-
Notifications
You must be signed in to change notification settings - Fork 66
/
cv.py
178 lines (164 loc) · 6.42 KB
/
cv.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
import imutils,cv2,numpy as np
from util import *
class UIMatcher:
@staticmethod
def findGreenArrow(screen):
'''
检测政策界面中 绿箭头的中心位置
@return: 绿箭头坐标list
'''
# 增加判断screen,也就是截图是否成功的判断
if screen.size:
dstPoints = []
img2 = cv2.split(screen)
# 分离B 二值化
ret, dst1 = cv2.threshold(img2[0], 20, 255, cv2.THRESH_BINARY_INV)
# 分离G 二值化
ret, dst2 = cv2.threshold(img2[1], 220, 255, cv2.THRESH_BINARY)
# 分离R 二值化
ret, dst3 = cv2.threshold(img2[2], 20, 255, cv2.THRESH_BINARY_INV)
img2 = dst1&dst2&dst3 # 相与
# 模糊边界
# img2 = cv2.GaussianBlur(img2, (5, 5), 0)
# import matplotlib.pyplot as plt
# plt.imshow(img2,cmap='gray')
# plt.show()
# 找轮廓
cnts = cv2.findContours(img2, cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)
cnts = cnts[1] if imutils.is_cv3() else cnts[0]
if len(cnts):
for c in cnts:
# 获取中心点
M = cv2.moments(c)
cX = int(M["m10"] / M["m00"])
cY = int(M["m01"] / M["m00"])
#
dstPoints.append((cX,cY))
# 画出轮廓和中点
# cv2.drawContours(img2, [c], -1, (0, 255, 0), 2)
# cv2.circle(img2, (cX, cY), 20, (255, 255, 255), 1)
# cv2.putText(img2, "center", (cX - 20, cY - 20),
# cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 2)
# plt.imshow(img2,cmap='gray')
# plt.show()
return dstPoints
else:
raise Exception('Screen process is unsuccessful')
@staticmethod
def findTaskBubble(screen):
'''
检测城市任务那块区域黄色气泡是否出现
@return: 是否出现
'''
dstPoints = []
h=len(screen)
w=len(screen[0])
# 截取气泡周围区域
img2 = cv2.split(screen[int(0.777*h):int(0.831*h),int(0.164*w):int(0.284*w)])
ret, B = cv2.threshold(img2[0], 120, 255, cv2.THRESH_BINARY_INV)
ret, G = cv2.threshold(img2[1], 210, 255, cv2.THRESH_BINARY_INV)
ret, R = cv2.threshold(img2[2], 230, 255, cv2.THRESH_BINARY)
img2 = R&B&G # 相与
# 模糊边界
img2 = cv2.GaussianBlur(img2, (5, 5), 0)
# 找轮廓
cnts = cv2.findContours(img2, cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)
if len(cnts[1]):
return True
else:
return False
@staticmethod
def findGreenLight(diff_screens, th=100):
screen_before, screen_after = diff_screens
# 转换成有符号数以处理相减后的负值
screen_before = screen_before.astype(np.int16)
screen_after = screen_after.astype(np.int16)
diff = screen_after - screen_before
h=len(diff)
w=len(diff[0])
B,G,R = cv2.split(diff)
# 负值取0
G[G < 0] = 0
G = G.astype(np.uint8)
# 二值化后相与, 相当于取中间范围内的值
ret, G1 = cv2.threshold(G, 140, 255, cv2.THRESH_BINARY_INV)
ret, G2 = cv2.threshold(G, 22, 255, cv2.THRESH_BINARY)
img0 = G1&G2
# 均值模糊(降噪 好像也没啥卵用)
img0 = cv2.medianBlur(img0,9)
# import matplotlib.pyplot as plt
# plt.imshow(img0,cmap='gray')
# plt.show()
buildings = []
for building_ID in range(1,10):
square = UIMatcher.getLittleSquare(img0,BUILDING_POSITIONS[building_ID],edge=0.1)
buildings.append(np.mean(square))
# 返回平均亮度最强的建筑物
return buildings.index(max(buildings))+1
@staticmethod
def detectCross(screen, th = 5):
'''
探测叉叉是否出现, 先截取叉叉所在的小方块,然后对灰度图二值化,再求平均值判断
'''
screen = cv2.cvtColor(screen,cv2.COLOR_RGB2GRAY)
good_id_list = []
for good_id in CROSS_POSITIONS.keys():
square = UIMatcher.getLittleSquare(screen,CROSS_POSITIONS[good_id])
ret, W = cv2.threshold(square, 250, 255, cv2.THRESH_BINARY)
# import matplotlib.pyplot as plt
# plt.imshow(W,cmap='gray')
# plt.show()
# 二值化后求平均值
if np.mean(W) > th:
good_id_list.append(good_id)
# print(good_id_list)
return good_id_list
@staticmethod
def getPixel(img, rx, ry):
"""
获取某一坐标的RGB值(灰度图会报错)
"""
pixel = img[int(ry*len(img)), int(rx*len(img[0]))]
return pixel[2],pixel[1],pixel[0]
@staticmethod
def getLittleSquare(img, rel_pos, edge=0.01):
'''
截取rel_pos附近一个小方块
'''
rx,ry = rel_pos
h=len(img)
w=len(img[0])
scale = h/w
x0 = int((rx-edge*scale)*w)
x1 = int((rx+edge*scale)*w)
y0 = int((ry-edge)*h)
y1 = int((ry+edge)*h)
return img[y0:y1,x0:x1]
@staticmethod
def findRedBagOpen(screen):
results = []
if screen.size:
img2 = cv2.split(screen)
ret, dst1 = cv2.threshold(img2[0], 200, 255, cv2.THRESH_BINARY_INV)
ret, dst2 = cv2.threshold(img2[1], 160, 240, cv2.THRESH_BINARY)
ret, dst3 = cv2.threshold(img2[2], 170, 255, cv2.THRESH_BINARY_INV)
img2 = dst1&dst2&dst3 # 相与
cnts = cv2.findContours(img2, cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)
cnts = cnts[1] if imutils.is_cv3() else cnts[0]
dstPoints = []
if len(cnts):
for c in cnts:
# 获取中心点
M = cv2.moments(c)
if not M["m00"]:
continue
area = cv2.contourArea(c)
if area < 30000:
continue
cX = int(M["m10"] / M["m00"])
cY = int(M["m01"] / M["m00"])
#
dstPoints.append((cX,cY))
return dstPoints
else:
raise Exception('Screen process is unsuccessful')