forked from zhangyhuaee/KinD
-
Notifications
You must be signed in to change notification settings - Fork 1
/
decomposition_net_train.py
174 lines (145 loc) · 6.91 KB
/
decomposition_net_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
# coding: utf-8
from __future__ import print_function
import os, time, random
import tensorflow as tf
from PIL import Image
import numpy as np
from utils import *
from model import *
from glob import glob
batch_size = 10
patch_size = 48
sess = tf.Session()
input_low = tf.placeholder(tf.float32, [None, None, None, 3], name='input_low')
input_high = tf.placeholder(tf.float32, [None, None, None, 3], name='input_high')
[R_low, I_low] = DecomNet_simple(input_low)
[R_high, I_high] = DecomNet_simple(input_high)
I_low_3 = tf.concat([I_low, I_low, I_low], axis=3)
I_high_3 = tf.concat([I_high, I_high, I_high], axis=3)
#network output
output_R_low = R_low
output_R_high = R_high
output_I_low = I_low_3
output_I_high = I_high_3
# define loss
def mutual_i_loss(input_I_low, input_I_high):
low_gradient_x = gradient(input_I_low, "x")
high_gradient_x = gradient(input_I_high, "x")
x_loss = (low_gradient_x + high_gradient_x)* tf.exp(-10*(low_gradient_x+high_gradient_x))
low_gradient_y = gradient(input_I_low, "y")
high_gradient_y = gradient(input_I_high, "y")
y_loss = (low_gradient_y + high_gradient_y) * tf.exp(-10*(low_gradient_y+high_gradient_y))
mutual_loss = tf.reduce_mean( x_loss + y_loss)
return mutual_loss
def mutual_i_input_loss(input_I_low, input_im):
input_gray = tf.image.rgb_to_grayscale(input_im)
low_gradient_x = gradient(input_I_low, "x")
input_gradient_x = gradient(input_gray, "x")
x_loss = tf.abs(tf.div(low_gradient_x, tf.maximum(input_gradient_x, 0.01)))
low_gradient_y = gradient(input_I_low, "y")
input_gradient_y = gradient(input_gray, "y")
y_loss = tf.abs(tf.div(low_gradient_y, tf.maximum(input_gradient_y, 0.01)))
mut_loss = tf.reduce_mean(x_loss + y_loss)
return mut_loss
recon_loss_low = tf.reduce_mean(tf.abs(R_low * I_low_3 - input_low))
recon_loss_high = tf.reduce_mean(tf.abs(R_high * I_high_3 - input_high))
equal_R_loss = tf.reduce_mean(tf.abs(R_low - R_high))
i_mutual_loss = mutual_i_loss(I_low, I_high)
i_input_mutual_loss_high = mutual_i_input_loss(I_high, input_high)
i_input_mutual_loss_low = mutual_i_input_loss(I_low, input_low)
loss_Decom = 1*recon_loss_high + 1*recon_loss_low \
+ 0.01 * equal_R_loss + 0.2*i_mutual_loss \
+ 0.15* i_input_mutual_loss_high + 0.15* i_input_mutual_loss_low
###
lr = tf.placeholder(tf.float32, name='learning_rate')
optimizer = tf.train.AdamOptimizer(learning_rate=lr, name='AdamOptimizer')
var_Decom = [var for var in tf.trainable_variables() if 'DecomNet' in var.name]
train_op_Decom = optimizer.minimize(loss_Decom, var_list = var_Decom)
sess.run(tf.global_variables_initializer())
saver_Decom = tf.train.Saver(var_list = var_Decom)
print("[*] Initialize model successfully...")
#load data
###train_data
train_low_data = []
train_high_data = []
train_low_data_names = glob('./LOLdataset/our485/low/*.png')
train_low_data_names.sort()
train_high_data_names = glob('./LOLdataset/our485/high/*.png')
train_high_data_names.sort()
assert len(train_low_data_names) == len(train_high_data_names)
print('[*] Number of training data: %d' % len(train_low_data_names))
for idx in range(len(train_low_data_names)):
low_im = load_images(train_low_data_names[idx])
train_low_data.append(low_im)
high_im = load_images(train_high_data_names[idx])
train_high_data.append(high_im)
###eval_data
eval_low_data = []
eval_high_data = []
eval_low_data_name = glob('./LOLdataset/eval15/low/*.png')
eval_low_data_name.sort()
eval_high_data_name = glob('./LOLdataset/eval15/high/*.png*')
eval_high_data_name.sort()
for idx in range(len(eval_low_data_name)):
eval_low_im = load_images(eval_low_data_name[idx])
eval_low_data.append(eval_low_im)
eval_high_im = load_images(eval_high_data_name[idx])
eval_high_data.append(eval_high_im)
epoch = 2000
learning_rate = 0.0001
sample_dir = './Decom_net_train/'
if not os.path.isdir(sample_dir):
os.makedirs(sample_dir)
eval_every_epoch = 200
train_phase = 'decomposition'
numBatch = len(train_low_data) // int(batch_size)
train_op = train_op_Decom
train_loss = loss_Decom
saver = saver_Decom
checkpoint_dir = './checkpoint/decom_net_train/'
if not os.path.isdir(checkpoint_dir):
os.makedirs(checkpoint_dir)
ckpt=tf.train.get_checkpoint_state(checkpoint_dir)
if ckpt:
print('loaded '+ckpt.model_checkpoint_path)
saver.restore(sess,ckpt.model_checkpoint_path)
start_step = 0
start_epoch = 0
iter_num = 0
print("[*] Start training for phase %s, with start epoch %d start iter %d : " % (train_phase, start_epoch, iter_num))
start_time = time.time()
image_id = 0
for epoch in range(start_epoch, epoch):
for batch_id in range(start_step, numBatch):
batch_input_low = np.zeros((batch_size, patch_size, patch_size, 3), dtype="float32")
batch_input_high = np.zeros((batch_size, patch_size, patch_size, 3), dtype="float32")
for patch_id in range(batch_size):
h, w, _ = train_low_data[image_id].shape
x = random.randint(0, h - patch_size)
y = random.randint(0, w - patch_size)
rand_mode = random.randint(0, 7)
batch_input_low[patch_id, :, :, :] = data_augmentation(train_low_data[image_id][x : x+patch_size, y : y+patch_size, :], rand_mode)
batch_input_high[patch_id, :, :, :] = data_augmentation(train_high_data[image_id][x : x+patch_size, y : y+patch_size, :], rand_mode)
image_id = (image_id + 1) % len(train_low_data)
if image_id == 0:
tmp = list(zip(train_low_data, train_high_data))
random.shuffle(tmp)
train_low_data, train_high_data = zip(*tmp)
_, loss = sess.run([train_op, train_loss], feed_dict={input_low: batch_input_low, \
input_high: batch_input_high, \
lr: learning_rate})
print("%s Epoch: [%2d] [%4d/%4d] time: %4.4f, loss: %.6f" \
% (train_phase, epoch + 1, batch_id + 1, numBatch, time.time() - start_time, loss))
iter_num += 1
if (epoch + 1) % eval_every_epoch == 0:
print("[*] Evaluating for phase %s / epoch %d..." % (train_phase, epoch + 1))
for idx in range(len(eval_low_data)):
input_low_eval = np.expand_dims(eval_low_data[idx], axis=0)
result_1, result_2 = sess.run([output_R_low, output_I_low], feed_dict={input_low: input_low_eval})
save_images(os.path.join(sample_dir, 'low_%d_%d.png' % ( idx + 1, epoch + 1)), result_1, result_2)
for idx in range(len(eval_high_data)):
input_high_eval = np.expand_dims(eval_high_data[idx], axis=0)
result_11, result_22 = sess.run([output_R_high, output_I_high], feed_dict={input_high: input_high_eval})
save_images(os.path.join(sample_dir, 'high_%d_%d.png' % ( idx + 1, epoch + 1)), result_11, result_22)
saver.save(sess, checkpoint_dir + 'model.ckpt')
print("[*] Finish training for phase %s." % train_phase)