-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path2. AK Workshop Participant File 2 Answer Key.R
524 lines (322 loc) · 12.6 KB
/
2. AK Workshop Participant File 2 Answer Key.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
#load packages:
#install.packages("readxl")
library(readxl)
#install.packages("tidyverse")
library(tidyverse)
#install.packages("tidycensus")
library(tidycensus)
## change working directory:
setwd("C:/Users/JBIDXXX/Downloads")
list.files()
## option 1: load 2020 Census population, 2019 Census population,
## and ACS poverty 2019 datasets
Census2020 <- read_excel("2020 Census File.xlsx")
colnames(Census2020)
str(Census2020)
ACS2019 <- read_csv("2019Pop.csv")
colnames(ACS2019)
str(ACS2019)
Poverty2019 <- read_csv("2019Poverty.csv")
colnames(Poverty2019)
str(Poverty2019)
## option 2: use tidycensus to get Decennial and ACS data
## load your API key:
census_api_key("YOUR KEY GOES HERE",
overwrite = FALSE, install = TRUE)
## available 2020 Census variables
## https://www.census.gov/data/developers/data-sets/decennial-census.html
vars20 <- load_variables(2020, "pl")
print(vars20, n = 301)
View(vars20)
## available 2010 Census variables
## https://www.census.gov/data/developers/data-sets/decennial-census/2010.html
vars10 <- load_variables(2010, "sf1")
print(vars10, n = 9099)
View(vars10)
## available ACS variables,
## https://www.census.gov/data/developers/data-sets/acs-5year/2019.html
all_vars_acs5 <-
load_variables(year = 2019, dataset = "acs5")
View(all_vars_acs5)
## load 2020 Census population
pop2020 <- get_decennial(
geography = "state",
variables = "P1_001N",
year = 2020) %>%
mutate(year = 2020, variable = "population")
## load 2019 ACS population
acs2019 <- get_acs(
geography = "state",
variables = "B01001_001",
year = 2019) %>%
rename(value = "estimate") %>%
mutate(year = 2019, variable = "population")
## load 2019 ACS poverty
pov19 <- get_acs(
"state",
variables = c("B17001_001", "B17001_002", "B17001_031"),
year = 2019,
survey = "acs1"
) %>%
select(-moe) %>%
spread(variable, estimate) %>%
rename(
"pov_univ" = "B17001_001",
"poor" = "B17001_002",
"not_poor" = "B17001_031",) %>%
mutate(year = 2019, variable = "poverty")
## part 1: intro to dplyr commands:
## select, rename, filter, arrange, mutate, and summarize-----------------------
## select function- drop columns C, D, E, G, H, I, as there is
## no need to include 2010 data when we have more recent 2019 data
## there are two options, keep or drop variables
## keep variables
Census2020Sub <- Census2020 %>%
select(`Area`,
`2020 Census Resident Population`,
`Numeric Change`,
`Percent Change`,
`State Rank Based on 2020 Census Resident Population`)
Census2020Sub
## drop variables
Census2020SubOpt2 <- Census2020 %>%
select(-c(`2010 Census Resident Population`,
`State Rank Based on 2010 Census Resident Population`:
`State Rank Based on Percent Change`))
Census2020SubOpt2
## rename function- rename renaming columns to simple names
Census2020Sub <- Census2020Sub %>%
rename(State = Area,
Pop2020 = `2020 Census Resident Population`,
NumChange2020 = `Numeric Change`,
PercentChange2020 = `Percent Change`,
StateRank = `State Rank Based on 2020 Census Resident Population`)
str(Census2020Sub)
## bonus1, combine select and rename
Census2020Bonus1 <- Census2020 %>%
select(`Area`,
`2020 Census Resident Population`,
`2010 Census Resident Population`) %>%
rename(State = Area,
Pop2020 = `2020 Census Resident Population`,
Pop2010 = `2010 Census Resident Population`)
glimpse(Census2020Bonus1)
head(Census2020Bonus1)
## filter function- filter states which are over or below 9,999,999
## population. only 10 states will remain in over and the rest in below
PopAboveLimit <- Census2020Sub %>%
filter(Pop2020 > 9999999)
PopBelowLimit <- Census2020Sub %>%
filter(Pop2020 <= 9999999)
dim(PopAboveLimit)
dim(PopBelowLimit)
## using AND/OR
PopAboveLimitAND <- Census2020Sub %>%
filter(Pop2020 > 9999999 & StateRank >= 9)
PopAboveLimitOR <- Census2020Sub %>%
filter(Pop2020 > 9999999 | StateRank >= 50)
dim(PopAboveLimitAND)
dim(PopAboveLimitOR)
## arrange function- arrange the dataset by population count in 2020,
## in descending order, and verify this matches population ranking
## data science question: what are the largest and smallest
## populated states in our two new datasets?
## states with population above and below the set limit, ordered ascending:
TopPopAsce <- PopAboveLimit %>%
arrange(StateRank)
LowPopAsce <- PopBelowLimit %>%
arrange(StateRank)
head(TopPopAsce)
head(LowPopAsce) ## surprise, NJ is the largest of the "small" states?
## states with population above and below the set limit, ordered descending:
TopPopDesc <- PopAboveLimit %>%
arrange(desc(StateRank))
LowPopDesc <- PopBelowLimit %>%
arrange(desc(StateRank))
head(TopPopDesc)
head(LowPopDesc)
## bonus2, combine Filter and Arrange
Census2020Sub$StateRank <- as.numeric(Census2020Sub$StateRank, na.rm = TRUE)
Census2020Bonus2 <- Census2020Sub %>%
filter(StateRank >= 10 & StateRank <= 30) %>%
arrange(desc(Pop2020))
glimpse(Census2020Bonus2)
## mutate function- recreate the 2010 population column by adding a new variable
## that calculates 2010 population using the numeric change column
Census2020Mutate <- Census2020Sub %>%
mutate(Pop2010 = Pop2020-NumChange2020)
head(Census2020Mutate)
## summarise function- sum the population in the US in both 2020 and 2010.
Census2020PopSum <- Census2020Mutate %>%
summarise(Total2020 = sum(Pop2020))
Census2010PopSum <- Census2020Mutate %>%
summarise(Total2010 = sum(Pop2010))
Census2020PopSum
Census2010PopSum
## bonus3, calculate the mean population in 2020 and 2010
Census2020PopMean <- Census2020Mutate %>%
summarize(Total2020 = mean(Pop2020))
Census2010PopMean <- Census2020Mutate %>%
summarize(Total2010 = mean(Pop2010))
Census2020PopMean
Census2010PopMean
## bonus4, calculate the difference of the sum and mean between 2020 and 2010
Census2020PopSum - Census2010PopSum
Census2020PopMean - Census2010PopMean
## bonus5, calculate the sum of large States
PopAboveLimitSum <- PopAboveLimit %>%
summarize(TotalLarge2020 = sum(Pop2020))
PopAboveLimitSum
## bonus6, calculate the sum of small States
PopBelowLimitSum <- PopBelowLimit %>%
summarize(TotalSmall2020 = sum(Pop2020))
PopBelowLimitSum
## mutate, summarise and group_by function example 1- group rows by a
## column value, to perform functions on grouped data
Census2020Size <- Census2020Mutate %>%
mutate(size = case_when(Pop2020 > 9999999 ~ 'Big',
Pop2020 <= 9999999 ~ 'Small')) %>%
group_by(size) %>%
summarize(sizetot = sum(Pop2020))
Census2020Size
## mutate, summarise and group_by function example 2- group rows by a
## column value, to perform functions on grouped data
Census2020Growth <- Census2020Mutate %>%
mutate(growth = case_when(NumChange2020 > 0 ~ 'growth',
NumChange2020 <= 0 ~ 'decline')) %>%
group_by(growth) %>%
summarize(changetot = sum(Pop2020))
Census2020Growth
## count the number of observations in a group
Census2020Mutate %>%
mutate(size = case_when(Pop2020 > 9999999 ~ 'Big',
Pop2020 <= 9999999 ~ 'Small')) %>%
group_by(size) %>%
count()
## same output
Census2020Mutate %>%
mutate(size = case_when(Pop2020 > 9999999 ~ 'Big',
Pop2020 <= 9999999 ~ 'Small')) %>%
count(size)
## part 2, using join and putting it all together---------------------------------
## join 2020 with the two 2019 ACS datasets, 2019Pop and 2019Poverty, by state
## two ways, use left_join or cbind (column bind)
CensusData1 <- left_join(Census2020Sub, Census2019, by = "State")
colnames(CensusData1)
## generic "estimate" name will be a problem, rename to something specific
CensusData1 <- CensusData1 %>%
rename(PopEstimate2019 = Estimate)
CensusData1 <- left_join(CensusData1, Poverty2019, by = "State")
colnames(CensusData1)
## or drop Puerto Rico and use cbind
CensusData2 <- as.data.frame(Census2019) %>%
filter(!State %in% c('Puerto Rico')) %>%
rename(StateDrop = State, PopEstimate2019 = Estimate)
CensusData2 <- cbind(Census2020Sub, CensusData2) %>%
select(-c('StateDrop'))
Poverty2019ACS <- as.data.frame(Poverty2019) %>%
filter(!State %in% c('Puerto Rico')) %>%
rename(StateDrop = State)
CensusData2 <- cbind(CensusData2, Poverty2019ACS) %>%
select(-c('StateDrop'))
## verify they are the same data
colnames(CensusData1)
colnames(CensusData2)
## try rbind example
Census2020 <- CensusData1 %>%
select(State, Pop2020) %>%
rename(Pop = Pop2020) %>%
mutate(year = "2020")
Census2019 <- CensusData1 %>%
select(State, PopEstimate2019) %>%
rename(Pop = PopEstimate2019) %>%
mutate(year = "2019")
Census2year <- rbind(Census2020, Census2019)
colnames(Census2year)
rownames(Census2year)
## use filter and mutate functions to add a ranking variable for states
## based on below poverty variable and percent of poverty population
CensusDataRanked <- CensusData2 %>%
mutate(PovertyRank = dense_rank(desc(BelowPoverty))) %>%
mutate(PovertyPercent = 100 * (BelowPoverty / PovertyStatus)) %>%
filter(PovertyRank <= 10)
glimpse(CensusDataRanked)
CensusDataRanked$PovertyRank
CensusDataRanked$PovertyPercent
CensusDataRanked$State
## part 3, visualize using ggplot-----------------------------------------------
## basic bar chart of state population for top poverty ranked states
ggplot(CensusDataRanked) +
geom_bar(mapping = aes(x = reorder(State,BelowPoverty),
y = BelowPoverty,
fill = PovertyPercent),
stat = 'identity') +
labs(title = "States with the Highest Poverty Status, 2020",
x = "State",
y = "Poverty Status %") +
theme(plot.title = element_text (hjust = 0.5)) +
coord_flip()
## histogram of 2020 state population
options(scipen = 999) # Disable scientific notation
ggplot(CensusData2, aes(x = Pop2020)) +
geom_histogram(fill ='light blue',
col = 'dark blue',
bins = 15) +
labs(title = "Distribution of State Population, 2020",
x = "Population Count") +
theme(plot.title = element_text (hjust = 0.5))
## boxplot of population by state size;
## add size change direction, state size and ranking columns first
CensusData2Size <- CensusData2 %>%
mutate(changedir = case_when(NumChange2020 > 0 ~ 'increase',
NumChange2020 < 0 ~ 'decrease')) %>%
mutate(size_bin = case_when(Pop2020 < 1000000 ~ 'small',
Pop2020 >= 1000000 & Pop2020 <= 10000000 ~ 'medium',
Pop2020 > 10000000 ~ 'large')) %>%
mutate(SizeRank = dense_rank(desc(Pop2020)))
ggplot(CensusData2Size, aes(x = size_bin, y = Pop2020)) +
geom_boxplot(color = 'blue', outlier.color = 'red') +
labs(title = "State Population by Size, 2020",
x = "State Size",
y = "Population Count") +
theme(plot.title = element_text (hjust = 0.5))
## bar chart of 2020 population
ggplot(CensusData2Size, aes(x = reorder(State, Pop2020),
y = Pop2020, fill = changedir)) +
geom_col() +
labs(title = "Population by State, 2020",
x = "State",
y = "Population Count",
fill = "Direction
change") +
theme(axis.text.x = element_text(angle=90,hjust=1,vjust=0.5, size = 6))+
theme(plot.title = element_text (hjust = 0.5)) +
coord_flip()
## scatterplot of 2020 population
ggplot(CensusData2Size, aes(x = reorder(State, Pop2020),
y = Pop2020, color = changedir)) +
geom_point() +
labs(title = "Population by State, 2020",
x = "State",
y = "Population Count") +
theme(axis.text.x = element_text(angle=90,hjust=1,vjust=0.5, size = 6))+
theme(plot.title = element_text (hjust = 0.5)) +
coord_flip()
## scatterplot of 2019 population and poverty status with lm
ggplot(CensusData2Size, aes(x = PopEstimate2019,
y = BelowPoverty, color = size_bin)) +
geom_point() +
geom_smooth(method = 'lm') +
labs(title = "Poverty Status by State Population, 2019",
x = "Population Count",
y = "Below Poverty Count") +
theme(axis.text.x = element_text(angle=90,hjust=1,vjust=0.5, size = 6)) +
theme(plot.title = element_text (hjust = 0.5))
## bar chart faceted by size_bin
ggplot(CensusData2Size, aes(x = reorder(State, Pop2020),
y=Pop2020, fill = size_bin))+
geom_col()+
ylab("Population Count")+
facet_wrap(~size_bin, scale = "free") +
theme(axis.text.x = element_text(angle=90,hjust=.2,vjust=0.5, size = 6)) +
theme(plot.title = element_text (hjust = 0.5))