# ajout des indices des pixels activés
left_lane_inds.append(good_left_inds)
right_lane_inds.append(good_right_inds)
# si le nombre de pixel dans la fentre est >50
# on calcule la moyenne des indices pour donner leftx_current
# et recentrer la fenetre
if len(good_left_inds) > minpix:
leftx_current = np.int(np.mean(nonzerox[good_left_inds]))
if len(good_right_inds) > minpix:
rightx_current = np.int(np.mean(nonzerox[good_right_inds]))
#----------------------------PREPARATION A LA FONCION POLYNOMIAL---------
# Concatenate the arrays of indices (previously was a list of lists of pixels)
try:
left_lane_inds = np.concatenate(left_lane_inds)
right_lane_inds = np.concatenate(right_lane_inds)
except ValueError:
# Avoids an error if the above is not implemented fully
pass
# extraction des posisitions (x et y ) des pixels (cote droit et gauche)
# Extract left and right line pixel positions
leftx = nonzerox[left_lane_inds]
lefty = nonzeroy[left_lane_inds]
rightx = nonzerox[right_lane_inds]
righty = nonzeroy[right_lane_inds]
return leftx, lefty, rightx, righty, left_lane_inds, right_lane_inds
# on retourne l'image de sortie,
# les 2 listes avec les pixels ligne droit avec leurs coordonnees
# les 2 listes avec les pixels ligne gauche avec leur corronnées
#-----------------------------------------------------------------------------
#----------------FONCTION POLYNOMIALE-----------------------------------------
def fit_polynomial(binary_warped, leftx, lefty, rightx, righty, left_lane_inds, right_lane_inds) :
#------------------------------------------
#SECOND ORDER POLYNOMIAL for the right and the left line
left_fit = np.polyfit (lefty,leftx,2)
right_fit = np.polyfit (righty, rightx,2)
#-----------------------------------------
# Generate x and y values for plotting
ploty = np.linspace(0, binary_warped.shape[0]-1, binary_warped.shape[0] )
try:
left_fitx = left_fit[0]*ploty**2 + left_fit[1]*ploty + left_fit[2]
right_fitx = right_fit[0]*ploty**2 + right_fit[1]*ploty + right_fit[2]
except TypeError:
# Avoids an error if `left` and `right_fit` are still none or incorrect
print('The function failed to fit a line!')
left_fitx = 1*ploty**2 + 1*ploty
right_fitx = 1*ploty**2 + 1*ploty
## Visualization ##
# Colors in the left and right lane regions
nonzero = binary_warped.nonzero()
nonzeroy = np.array(nonzero[0])
nonzerox = np.array(nonzero[1])
out_img = np.dstack((binary_warped, binary_warped, binary_warped))*255
out_img[lefty, leftx] = [255, 0, 0]
out_img[righty, rightx] = [0, 0, 255]
return left_fit, right_fit, ploty, left_fitx, right_fitx, out_img
#------------------------------------------------------------------------------------
def calculation_curvature (leftx, lefty, rightx, righty) :
# radius of curvature in meters
y_eval = 719 # 720 image in reality, the lowest on screen y index is 719 (720-1)
# conversions in x and y from pixels space (in pixel) to real world (in meters)
ym_per_pix = 30/720 # meters for one pixel y dim
xm_per_pix = 3.7/700 # meters for one pixel in x dim
# new polynomials to x,y in world space (in meters)
left_fit_cr = np.polyfit(lefty*ym_per_pix, leftx*xm_per_pix, 2)
right_fit_cr = np.polyfit(righty*ym_per_pix, rightx*xm_per_pix, 2)
# new radius of curvature Calculation (in meters)
left_radius_curve = ((1 + (2*left_fit_cr[0]*y_eval*ym_per_pix + left_fit_cr[1])**2)**1.5) / np.absolute(2*left_fit_cr[0])
right_radius_curve = ((1 + (2*right_fit_cr[0]*y_eval*ym_per_pix + right_fit_cr[1])**2)**1.5) / np.absolute(2*right_fit_cr[0])
# Radius of curvature is now in meters
return left_radius_curve, right_radius_curve
#---------------------------------------------------------------------------------------
#------------------VEHICLE POSITION FROM THE LANE CENTER--------------------------------
def calculation_vehicle_position(undist, left_fit, right_fit):
# vehicle center position (in pixels)
bottom_y = undist.shape[0] - 1
bottom_x_left = left_fit[0]*(bottom_y**2) + left_fit[1]*bottom_y + left_fit[2]
bottom_x_right = right_fit[0]*(bottom_y**2) + right_fit[1]*bottom_y + right_fit[2]
vehicle_position = undist.shape[1]/2 - (bottom_x_left + bottom_x_right)/2
# Conversion : from pixel positison to meters
xm_per_pix = 3.7/700 # meters per pixel in x
vehicle_position *= xm_per_pix
return vehicle_position
#----------------------VISUALIZATION FINALE (original image with the news informations)-----------
#---------------------Warp the detected lane boundaries back onto the original image--------------
def vizualization (undist, left_fit, right_fit, Minv, left_radius_curve, right_radius_curve, vehicle_position):
# x and y values generation
ploty = np.linspace(0, undist.shape[0]-1, undist.shape[0])
left_fitx = left_fit[0]*ploty**2 + left_fit[1]*ploty + left_fit[2]
right_fitx = right_fit[0]*ploty**2 + right_fit[1]*ploty + right_fit[2]
# image to draw the lines
color_warp = np.zeros((720, 1280, 3), dtype='uint8')
# Recast the x and y points into usable format
pts_left = np.array([np.transpose(np.vstack([left_fitx, ploty]))])
pts_right = np.array([np.flipud(np.transpose(np.vstack([right_fitx, ploty])))])
pts = np.hstack((pts_left, pts_right))
# Draw the lane onto the warped blank image
cv2.fillPoly(color_warp, np.int_([pts]), (0,255, 0))
# inverse perspective matrix (Minv) to write the disgnostic information on the image before the processing
newwarp = cv2.warpPerspective(color_warp, Minv, (undist.shape[1], undist.shape[0]))
# result combinaison with the original image
result = cv2.addWeighted(undist, 1, newwarp, 0.3, 0)
# Diagnostic infomation on the image : Lane curvature values and vehicle position from the center
avg_curve = (left_radius_curve + left_radius_curve)/2
label_str = 'Radius of curvature: %.1f m' % avg_curve
result = cv2.putText(result, label_str, (30,60), 0, 1, (0,0,0), 2, cv2.LINE_AA)
label_str = 'Deviation from lane center: %.1f m' % vehicle_position
result = cv2.putText(result, label_str, (30,100), 0, 1, (0,0,0), 2, cv2.LINE_AA)
return result