-
Notifications
You must be signed in to change notification settings - Fork 88
/
event.f
1728 lines (1427 loc) · 60.1 KB
/
event.f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
subroutine limits_update(main,vertex,orig,recon,doing_deuterium,
> doing_pion,doing_kaon,doing_delta,doing_rho,contrib,slop)
USE structureModule
implicit none
c include 'structures.inc'
include 'radc.inc'
type(event_main):: main
type(event):: vertex, orig, recon
type(contribtype):: contrib
type(sloptype):: slop
integer i
logical doing_deuterium, doing_pion, doing_kaon, doing_delta, doing_rho
! Update the "contribution limits" records
! ... GENERATION values
call update_range(vertex%e%delta, contrib%gen%e%delta)
call update_range(vertex%e%yptar, contrib%gen%e%yptar)
call update_range(vertex%e%xptar, contrib%gen%e%xptar)
call update_range(vertex%p%delta, contrib%gen%p%delta)
call update_range(vertex%p%yptar, contrib%gen%p%yptar)
call update_range(vertex%p%xptar, contrib%gen%p%xptar)
call update_range(main%Trec, contrib%gen%Trec)
! ........ another tricky shift
if (doing_deuterium .or. doing_pion .or. doing_kaon .or. doing_delta .or. doing_rho) then
call update_range(vertex%e%E-main%Ein_shift,contrib%gen%sumEgen)
else
call update_range(vertex%e%E+vertex%p%E-main%Ein_shift,contrib%gen%sumEgen)
endif
! ... TRUE values
! ........ tricky shift here, remember this'll get compared with edge.e.E,
! ........ compensate for main.target.Coulomb to
! ........ copy the shift made to the edge in generate
call update_range(orig%e%E-main%Ee_shift, contrib%tru%e%E)
call update_range(orig%e%xptar, contrib%tru%e%xptar)
call update_range(orig%e%yptar, contrib%tru%e%yptar)
call update_range(orig%e%xptar, contrib%tru%e%xptar)
call update_range(orig%p%E, contrib%tru%p%E)
call update_range(orig%p%yptar, contrib%tru%p%yptar)
call update_range(orig%p%xptar, contrib%tru%p%xptar)
! ........ another tricky shift
call update_range(orig%Em-main%Ein_shift+main%Ee_shift,contrib%tru%Em)
call update_range(orig%Pm, contrib%tru%Pm)
call update_range(orig%Trec, contrib%tru%Trec)
! ... SPECTROMETER values
call update_range(main%SP%e%delta, contrib%SP%e%delta)
call update_range(main%SP%e%yptar, contrib%SP%e%yptar)
call update_range(main%SP%e%xptar, contrib%SP%e%xptar)
call update_range(main%SP%p%delta, contrib%SP%p%delta)
call update_range(main%SP%p%yptar, contrib%SP%p%yptar)
call update_range(main%SP%p%xptar, contrib%SP%p%xptar)
! ... VERTEX values
call update_range(vertex%Trec, contrib%vertex%Trec)
call update_range(vertex%Em, contrib%vertex%Em)
call update_range(vertex%Pm, contrib%vertex%Pm)
! ... RADIATION stuff
! ??? should be looking at Egamma2+3 cause we do use limits on that, indirectly
do i = 1, 3
call update_range(Egamma_used(i), contrib%rad%Egamma(i))
enddo
call update_range(Egamma_used(1)+Egamma_used(2)+Egamma_used(3),
> contrib%rad%Egamma_total)
! Update the "slop limits" records
! ... MC slops
call update_slop_range(main%RECON%e%delta-main%SP%e%delta,slop%MC%e%delta)
call update_slop_range(main%RECON%e%yptar-main%SP%e%yptar,slop%MC%e%yptar)
call update_slop_range(main%RECON%e%xptar-main%SP%e%xptar,slop%MC%e%xptar)
call update_slop_range(main%RECON%p%delta-main%SP%p%delta,slop%MC%p%delta)
call update_slop_range(main%RECON%p%yptar-main%SP%p%yptar,slop%MC%p%yptar)
call update_slop_range(main%RECON%p%xptar-main%SP%p%xptar,slop%MC%p%xptar)
! %.. total slops
! ........ that tricky shift again, slops accounted for by the shift not
! ........ included in slop.total.Em.
call update_slop_range(recon%Em-(orig%Em-main%Ein_shift+main%Ee_shift),
> slop%total%Em)
call update_slop_range(abs(recon%Pm)-abs(orig%Pm), slop%total%Pm)
return
end
!-------------------------------------------------------------------
subroutine update_range(val,range)
use structureModule
c include 'structures.inc'
type(rangetype):: range
real*8 val
range%lo = min(range%lo, val)
range%hi = max(range%hi, val)
return
end
!-------------------------------------------------------------------
subroutine update_slop_range(val,sloprange)
use structureModule
c include 'structures.inc'
type(slop_item):: sloprange
real*8 val
sloprange%lo = min(sloprange%lo, val)
sloprange%hi = max(sloprange%hi, val)
return
end
!----------------------------------------------------------------------
! THE routine to GENERATE the (max of 7) random quantities we need to get
! a full description of our event.
subroutine generate(main,vertex,orig,success)
USE structureModule
implicit none
include 'simulate.inc'
integer i, ii
real*8 Emin, Emax
real*8 ranprob,ranth1,ranth,ranph,t3,t4,t5,t6
real*8 pferlo,pferhi
real*8 m_spec !spectator (A-1) mass based on missing energy
real*8 gauss1
logical success
real*8 grnd !random # generator.
type(event_main):: main
type(event):: vertex, orig
real*8 nsig_max
parameter(nsig_max=3.0e0) !max #/sigma for gaussian ran #s.
! Randomize the position of the interaction inside the available region.
! gen.xwid and gen.ywid are the intrinsic beam widths (one sigma value).
! Use a gaussian beam distribution with +/- 3.0 sigma (add raster afterwards).
C DJG As best I can figger, main.target.y is positive when the beam is high in the lab
C DJG and main.target.x is positive when the beam is right when looking downstream.
C DJG Don't ask me why, but it seems to be this way.
C DJG Note that this means that +fry points down. I will make frx point left.
main%target%x = gauss1(nsig_max)*gen%xwid+targ%xoffset
main%target%y = gauss1(nsig_max)*gen%ywid+targ%yoffset
! fr_pattern=1 - old bedpost raster rectangle - targ.fr1/fr2 are the x/y raster half-widths.
! fr_pattern=2 - circle - targ.fr1/fr2 are the inner and outer radii.
! fr_pattern=3 - new flat raster rectangle - targ.fr1/fr2 are the x/y raster half-widths.
if (targ%fr_pattern .eq. 1) then !old bedpost, square raster
t3=grnd()*pi
t4=grnd()*pi
t5=cos(t3)*targ%fr1
t6=cos(t4)*targ%fr2
elseif (targ%fr_pattern .eq. 2) then !circular raster
t3=grnd()*2.*pi
t4=sqrt(grnd())*(targ%fr2-targ%fr1)+targ%fr1
t5=cos(t3)*t4
t6=sin(t3)*t4
elseif (targ%fr_pattern .eq. 3) then !new, flat square raster
t3=2.*grnd()-1.0
t4=2.*grnd()-1.0
t5=targ%fr1*t3
t6=targ%fr2*t4
else !no raster
t5=0.0
t6=0.0
endif
main%target%x = main%target%x+t5
main%target%y = main%target%y+t6
main%target%z = (0.5-grnd())*targ%length+targ%zoffset
main%target%rastery = t6 !'raster' contribution to vert. pos.
main%target%rasterx = t5 ! points right as you look downstream - need to flip sign later.
! Take fluctuations of the beam energy into account, and remember to correct
! for ionization loss in the target and Coulomb acceleration of incoming
! electron. Remove targ.zoffset from the z position of the scattering
! in order to get the position relative to the center of the target.
call trip_thru_target (1, main%target%z-targ%zoffset, Ebeam, 0.0e0,
> main%target%Eloss(1), main%target%teff(1),Me,1)
if (.not.using_Eloss) main%target%Eloss(1) = 0.0
if (using_Coulomb) then
c main%target%Coulomb=targ%Coulomb_constant*(3.-(grnd())**(2./3.))
C modified 5/15/06 for poinct
main%target%Coulomb=targ%Coulomb_constant
else
main%target%Coulomb=0.0
endif
vertex%Ein = Ebeam + (grnd()-0.5)*dEbeam +
> main%target%Coulomb - main%target%Eloss(1)
! ... deterimine known variation in Ein from Ebeam_vertex_ave and in
! ... Ee due to Coulomb energy to compare limits to generated event by event.
! ... (USED TO SHIFT 'LIMIT' VALUES IN UPDATE_RANGE CALLS. ARE THEY NEEDED???)
main%Ein_shift = vertex%Ein - Ebeam_vertex_ave
main%Ee_shift = main%target%Coulomb - targ%Coulomb%ave
! Initialize success code and fractional weight due to radiation and
! generation tricks
5 success = .false.
main%gen_weight = 1.0
! Generated quantities: (phase_space NOT YET IMPLEMENTED).
!
! phase_space: Generate electron E,yptar,xptar and hadron yptar,xptar??
! doing_hyd_elast: Generate electron angles. Solve for everything else.
! doing_deuterium: Generate electron energy and angles, proton angles.
! Solve for proton momentum, p_fermi.
! doing_eep, A>2: generate electron and hadron energy, angles. Solve for Em,Pm.
! doing_pion: generate electron energy and angles, hadron angles, p_fermi, Em.
! Solve for hadron momentum.
! doing_kaon: as doing_pion.
! doing_delta: as doing_pion.
! doing_rho: as doing_pion.
! doing_semi: Generate electron E,yptar,xptar and hadron E, yptar,xptar
!
! The above is summarized in the following table:
!
! ELECTRON HADRON
! ------------------ ------------------
! E yptar xptar E yptar xptar p_fermi Em
!
!H(e,e'p) X X
!D(e,e'p) X X X X X
!A(e,e'p) X X X X X X
!----------------------------------------------------------------------
!H(e,e'pi) X X X X X
!A(e,e'pi) X X X X X X X
!H(e,e'K) X X X X X
!A(e,e'K) X X X X X X X
!H(e,e'p)pi X X X X X
!A(e,e'p)pi X X X X X X X
!----------------------------------------------------------------------
!phase_space X X X ? X X
!
! So our procedure is the following:
! 1) Always generate electron yptar and xptar
! 2) generate hadron yptar and xptar for all cases except H(e,e'p).
! 3) Generate hadron E for A(e,e'p)
! 4) generate electron E for all but hydrogen elastic.
! 5) generate p_fermi, Em for A(e,e'pi) and A(e,e'K).
!
! After we generate xptar/yptar/energy, we calculate physics angles (theta/phi),
! momenta, unit vectors, etc... here and/or in complete_ev.
!
! Note that there are also jacobians associated with some and/or all of
! the above.
! 1: We generate uniformly in xptar/yptar, not theta/phi. We define the
! phase space volume (genvol contribution) as the product of the xptar/yptar
! range, and have a jacobian for each event taking into account the mapping
! between the solid angle on the unit sphere, and the dxptar/dyptar volume
! (the jacobian is 1/cos**3(dtheta), where dtheta is the angle between the
! event and the central spectrometer vector
! 2: For the D(e,e'p), we take Em as fixed in order to calculate the proton
! energy. There is a jacobian ( |dEp'/dEm| ). It comes from integrating
! over the energy conservation delta function: delta(E_D - E_p - E_n - Em).
! Generate Electron Angles (all cases):
vertex%e%yptar=gen%e%yptar%min+grnd()*(gen%e%yptar%max-gen%e%yptar%min)
vertex%e%xptar=gen%e%xptar%min+grnd()*(gen%e%xptar%max-gen%e%xptar%min)
! Generate Hadron Angles (all but H(e,e'p)):
if (doing_deuterium.or.doing_heavy.or.doing_pion.or.doing_kaon
> .or.doing_delta.or.doing_semi) then
vertex%p%yptar=gen%p%yptar%min+grnd()*
> (gen%p%yptar%max-gen%p%yptar%min)
vertex%p%xptar=gen%p%xptar%min+grnd()*
> (gen%p%xptar%max-gen%p%xptar%min)
endif
! Generate Hadron Momentum (A(e,e'p) or semi-inclusive production).
if (doing_heavy .or. doing_semi) then
Emin = max(gen%p%E%min, gen%sumEgen%min - gen%e%E%max)
Emax = min(gen%p%E%max, gen%sumEgen%max - gen%e%E%min)
if (Emin.gt.Emax) goto 100
main%gen_weight=main%gen_weight*(Emax-Emin)/(gen%p%E%max-gen%p%E%min)
vertex%p%E = Emin + grnd()*(Emax-Emin)
vertex%p%P = sqrt(vertex%p%E**2 - Mh2)
vertex%p%delta = 100.*(vertex%p%P-spec%p%P)/spec%p%P
endif
! Generate Electron Energy (all but hydrogen elastic)
if (doing_deuterium.or.doing_heavy.or.doing_pion.or.doing_kaon
> .or.doing_delta.or.doing_rho.or.doing_semi) then
Emin=gen%e%E%min
Emax=gen%e%E%max
if (doing_deuterium .or. doing_pion .or. doing_kaon .or. doing_delta .or. doing_rho) then
Emin = max(Emin,gen%sumEgen%min)
Emax = min(Emax,gen%sumEgen%max)
else if (doing_heavy) then ! A(e,e'p)
Emin = max(Emin, gen%sumEgen%min - vertex%p%E)
Emax = min(Emax, gen%sumEgen%max - vertex%p%E)
endif
if (Emin.gt.Emax) goto 100
main%gen_weight=main%gen_weight*(Emax-Emin)/(gen%e%E%max-gen%e%E%min)
vertex%e%E = Emin + grnd()*(Emax-Emin)
vertex%e%P = vertex%e%E
vertex%e%delta = 100.*(vertex%e%P-spec%e%P)/spec%e%P
endif !not (doing_hyd_elast)
! Calculate the electron and proton PHYSICS angles from the spectrometer angles.
! Note that the proton angles are not yet know for hydrogen elastic.
! NOTE: this needs to be done again for the exclusive rho stuff (just on the hadron side).
call physics_angles(spec%e%theta,spec%e%phi,
& vertex%e%xptar,vertex%e%yptar,vertex%e%theta,vertex%e%phi)
call physics_angles(spec%p%theta,spec%p%phi,
& vertex%p%xptar,vertex%p%yptar,vertex%p%theta,vertex%p%phi)
! Generate Fermi Momentum and Em for A(e,e'pi) and A(e,e'K).
pfer=0.0
pferx=0.0
pfery=0.0
pferz=0.0
vertex%Em=0.0
efer=targ%Mtar_struck !used for pion/kaon xsec calcs.
if(doing_deutpi.or.doing_hepi.or.doing_deutkaon.or.doing_hekaon.or.
> doing_deutdelta.or.doing_hedelta.or.doing_deutrho.or.doing_herho
> .or.doing_deutsemi)then
ranprob=grnd()
ii=1
do while (ranprob.gt.mprob(ii) .and. ii.lt.nump)
ii=ii+1
enddo
if (ii.eq.1) then
pferlo=0
else
pferlo=(pval(ii-1)+pval(ii))/2
endif
if (ii.eq.nump) then
pferhi=pval(nump)
else
pferhi=(pval(ii)+pval(ii+1))/2
endif
pfer=pferlo+(pferhi-pferlo)*grnd()
ranth1=grnd()*2.-1.0
ranth=acos(ranth1)
ranph=grnd()*2.*pi
pferx=sin(ranth)*cos(ranph)
pfery=sin(ranth)*sin(ranph)
pferz=cos(ranth)
if (doing_deutpi.or.doing_deutkaon.or.doing_deutdelta
> .or.doing_deutrho .or.doing_deutsemi) then !Em = binding energy
vertex%Em = Mp + Mn - targ%M
m_spec = targ%M - targ%Mtar_struck + vertex%Em != Mn(Mp) for pi+(-)
efer = targ%M - sqrt(m_spec**2+pfer**2)
endif
if (doing_hepi .or. doing_hekaon .or. doing_hedelta .or. doing_herho) then
call generate_em(pfer,vertex%Em) !Generate Em
m_spec = targ%M - targ%Mtar_struck + vertex%Em != M^*_{A-1}
efer = targ%M - sqrt(m_spec**2+pfer**2)
endif
endif
! Compute all non-generated quantities
if (debug(5)) write(6,*)'gen: calling comp_ev with false, main, vertex'
if (debug(3)) write(6,*)'gen: calling comp_ev with false, main, vertex'
if (debug(3)) write(6,*)'gen: Ein, E =',vertex%Ein,vertex%e%E
call complete_ev(main,vertex,success)
main%sigcc = 1.0
if (debug(2)) write(6,*)'gen: initial success =',success
if (.not.success) goto 100
! ........ temporary storage of Trec for generated event
main%Trec = vertex%Trec
! Radiate the event, if requested. If we get an event weight of zero (i.e.
! if we CAN'T radiate our event into the acceptance) then success is
! false. generate_rad also set orig kinematics, and cuts on Em/Pm.
! If not using_rad, must do these here.
if (using_rad) then
call generate_rad(main,vertex,orig,success)
if (debug(2)) write(6,*)'gen: after gen_rad, success =',success
else
success = .true.
if (doing_heavy) success =
> (vertex%Em .ge. VERTEXedge%Em%min .and.
> vertex%Em .le. VERTEXedge%Em%max .and.
> vertex%Pm .ge. VERTEXedge%Pm%min .and.
> vertex%Pm .le. VERTEXedge%Pm%max)
if (success) then
c do i = 1, neventfields
c orig.all(i) = vertex.all(i)
c enddo
orig = vertex
endif
endif
C DJG need to decay the rho here before we begin transporting through the
C DJG spectrometer
if(doing_rho) then
call rho_decay(orig,spec%p%P,main%epsilon,success)
endif
100 if (debug(2)) write(6,*)'gen: final success =',success
if (debug(2)) write(6,*)'gen: ending'
return
end
!---------------------------------------------------------------------
subroutine complete_ev(main,vertex,success)
USE structureModule
implicit none
include 'simulate.inc'
real*8 a, b, c, r, t, QA, QB, QC, radical
real*8 p_new_x,p_new_y,new_x_x,new_x_y,new_x_z
real*8 targ_new_x,targ_new_y
real*8 new_y_x,new_y_y,new_y_z,dummy
real*8 targx,targy,targz
real*8 px,py,pz,qx,qy,qz
real*8 oop_x,oop_y
real*8 krel,krelx,krely,krelz
real*8 MM
real*8 diffmin
real*8 w,w2,prob,probtot,probsum(1000),mass_save(1000)
real*8 Ehad2,E_rec
real*8 grnd,rn !random # generator.
real*8 v1(4), Mgamma, costh, phi,mchk
integer i
logical success
type(event_main):: main
type(event):: vertex
logical first/.true./
!-----------------------------------------------------------------------
! Calculate everything left in the /event/ structure, given all necessary
! GENERATION values (some set of xptar,yptar,delta for both arms and p_fermi,
! and p_fermi, depending on the scattering process: see table in generate.f
!
! The SINGLE element of /event/ NOT computed here is sigcc.
!
! Another small anomaly is that main.jacobian IS computed here.
! This is because all the necessary terms have to be
! computed here anyway to calculate /event/ qties.
!
!-----------------------------------------------------------------------
! Initialize
! PB: generate Delta(1232) shape using mss 1.2298, width 0.135
! PB: made width narrower 0.105 9/5/2022
! PB: distribution is truncated on low mass side at P + pi mass
c PB: 9/5/22 changed to use actual Breit-Wigner shape generated
c PB: from resmod507 in first call to semi_physics.f
if((which_pion.eq.2 .or. which_pion.eq.3).and.first) then
open(unit=55,file='delta_relativistic_bw.inp')
probtot = 0.
do i=1,1000
w = sqrt(1.055) + 0.6 * float(i) / 1000
w2 = w**2
read(55,'(f8.3,f12.5)') w,prob
mass_save(i) = w
probtot = probtot + prob
probsum(i) = probtot
enddo
do i=1,1000
probsum(i) = probsum(i) / probtot
if((i/50)*50.eq.i) write(6,'(''Delta'',i5,2f8.3)')
> i,mass_save(i),probsum(i)
enddo
first = .false.
endif
success = .false.
main%jacobian = 1.0
! ... unit vector components of outgoing e,p
! ... z is DOWNSTREAM, x is DOWN and y is LEFT looking downstream.
if (debug(4)) write(6,*)'comp_ev: at 1'
vertex%ue%x = sin(vertex%e%theta)*cos(vertex%e%phi)
vertex%ue%y = sin(vertex%e%theta)*sin(vertex%e%phi)
vertex%ue%z = cos(vertex%e%theta)
if ((.not.doing_hyd_elast).and.(.not.doing_rho)) then
vertex%up%x = sin(vertex%p%theta)*cos(vertex%p%phi)
vertex%up%y = sin(vertex%p%theta)*sin(vertex%p%phi)
vertex%up%z = cos(vertex%p%theta)
endif
if (debug(4)) write(6,*)'comp_ev: at 2'
! First finish off the e side
! Calculate scattered electron energy for hydrogen/deuterium (e,e'p)
if (doing_hyd_elast) then
vertex%e%E = vertex%Ein*Mh/(Mh+vertex%Ein*(1.-vertex%ue%z))
if (vertex%e%E.gt.vertex%Ein) return
vertex%e%P = vertex%e%E
vertex%e%delta = (vertex%e%P - spec%e%P)*100./spec%e%P
if (debug(4)) write(6,*)'comp_ev: at 3'
endif
! The q vector
if (debug(5)) write(6,*)'comp_ev: Ein,E,uez=',vertex%Ein,vertex%e%E,vertex%ue%z
vertex%nu = vertex%Ein - vertex%e%E
vertex%Q2 = 2*vertex%Ein*vertex%e%E*(1.-vertex%ue%z)
vertex%q = sqrt(vertex%Q2 + vertex%nu**2)
vertex%xbj = vertex%Q2/2./Mp/vertex%nu
vertex%uq%x = - vertex%e%P*vertex%ue%x / vertex%q
vertex%uq%y = - vertex%e%P*vertex%ue%y / vertex%q
vertex%uq%z =(vertex%Ein - vertex%e%P*vertex%ue%z)/ vertex%q
if (abs(vertex%uq%x**2+vertex%uq%y**2+vertex%uq%z**2-1).gt.0.01)
> stop 'Error in q vector normalization'
if (debug(4)) write(6,*)'comp_ev: at 5'
! Now complete the p side, along with vertex.Em, vertex.Pm, vertex.Mrec.
! NOTE: Coherent pion/kaon production (bound final state) is treated as
! hydrogen, but with targ.Mtar_struck=targ.M, targ.Mtar_rec=bound final state.
if (doing_hyd_elast) then !p = q
vertex%Em = 0.0
vertex%Pm = 0.0
vertex%Mrec = 0.0
vertex%up%x = vertex%uq%x
vertex%up%y = vertex%uq%y
vertex%up%z = vertex%uq%z
vertex%p%P = vertex%q
vertex%p%theta = acos(vertex%up%z)
if (abs(vertex%up%x/sin(vertex%p%theta)).gt.1)
> write(6,*) 'cos(phi)=',vertex%up%x/sin(vertex%p%theta)
vertex%p%phi = atan2(vertex%up%y,vertex%up%x)
if (vertex%p%phi.lt.0.) vertex%p%phi=vertex%p%phi+2.*pi
call spectrometer_angles(spec%p%theta,spec%p%phi,
& vertex%p%xptar,vertex%p%yptar,vertex%p%theta,vertex%p%phi)
vertex%p%E = sqrt(vertex%p%P**2+Mh2)
vertex%p%delta = (vertex%p%P - spec%p%P)*100./spec%p%P
if (debug(4)) write(6,*)'comp_ev: at 6'
elseif (doing_deuterium) then !need Ep, and a jacobian.
vertex%Em = targ%Mtar_struck + targ%Mrec - targ%M !=2.2249 MeV
vertex%Mrec = targ%M - targ%Mtar_struck + vertex%Em !=targ.Mrec
a = -1.*vertex%q*(vertex%uq%x*vertex%up%x+vertex%uq%y*vertex%up%y+vertex%uq%z*vertex%up%z)
b = vertex%q**2
c = vertex%nu + targ%M
t = c**2 - b + Mh2 - vertex%Mrec**2
QA = 4.*(a**2 - c**2)
QB = 4.*c*t
QC = -4.*a**2*Mh2 - t**2
radical = QB**2 - 4.*QA*QC
if (radical.lt.0) return
vertex%p%E = (-QB - sqrt(radical))/2./QA
! Check for two solutions
! if ( (-QB + sqrt(radical))/2./QA .gt. Mh ) then
! write(6,*) 'There are two valid solutions for the hadron momentum'
! write(6,*) 'We always pick one, so this may be a problem, and needs to be checked'
! write(6,*) 'solns=',(-QB - sqrt(radical))/2./QA,(-QB + sqrt(radical))/2./QA
! endif
! Check for two solutions, but only print warning if both are within
! event generation limits.
Ehad2 = (-QB + sqrt(radical))/2./QA
if (Ehad2.gt.edge%p%E%min .and. Ehad2.lt.edge%p%E%max .and. ntried.le.5000) then
write(6,*) 'The low-momentum solution to E_hadron is within the spectrometer generation'
write(6,*) 'limits. If it is in the acceptance, Its the end of the world as we know it!!!'
write(6,*) 'E_hadron solns=',vertex%p%E,Ehad2
endif
if (vertex%p%E.le.Mh) return
vertex%p%P = sqrt(vertex%p%E**2 - Mh2)
vertex%p%delta = (vertex%p%P - spec%p%P)*100./spec%p%P
! ........ the Jacobian here is |dEp'/dEm|
main%jacobian = (t*(c-vertex%p%E) + 2*c*vertex%p%E*(vertex%p%E-c)) /
> (2*(a**2-c**2)*vertex%p%E + c*t)
main%jacobian = abs(main%jacobian)
elseif (doing_pion .or. doing_kaon .or. doing_delta) then
c if (doing_rho) then
c Mh = Mrho
! DJG give the rho mass some width (non-relativistic Breit-Wigner)
c Mh = Mh + 0.5*150.2*tan((2.*grnd()-1.)*atan(2.*500./150.2))
c Mh2 = Mh*Mh
c ntup.rhomass=Mh
c write(6,*) 'rho mass is', Mh
c endif
C DJG If doing Deltas final state for pion production, generate Delta mass
if(which_pion.eq.2 .or. which_pion.eq.3) then
c factor of 0.7265 to better match data (PB)
c targ%Mrec_struck = Mdelta + 0.5*(0.7265)*Delta_width*tan((2.*grnd()-1.)*pi/2.)
C switch to relativistic BW for Delta
rn = grnd()
diffmin = 10000.
do i=1,1000
if(abs(rn - probsum(i)).lt.diffmin) then
diffmin = abs(rn - probsum(i))
targ%Mrec_struck = mass_save(i) * 1000. ! in MeV
endif
enddo
endif
vertex%Pm = pfer !vertex%Em generated at beginning.
vertex%Mrec = targ%M - targ%Mtar_struck + vertex%Em
a = -1.*vertex%q*(vertex%uq%x*vertex%up%x+vertex%uq%y*vertex%up%y+vertex%uq%z*vertex%up%z)
b = vertex%q**2
c = vertex%nu + targ%M
! For nuclei, correct for fermi motion and missing energy. Also, check
! second solution to quadratic equation - there are often two valid
! solutions, and we always pick the larger one (which is the forward going
! one in the center of mass) and HOPE that the smaller one is never in the
! acceptance. If the low momentum solution IS within the acceptance, we
! have big problems.
if (doing_deutpi.or.doing_hepi.or.doing_deutkaon.or.doing_hekaon.or.
> doing_deutdelta.or.doing_hedelta) then
a = a - abs(pfer)*(pferx*vertex%up%x+pfery*vertex%up%y+pferz*vertex%up%z)
b = b + pfer**2 + 2*vertex%q*abs(pfer)*
> (pferx*vertex%uq%x+pfery*vertex%uq%y+pferz*vertex%uq%z)
*** c = c - sqrt(vertex.Mrec**2+pfer**2)
c = vertex%nu + efer !same as above, but this way if we redefine
!'efer', it's the same everywhere.
endif
t = c**2 - b + Mh2 - targ%Mrec_struck**2
QA = 4.*(a**2 - c**2)
QB = 4.*c*t
QC = -4.*a**2*Mh2 - t**2
! write(6,*) ' '
! write(6,*) ' '
! write(6,*) 'E0=',vertex%Ein
! write(6,*) 'P_elec,P_prot=',vertex%e%P/1000.,vertex%p%P/1000.
! write(6,*) 'thetae,phie=',vertex%e%theta*180./pi,vertex%e%phi*180./pi
! write(6,*) 'thetap,phip=',vertex%p%theta*180./pi,vertex%p%phi*180./pi
! write(6,*) 'q,nu,costhetapq=',vertex%q,vertex%nu,(vertex%uq%x*vertex%up%x+vertex%uq%y*vertex%up%y+vertex%uq%z*vertex%up%z)
! write(6,*) 'a,b,c=',a/1000.,b/1000000.,c/1000.
! write(6,*) 't=',t/1000000.
! write(6,*) 'A,B,C=',QA/1.d6,QB/1.d9,QC/1.d12
! write(6,*) 'rad=',QB**2 - 4.*QA*QC
! write(6,*) 'e1,e2=',(-QB-sqrt(radical))/2000./QA,(-QB+sqrt(radical))/2000./QA
! write(6,*) 'E_pi1,2=',(-QB-sqrt(radical))/2./QA,
! > (-QB+sqrt(radical))/2./QA
radical = QB**2 - 4.*QA*QC
if (radical.lt.0) return
vertex%p%E = (-QB - sqrt(radical))/2./QA
if(vertex%p%E.lt.0.0) return
Ehad2 = (-QB + sqrt(radical))/2./QA
if (doing_delta) then !choose one of the two solutions.
! write(6,*) ' e1, e2=',vertex%p%E,Ehad2
if (grnd().gt.0.5) vertex%p%E = Ehad2
else !verify that 'backwards' soln. is no good.
if (Ehad2.gt.edge%p%E%min .and. Ehad2.lt.edge%p%E%max .and. ntried.le.5000) then
write(6,*) 'The low-momentum solution to E_hadron is within the spectrometer generation'
write(6,*) 'limits. If it is in the acceptance, Its the end of the world as we know it!!!'
write(6,*) 'E_hadron solns=',vertex%p%E,Ehad2
endif
endif
E_rec=c-vertex%p%E !energy of recoil system
if (E_rec.le.targ%Mrec_struck) return !non-physical solution
if (vertex%p%E.le.Mh) return
vertex%p%P = sqrt(vertex%p%E**2 - Mh2)
vertex%p%delta = (vertex%p%P - spec%p%P)*100./spec%p%P
! write(6,*) 'p,e=',vertex%p%P,vertex%p%E
elseif (doing_rho) then
call generate_rho(vertex,success) !generate rho in 4pi in CM
if(.not.success) then
return
else ! we have a success, but set back to false for rest of complete_ev until rho_decay is called
success=.false.
endif
elseif (doing_phsp) then
vertex%p%P = spec%p%P !????? single arm phsp??
vertex%p%E= sqrt(Mh2+vertex%p%P**2)
vertex%p%delta = (vertex%p%P - spec%p%P)*100./spec%p%P
if (debug(4)) write(6,*)'comp_ev: at 7.5',Mh2,vertex%p%E
endif
if (debug(4)) write(6,*)'comp_ev: at 7'
! Compute some pion and kaon stuff. Some of these should be OK for proton too.
if (doing_pion .or. doing_kaon .or. doing_delta .or. doing_rho .or. doing_semi) then
W2 = targ%Mtar_struck**2 + 2.*targ%Mtar_struck*vertex%nu - vertex%Q2
main%W = sqrt(abs(W2)) * W2/abs(W2)
main%epsilon=1./(1. + 2.*(1+vertex%nu**2/vertex%Q2)*tan(vertex%e%theta/2.)**2)
main%theta_pq=acos(vertex%up%x*vertex%uq%x+vertex%up%y*vertex%uq%y+vertex%up%z*vertex%uq%z)
main%t = vertex%Q2 - Mh2 + 2*vertex%nu*vertex%p%E -
> 2*vertex%p%P*vertex%q*cos(main%theta_pq)
main%tmin = vertex%Q2 - Mh2 + 2*vertex%p%E*vertex%nu -
> 2*vertex%p%P*vertex%q
main%q2 = vertex%Q2
! CALCULATE ANGLE PHI BETWEEN SCATTERING PLANE AND REACTION PLANE.
! Therefore, define a new system with the z axis parallel to q, and
! the x axis inside the q-z-plane: z' = q, y' = q X z, x' = y' X q
! this gives phi the way it is usually defined, i.e. phi=0 for in-plane
! particles closer to the downstream beamline than q.
! phi=90 is above the horizontal plane when q points to the right, and
! below the horizontal plane when q points to the left.
! Also take into account the different definitions of x, y and z in
! replay and SIMC:
! As seen looking downstream: replay SIMC (old_simc)
! x right down (left)
! y down left (up)
! z all have z pointing downstream
!
! SO: x_replay=-y_simc, y_replay=x_simc, z_replay= z_simc
qx = -vertex%uq%y !convert to 'replay' coord. system
qy = vertex%uq%x
qz = vertex%uq%z
px = -vertex%up%y
py = vertex%up%x
pz = vertex%up%z
dummy=sqrt((qx**2+qy**2)*(qx**2+qy**2+qz**2))
new_x_x = -qx*qz/dummy
new_x_y = -qy*qz/dummy
new_x_z = (qx**2 + qy**2)/dummy
dummy = sqrt(qx**2 + qy**2)
new_y_x = qy/dummy
new_y_y = -qx/dummy
new_y_z = 0.0
p_new_x = px*new_x_x + py*new_x_y + pz*new_x_z
p_new_y = px*new_y_x + py*new_y_y + pz*new_y_z
main%phi_pq = atan2(p_new_y,p_new_x) !atan2(y,x)=atan(y/x)
if (main%phi_pq.lt.0.e0) main%phi_pq=main%phi_pq+2.*pi
! if (p_new_y.lt.0.) then
! main.phi_pq = 2*pi - main.phi_pq
! endif
! if ((p_new_x**2+p_new_y**2).eq.0.) then
! main.phi_pq = 0.0
! else
! main.phi_pq = acos(p_new_x/sqrt(p_new_x**2+p_new_y**2))
! endif
! if (p_new_y.lt.0.) then
! main.phi_pq = 2*pi - main.phi_pq
! endif
if (debug(2)) then
write(6,*)'comp_ev: nu =',vertex%nu
write(6,*)'comp_ev: Q2 =',vertex%Q2
write(6,*)'comp_ev: theta_e =',vertex%e%theta
write(6,*)'comp_ev: epsilon =',main%epsilon
write(6,*)'comp_ev: theta_pq =',main%theta_pq
write(6,*)'comp_ev: phi_pq =',main%phi_pq
write(6,*)'comp_ev: E_hadron =',vertex%p%E
endif
if(using_tgt_field) then !calculate some azimuthal angles that only make
!sense for polarized target
! CALCULATE ANGLE PHI BETWEEN SCATTERING PLANE AND TARGET POLARIZATION.
! As seen looking downstream: replay SIMC (old_simc)
! x right down (left)
! y down left (up)
! z all have z pointing downstream
!
! SO: x_replay=-y_simc, y_replay=x_simc, z_replay= z_simc
qx = -vertex%uq%y !convert to 'replay' coord. system
qy = vertex%uq%x
qz = vertex%uq%z
c Target in-plane, so targy=0
targx = -targ_pol*sin(abs(targ_Bangle)) ! replay coordinates
targy = 0.0
targz = targ_pol*cos(abs(targ_Bangle))
c Target out of plane, so targx=0
c targx = 0.0 ! replay coordinates
c targy = -targ_pol*sin(abs(targ_Bangle))
c targz = targ_pol*cos(abs(targ_Bangle))
dummy=sqrt((qx**2+qy**2)*(qx**2+qy**2+qz**2))
new_x_x = -qx*qz/dummy
new_x_y = -qy*qz/dummy
new_x_z = (qx**2 + qy**2)/dummy
dummy = sqrt(qx**2 + qy**2)
new_y_x = qy/dummy
new_y_y = -qx/dummy
new_y_z = 0.0
p_new_x = targx*new_x_x + targy*new_x_y + targz*new_x_z
p_new_y = targx*new_y_x + targy*new_y_y + targz*new_y_z
main%phi_targ = atan2(p_new_y,p_new_x) !atan2(y,x)=atan(y/x)
if(main%phi_targ.lt.0.) main%phi_targ = 2.*pi+main%phi_targ
! CALCULATE ANGLE BETA BETWEEN REACTION PLANE AND TRANSVERSE TARGET
! POLARIZATION.
! As seen looking downstream: replay SIMC (old_simc)
! x right down (left)
! y down left (up)
! z all have z pointing downstream
!
! SO: x_replay=-y_simc, y_replay=x_simc, z_replay= z_simc
qx = -vertex%uq%y !convert to 'replay' coord% system
qy = vertex%uq%x
qz = vertex%uq%z
C Taret in plane
targx = -targ_pol*sin(abs(targ_Bangle)) ! 'replay' coordinates
targy = 0.0
targz = targ_pol*cos(abs(targ_Bangle))
C Target out of plane
c targx = 0.0 ! 'replay' coordinates
c targy = -targ_pol*sin(abs(targ_Bangle))
c targz = targ_pol*cos(abs(targ_Bangle))
px = -vertex%up%y
py = vertex%up%x
pz = vertex%up%z
dummy = sqrt((qy*pz-qz*py)**2 + (qz*px-qx*pz)**2 + (qx*py-qy*px)**2)
new_y_x = (qy*pz-qz*py)/dummy
new_y_y = (qz*px-qx*pz)/dummy
new_y_z = (qx*py-qy*px)/dummy
dummy = sqrt((new_y_y*qz-new_y_z*qy)**2 + (new_y_z*qx-new_y_x*qz)**2
> + (new_y_x*qy-new_y_y*qx)**2)
new_x_x = (new_y_y*qz - new_y_z*qy)/dummy
new_x_y = (new_y_z*qx - new_y_x*qz)/dummy
new_x_z = (new_y_x*qy - new_y_y*qx)/dummy
targ_new_x = targx*new_x_x + targy*new_x_y + targz*new_x_z
targ_new_y = targx*new_y_x + targy*new_y_y + targz*new_y_z
main%beta = atan2(targ_new_y,targ_new_x)
if(main%beta .lt. 0.) main%beta = 2*pi+main%beta
CDJG Calculate the "Collins" (phi_pq+phi_targ) and "Sivers"(phi_pq-phi_targ) angles
vertex%phi_s = main%phi_pq-main%phi_targ
if(vertex%phi_s .lt. 0.) vertex%phi_s = 2*pi+vertex%phi_s
vertex%phi_c = main%phi_pq+main%phi_targ
if(vertex%phi_c .gt. 2.*pi) vertex%phi_c = vertex%phi_c-2*pi
if(vertex%phi_c .lt. 0.0) vertex%phi_c = 2*pi+vertex%phi_c
dummy = sqrt((qx**2+qy**2+qz**2))*sqrt((targx**2+targy**2+targz**2))
main%theta_tarq = acos((qx*targx+qy*targy+qz*targz)/dummy)
endif !polarized-target specific azimuthal angles
if(doing_pizero) then ! now need to decay the pizero into 2 photons
call pizero_decay(vertex,success,ntup%gamma1,ntup%gamma2)
endif
endif !end of pion/kaon specific stuff.
if (debug(4)) write(6,*)'comp_ev: at 8'
! Compute the Pm vector in in SIMC LAB system, with x down, and y to the left.
! Computer Parallel, Perpendicular, and Out of Plane componenants.
! Parallel is component along q_hat. Out/plane is component along
! (e_hat) x (q_hat) (oop_x,oop_y are components of out/plane unit vector)
! Perp. component is what's left: along (q_hat) x (oop_hat).
! So looking along q, out of plane is down, perp. is left.
vertex%Pmx = vertex%p%P*vertex%up%x - vertex%q*vertex%uq%x
vertex%Pmy = vertex%p%P*vertex%up%y - vertex%q*vertex%uq%y
vertex%Pmz = vertex%p%P*vertex%up%z - vertex%q*vertex%uq%z
vertex%Pmiss = sqrt(vertex%Pmx**2+vertex%Pmy**2+vertex%Pmz**2)
vertex%Emiss = vertex%nu + targ%M - vertex%p%E
!STILL NEED SIGN FOR PmPer!!!!!!
oop_x = -vertex%uq%y ! oop_x = q_y *(z_hat x y_hat) = q_y *-(x_hat)
oop_y = vertex%uq%x ! oop_y = q_x *(z_hat x x_hat) = q_x * (y_hat)
vertex%PmPar = (vertex%Pmx*vertex%uq%x + vertex%Pmy*vertex%uq%y + vertex%Pmz*vertex%uq%z)
vertex%PmOop = (vertex%Pmx*oop_x + vertex%Pmy*oop_y) / sqrt(oop_x**2+oop_y**2)
vertex%PmPer = sqrt( max(0.e0, vertex%Pm**2 - vertex%PmPar**2 - vertex%PmOop**2 ) )
if (debug(4)) write(6,*)'comp_ev: at 9',vertex%Pmx,vertex%Pmy,vertex%Pmz
! Calculate Em, Pm, Mrec, Trec for all cases not already done.
! For doing_heavy, get Mrec from nu+M=Ep+Erec, and Erec**2=Mrec**2+Pm**2
! For (e,e'pi/K), could go back and determine momentum of recoil struck
! particle, and get Mrec and Trec seperately for struck nucleon(hyperon)
! and A-1 system. For now, just take Trec for the A-1 system, and ignore
! the recoiling struck nucleon (hyperon), so Trec=0 for hydrogen target.
if (doing_hyd_elast) then
vertex%Trec = 0.0
else if (doing_deuterium) then
vertex%Pm = vertex%Pmiss
vertex%Trec = sqrt(vertex%Mrec**2 + vertex%Pm**2) - vertex%Mrec
else if (doing_heavy) then
vertex%Pm = vertex%Pmiss
vertex%Mrec = sqrt(vertex%Emiss**2-vertex%Pmiss**2)
vertex%Em = targ%Mtar_struck + vertex%Mrec - targ%M
vertex%Trec = sqrt(vertex%Mrec**2 + vertex%Pm**2) - vertex%Mrec
else if (doing_hydpi .or. doing_hydkaon .or. doing_hyddelta .or. doing_hydrho) then
vertex%Trec = 0.0
else if (doing_deutpi.or.doing_hepi.or.doing_deutkaon.or.doing_hekaon
> .or.doing_deutdelta.or.doing_hedelta.or.doing_deutrho.or.doing_herho) then
vertex%Trec = sqrt(vertex%Mrec**2 + vertex%Pm**2) - vertex%Mrec
else if (doing_semi) then
vertex%Pm = vertex%Pmiss
vertex%Em = vertex%Emiss
endif
if (debug(5)) write(6,*) 'vertex%Pm,vertex%Trec,vertex%Em',vertex%Pm,vertex%Trec,vertex%Em
if (debug(4)) write(6,*)'comp_ev: at 10'
! calculate krel for deuteron/heavy pion(kaon). Deuteron is straightforward.
! A>2 case is some approximation for 3He (DJG).
if (doing_deutpi .or. doing_deutkaon .or. doing_deutdelta .or. doing_deutrho) then
if ((vertex%Emiss**2-vertex%Pmiss**2).lt.0) write(6,*) 'BAD MM!!!!! Emiss,Pmiss=',vertex%Emiss, vertex%Pmiss
MM = sqrt(max(0.e0,vertex%Emiss**2-vertex%Pmiss**2))
krel = sqrt( max(0.e0,MM**2-4.*targ%Mrec_struck**2) )
else if (doing_hepi .or. doing_hekaon .or. doing_hedelta .or. doing_herho) then
if ((vertex%Emiss**2-vertex%Pmiss**2).lt.0) write(6,*) 'BAD MM!!!!! Emiss,Pmiss=',vertex%Emiss, vertex%Pmiss
MM = sqrt(max(0.e0,vertex%Emiss**2-vertex%Pmiss**2))
krelx = vertex%Pmx + 1.5*pferx*pfer
krely = vertex%Pmy + 1.5*pfery*pfer
krelz = vertex%Pmz + 1.5*pferz*pfer
krel = sqrt(krelx**2+krely**2+krelz**2)
if(vertex%Em.lt.6.0) krel = -krel !bound state test???
endif
ntup%krel = krel
if(doing_semi) then
CDJG if ((vertex%Emiss**2-vertex%Pmiss**2).lt.0) then
CDJG I should be testing that the missing mass is above two pion
CDJG threshold! Otherwise, it's just exclusive
c if ((vertex%Emiss**2-vertex%Pmiss**2).lt.(Mp+Mpi0)**2) then
if (((targ%Mtar_struck+vertex%nu-vertex%p%E)**2-vertex%Pmiss**2).lt.(Mp+Mpi0)**2) then
success=.false.
return
endif
endif
if(doing_semi) then
vertex%zhad = vertex%p%E/vertex%nu
vertex%pt2 = vertex%p%P**2*(1.0-cos(main%theta_pq)**2)
if(vertex%zhad.gt.1.0) then
success=.false.
return
endif
endif
! Determine PHYSICS scattering angles theta/phi for the two spectrometer