-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathgen_simu_stego.py
215 lines (187 loc) · 10.4 KB
/
gen_simu_stego.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
# Source code to reproduce the results in
# J. Yang, D. Ruan, J. Huang, X. Kang and Y. Shi, "An Embedding Cost Learning Framework Using GAN," in IEEE Transactions on Information Forensics and Security, vol. 15, pp. 839-851, 2020.
# By Jianhua Yang, [email protected]
import tensorflow as tf
import numpy as np
import random
import matplotlib.pyplot as plt
import time
import os
from scipy import ndimage
import scipy.io as sio # loading the mat file
from batch_norm_layer import batch_norm_layer
import scipy
from scipy import ndimage
# select the graphic card
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
path1 = '/.../dataset/BOSS256'
# ******************************************* constant value settings ************************************************
NUM_IMG = 10000
BATCH_SIZE = 1
IMAGE_SIZE = 256
NUM_CHANNEL = 1 # gray image
NUM_LABELS = 2 # binary classification
G_DIM = 16 # number of feature maps in generator
STRIDE = 2
KENEL_SIZE = 3
DKENEL_SIZE = 5
PAD_SIZE = int((KENEL_SIZE - 1) / 2)
Initial_learning_rate = 0.0001 # 0.0001
Adam_beta = 0.5
TANH_LAMBDA = 1000000 # For test
# Input Cover and corresponding probability map
cover = tf.placeholder(tf.float32, shape=[BATCH_SIZE, IMAGE_SIZE, IMAGE_SIZE, NUM_CHANNEL]) # attention input
is_training = tf.placeholder(tf.bool, name='is_training')
# *********************************************definition of G*********************************************************
def lrelu(x, alpha):
return tf.nn.relu(x) - alpha * tf.nn.relu(-x)
# -------------- contracting path ---------------------
with tf.variable_scope("Gen1") as scope:
NUM = G_DIM * 1
kernel1_G = tf.Variable(tf.truncated_normal([KENEL_SIZE, KENEL_SIZE, NUM_CHANNEL, NUM], stddev=0.02),name="kernel1_G")
conv1_G = tf.nn.conv2d(cover/255, kernel1_G, [1, STRIDE, STRIDE, 1], padding='SAME', name="conv1_G")
bn1_G = batch_norm_layer(conv1_G, is_training,'bn1_G')
# Embeding_prob feature map shape: 128*128
with tf.variable_scope("Gen2") as scope:
NUM = G_DIM * 2
kernel2_G = tf.Variable(tf.truncated_normal([KENEL_SIZE, KENEL_SIZE, int(NUM/2), NUM], stddev=0.02),name="kernel2_G")
conv2_G = tf.nn.conv2d(lrelu(bn1_G, 0.2), kernel2_G, [1, STRIDE, STRIDE, 1], padding='SAME', name="conv2_G")
bn2_G = batch_norm_layer(conv2_G, is_training,'bn2_G')
# Embeding_prob feature map shape: 64*64
with tf.variable_scope("Gen3") as scope:
NUM = G_DIM * 4
kernel3_G = tf.Variable(tf.truncated_normal([KENEL_SIZE, KENEL_SIZE, int(NUM/2), NUM], stddev=0.02),name="kernel3_G")
conv3_G = tf.nn.conv2d(lrelu(bn2_G, 0.2), kernel3_G, [1, STRIDE, STRIDE, 1], padding='SAME', name="conv3_G")
bn3_G = batch_norm_layer(conv3_G, is_training,'bn3_G')
# Embeding_prob feature map shape: 32*32
with tf.variable_scope("Gen4") as scope:
NUM = G_DIM * 8
kernel4_G = tf.Variable(tf.truncated_normal([KENEL_SIZE, KENEL_SIZE, int(NUM/2), NUM], stddev=0.02),name="kernel4_G")
conv4_G = tf.nn.conv2d(lrelu(bn3_G, 0.2), kernel4_G, [1, STRIDE, STRIDE, 1], padding='SAME', name="conv4_G")
bn4_G = batch_norm_layer(conv4_G, is_training,'bn4_G')
# Embeding_prob feature map shape: 16*16
with tf.variable_scope("Gen5") as scope:
NUM = G_DIM * 8
kernel5_G = tf.Variable(tf.truncated_normal([KENEL_SIZE, KENEL_SIZE, NUM, NUM], stddev=0.02),name="kernel5_G")
conv5_G = tf.nn.conv2d(lrelu(bn4_G,0.2), kernel5_G, [1, STRIDE, STRIDE, 1], padding='SAME', name="conv5_G")
bn5_G = batch_norm_layer(conv5_G, is_training, 'bn5_G')
# Embeding_prob feature map shape: 8*8
with tf.variable_scope("Gen6") as scope:
NUM = G_DIM * 8
kernel6_G = tf.Variable(tf.truncated_normal([KENEL_SIZE, KENEL_SIZE, NUM, NUM], stddev=0.02),name="kernel6_G")
conv6_G = tf.nn.conv2d(lrelu(bn5_G, 0.2), kernel6_G, [1, STRIDE, STRIDE, 1], padding='SAME', name="conv6_G")
bn6_G = batch_norm_layer(conv6_G, is_training, 'bn6_G')
# Embeding_prob feature map shape: 4*4
with tf.variable_scope("Gen7") as scope:
NUM = G_DIM * 8
kernel7_G = tf.Variable(tf.truncated_normal([KENEL_SIZE, KENEL_SIZE, NUM, NUM], stddev=0.02),name="kernel7_G")
conv7_G = tf.nn.conv2d(lrelu(bn6_G, 0.2), kernel7_G, [1, STRIDE, STRIDE, 1], padding='SAME', name="conv7_G")
bn7_G = batch_norm_layer(conv7_G, is_training, 'bn7_G')
# 2*2
with tf.variable_scope("Gen8") as scope:
NUM = G_DIM * 8
kernel8_G = tf.Variable(tf.truncated_normal([KENEL_SIZE, KENEL_SIZE, NUM, NUM], stddev=0.02),name="kernel8_G")
conv8_G = tf.nn.conv2d(lrelu(bn7_G,0.2), kernel8_G, [1, STRIDE,STRIDE, 1], padding='SAME', name="conv8_G")
bn8_G = batch_norm_layer(conv8_G, is_training, 'bn8_G')
# 1*1
s = IMAGE_SIZE
s2, s4, s8, s16, s32, s64, s128 = int(s/2), int(s/4), int(s/8), int(s/16), int(s/32), int(s/64), int(s/128)
# -------------- expanding path -----------------
with tf.variable_scope("Gen9") as scope:
NUM = G_DIM * 8
out_shape = [BATCH_SIZE, s128, s128, NUM]
kernel9_G = tf.Variable(tf.random_normal([DKENEL_SIZE, DKENEL_SIZE, NUM, NUM], stddev=0.02), name="kernel9_G")
conv9_G = tf.nn.conv2d_transpose(tf.nn.relu(bn8_G), kernel9_G, out_shape, [1, STRIDE, STRIDE, 1], name="conv9_G")
bn9_G = batch_norm_layer(conv9_G, is_training, 'bn9_G')
bn9_G = tf.nn.dropout(bn9_G, 0.5)
bn9_G = tf.concat([bn9_G, bn7_G], 3)
with tf.variable_scope("Gen10") as scope:
NUM = G_DIM * 8
out_shape = [BATCH_SIZE, s64, s64, NUM]
kernel10_G = tf.Variable(tf.random_normal([DKENEL_SIZE, DKENEL_SIZE, NUM, NUM*2], stddev=0.02), name="kerne10_G")
conv10_G = tf.nn.conv2d_transpose(tf.nn.relu(bn9_G), kernel10_G, out_shape, [1, STRIDE, STRIDE, 1], name="conv10_G")
bn10_G = batch_norm_layer(conv10_G, is_training, 'bn10_G')
bn10_G = tf.nn.dropout(bn10_G, 0.5)
bn10_G = tf.concat([bn10_G, bn6_G], 3)
with tf.variable_scope("Gen11") as scope:
NUM = G_DIM * 8
out_shape = [BATCH_SIZE, s32, s32, NUM]
kernel11_G = tf.Variable(tf.random_normal([DKENEL_SIZE, DKENEL_SIZE, NUM, NUM*2], stddev=0.02), name="kerne11_G")
conv11_G = tf.nn.conv2d_transpose(tf.nn.relu(bn10_G), kernel11_G, out_shape, [1, STRIDE, STRIDE, 1], name="conv11_G")
bn11_G = batch_norm_layer(conv11_G, is_training, 'bn11_G')
bn11_G = tf.nn.dropout(bn11_G, 0.5)
bn11_G = tf.concat([bn11_G, bn5_G], 3)
with tf.variable_scope("Gen12") as scope:
NUM = G_DIM * 8
out_shape = [BATCH_SIZE, s16, s16, NUM]
kernel12_G = tf.Variable(tf.random_normal([DKENEL_SIZE, DKENEL_SIZE, NUM, NUM*2], stddev=0.02), name="kerne12_G")
conv12_G = tf.nn.conv2d_transpose(tf.nn.relu(bn11_G), kernel12_G, out_shape, [1, STRIDE, STRIDE, 1],
name="conv12_G")
bn12_G = batch_norm_layer(conv12_G, is_training, 'bn12_G')
bn12_G = tf.concat([bn12_G, bn4_G], 3)
with tf.variable_scope("Gen13") as scope:
NUM = G_DIM * 4
out_shape = [BATCH_SIZE, s8, s8, NUM]
kernel13_G = tf.Variable(tf.random_normal([DKENEL_SIZE, DKENEL_SIZE, NUM, NUM*4], stddev=0.02), name="kerne13_G")
conv13_G = tf.nn.conv2d_transpose(tf.nn.relu(bn12_G), kernel13_G, out_shape, [1, STRIDE, STRIDE, 1],name="conv13_G")
bn13_G = batch_norm_layer(conv13_G, is_training, 'bn13_G')
bn13_G = tf.concat([bn13_G, bn3_G], 3)
with tf.variable_scope("Gen14") as scope:
NUM = G_DIM * 2
out_shape = [BATCH_SIZE, s4, s4, NUM]
kernel14_G = tf.Variable(tf.random_normal([DKENEL_SIZE, DKENEL_SIZE, NUM, NUM*4], stddev=0.02), name="kerne14_G")
conv14_G = tf.nn.conv2d_transpose(tf.nn.relu(bn13_G), kernel14_G, out_shape, [1, STRIDE, STRIDE, 1],
name="conv14_G")
bn14_G = batch_norm_layer(conv14_G, is_training, 'bn14_G')
bn14_G = tf.concat([bn14_G, bn2_G], 3)
with tf.variable_scope("Gen15") as scope:
NUM = G_DIM
out_shape = [BATCH_SIZE, s2, s2, NUM]
kernel15_G = tf.Variable(tf.random_normal([DKENEL_SIZE, DKENEL_SIZE, NUM, NUM*4], stddev=0.02), name="kerne15_G")
conv15_G = tf.nn.conv2d_transpose(tf.nn.relu(bn14_G), kernel15_G, out_shape, [1, STRIDE, STRIDE, 1],
name="conv15_G")
bn15_G = batch_norm_layer(conv15_G, is_training, 'bn15_G')
bn15_G = tf.concat([bn15_G, bn1_G], 3)
with tf.variable_scope("Gen16") as scope:
NUM = NUM_CHANNEL
out_shape = [BATCH_SIZE, s, s, NUM]
kernel16_G = tf.Variable(tf.random_normal([DKENEL_SIZE, DKENEL_SIZE, NUM, G_DIM * 2], stddev=0.02), name="kerne16_G")
conv16_G = tf.nn.conv2d_transpose(tf.nn.relu(bn15_G), kernel16_G, out_shape, [1, STRIDE, STRIDE, 1],
name="conv16_G")
Embeding_prob = tf.nn.relu(tf.nn.sigmoid(conv16_G) - 0.5)
Embeding_prob_shape = Embeding_prob.get_shape().as_list()
#################################################Ternary encoding module###########################################################
noise = tf.placeholder(tf.float32, Embeding_prob_shape) # noise holder
modification = -0.5 * tf.nn.tanh((tf.subtract(Embeding_prob, 2*noise)) * TANH_LAMBDA) + 0.5 * tf.nn.tanh((tf.subtract(Embeding_prob, tf.subtract(2.0, 2*noise))) * TANH_LAMBDA)
stego = cover + modification
global_variables = tf.global_variables()
print(global_variables)
# ****************************************************************Training***************************************************************************
image_index = range(1,NUM_IMG+1)
seed = 0
with tf.Session() as sess:
tf.global_variables_initializer().run()
# ---------------loading the saved parameters------------------
NUM_ITERATION = 120000
stego_path = './simu_iter_' + '%d' % NUM_ITERATION
isExists = os.path.exists(stego_path)
if not isExists:
os.makedirs(stego_path)
else:
print stego_path
tf.train.Saver(global_variables).restore(sess,"./model/%d.ckpt"%NUM_ITERATION)
data_x = np.zeros([BATCH_SIZE, IMAGE_SIZE, IMAGE_SIZE, NUM_CHANNEL])
count = 0
for epoch in range(0, int(NUM_IMG/BATCH_SIZE)):
for j in range(BATCH_SIZE):
count = count % NUM_IMG
imc = ndimage.imread(path1 + '/' + '%d' %(count+1) + '.pgm')
data_x[j, :, :, 0] = imc
count = count + 1
data_noise = np.random.rand(Embeding_prob_shape[0], Embeding_prob_shape[1], Embeding_prob_shape[2], Embeding_prob_shape[3])
stego_= sess.run(stego , feed_dict={cover: data_x, noise: data_noise, is_training: False})
stego_[stego_ == -1] = 0
stego_[stego_ == 256] = 255
scipy.misc.imsave(stego_path + '/' + str(count) + '.pgm', np.uint8(stego_[0, :, :, 0]))
print('processing the %d image' %count)