-
Notifications
You must be signed in to change notification settings - Fork 76
/
Copy pathdataset.py
387 lines (323 loc) · 13.8 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
import torch
import networkx as nx
import numpy as np
import pickle as pkl
import scipy.sparse as sp
import torch.utils.data
import itertools
from collections import Counter
from random import shuffle
import json
#
from networkx.readwrite import json_graph
from argparse import ArgumentParser
import matplotlib.pyplot as plt
import pdb
import time
import random
import pickle
import os.path
import torch_geometric as tg
import torch_geometric.datasets
import time
from torch_geometric.data import Data, DataLoader
from utils import precompute_dist_data, get_link_mask, duplicate_edges, deduplicate_edges
def get_tg_dataset(args, dataset_name, use_cache=True, remove_feature=False):
# "Cora", "CiteSeer" and "PubMed"
if dataset_name in ['Cora', 'CiteSeer', 'PubMed']:
dataset = tg.datasets.Planetoid(root='datasets/' + dataset_name, name=dataset_name)
else:
try:
dataset = load_tg_dataset(dataset_name)
except:
raise NotImplementedError
# precompute shortest path
if not os.path.isdir('datasets'):
os.mkdir('datasets')
if not os.path.isdir('datasets/cache'):
os.mkdir('datasets/cache')
f1_name = 'datasets/cache/' + dataset_name + str(args.approximate) + '_dists.dat'
f2_name = 'datasets/cache/' + dataset_name + str(args.approximate)+ '_dists_removed.dat'
f3_name = 'datasets/cache/' + dataset_name + str(args.approximate)+ '_links_train.dat'
f4_name = 'datasets/cache/' + dataset_name + str(args.approximate)+ '_links_val.dat'
f5_name = 'datasets/cache/' + dataset_name + str(args.approximate)+ '_links_test.dat'
if use_cache and ((os.path.isfile(f2_name) and args.task=='link') or (os.path.isfile(f1_name) and args.task!='link')):
with open(f3_name, 'rb') as f3, \
open(f4_name, 'rb') as f4, \
open(f5_name, 'rb') as f5:
links_train_list = pickle.load(f3)
links_val_list = pickle.load(f4)
links_test_list = pickle.load(f5)
if args.task=='link':
with open(f2_name, 'rb') as f2:
dists_removed_list = pickle.load(f2)
else:
with open(f1_name, 'rb') as f1:
dists_list = pickle.load(f1)
print('Cache loaded!')
data_list = []
for i, data in enumerate(dataset):
if args.task == 'link':
data.mask_link_positive = deduplicate_edges(data.edge_index.numpy())
data.mask_link_positive_train = links_train_list[i]
data.mask_link_positive_val = links_val_list[i]
data.mask_link_positive_test = links_test_list[i]
get_link_mask(data, resplit=False)
if args.task=='link':
data.dists = torch.from_numpy(dists_removed_list[i]).float()
data.edge_index = torch.from_numpy(duplicate_edges(data.mask_link_positive_train)).long()
else:
data.dists = torch.from_numpy(dists_list[i]).float()
if remove_feature:
data.x = torch.ones((data.x.shape[0],1))
data_list.append(data)
else:
data_list = []
dists_list = []
dists_removed_list = []
links_train_list = []
links_val_list = []
links_test_list = []
for i, data in enumerate(dataset):
if 'link' in args.task:
get_link_mask(data, args.remove_link_ratio, resplit=True,
infer_link_positive=True if args.task == 'link' else False)
links_train_list.append(data.mask_link_positive_train)
links_val_list.append(data.mask_link_positive_val)
links_test_list.append(data.mask_link_positive_test)
if args.task=='link':
dists_removed = precompute_dist_data(data.mask_link_positive_train, data.num_nodes,
approximate=args.approximate)
dists_removed_list.append(dists_removed)
data.dists = torch.from_numpy(dists_removed).float()
data.edge_index = torch.from_numpy(duplicate_edges(data.mask_link_positive_train)).long()
else:
dists = precompute_dist_data(data.edge_index.numpy(), data.num_nodes, approximate=args.approximate)
dists_list.append(dists)
data.dists = torch.from_numpy(dists).float()
if remove_feature:
data.x = torch.ones((data.x.shape[0],1))
data_list.append(data)
with open(f1_name, 'wb') as f1, \
open(f2_name, 'wb') as f2, \
open(f3_name, 'wb') as f3, \
open(f4_name, 'wb') as f4, \
open(f5_name, 'wb') as f5:
if args.task=='link':
pickle.dump(dists_removed_list, f2)
else:
pickle.dump(dists_list, f1)
pickle.dump(links_train_list, f3)
pickle.dump(links_val_list, f4)
pickle.dump(links_test_list, f5)
print('Cache saved!')
return data_list
def nx_to_tg_data(graphs, features, edge_labels=None):
data_list = []
for i in range(len(graphs)):
feature = features[i]
graph = graphs[i].copy()
graph.remove_edges_from(graph.selfloop_edges())
# relabel graphs
keys = list(graph.nodes)
vals = range(graph.number_of_nodes())
mapping = dict(zip(keys, vals))
nx.relabel_nodes(graph, mapping, copy=False)
x = np.zeros(feature.shape)
graph_nodes = list(graph.nodes)
for m in range(feature.shape[0]):
x[graph_nodes[m]] = feature[m]
x = torch.from_numpy(x).float()
# get edges
edge_index = np.array(list(graph.edges))
edge_index = np.concatenate((edge_index, edge_index[:,::-1]), axis=0)
edge_index = torch.from_numpy(edge_index).long().permute(1,0)
data = Data(x=x, edge_index=edge_index)
# get edge_labels
if edge_labels[0] is not None:
edge_label = edge_labels[i]
mask_link_positive = np.stack(np.nonzero(edge_label))
data.mask_link_positive = mask_link_positive
data_list.append(data)
return data_list
def parse_index_file(filename):
index = []
for line in open(filename):
index.append(int(line.strip()))
return index
def sample_mask(idx, l):
"""Create mask."""
mask = np.zeros(l)
mask[idx] = 1
return np.array(mask, dtype=np.bool)
def Graph_load_batch(min_num_nodes = 20, max_num_nodes = 1000, name = 'ENZYMES',node_attributes = True,graph_labels=True):
'''
load many graphs, e.g. enzymes
:return: a list of graphs
'''
print('Loading graph dataset: '+str(name))
G = nx.Graph()
# load data
path = 'data/'+name+'/'
data_adj = np.loadtxt(path+name+'_A.txt', delimiter=',').astype(int)
if node_attributes:
data_node_att = np.loadtxt(path+name+'_node_attributes.txt', delimiter=',')
data_node_label = np.loadtxt(path+name+'_node_labels.txt', delimiter=',').astype(int)
data_graph_indicator = np.loadtxt(path+name+'_graph_indicator.txt', delimiter=',').astype(int)
if graph_labels:
data_graph_labels = np.loadtxt(path+name+'_graph_labels.txt', delimiter=',').astype(int)
data_tuple = list(map(tuple, data_adj))
# add edges
G.add_edges_from(data_tuple)
# add node attributes
for i in range(data_node_label.shape[0]):
if node_attributes:
G.add_node(i+1, feature = data_node_att[i])
G.add_node(i+1, label = data_node_label[i])
G.remove_nodes_from(list(nx.isolates(G)))
# split into graphs
graph_num = data_graph_indicator.max()
node_list = np.arange(data_graph_indicator.shape[0])+1
graphs = []
max_nodes = 0
for i in range(graph_num):
# find the nodes for each graph
nodes = node_list[data_graph_indicator==i+1]
G_sub = G.subgraph(nodes)
if graph_labels:
G_sub.graph['label'] = data_graph_labels[i]
if G_sub.number_of_nodes()>=min_num_nodes and G_sub.number_of_nodes()<=max_num_nodes:
graphs.append(G_sub)
if G_sub.number_of_nodes() > max_nodes:
max_nodes = G_sub.number_of_nodes()
print('Loaded')
return graphs, data_node_att, data_node_label
# main data load function
def load_graphs(dataset_str):
node_labels = [None]
edge_labels = [None]
idx_train = [None]
idx_val = [None]
idx_test = [None]
if dataset_str == 'grid':
graphs = []
features = []
for _ in range(1):
graph = nx.grid_2d_graph(20, 20)
graph = nx.convert_node_labels_to_integers(graph)
feature = np.identity(graph.number_of_nodes())
graphs.append(graph)
features.append(feature)
elif dataset_str == 'communities':
graphs = []
features = []
node_labels = []
edge_labels = []
for i in range(1):
community_size = 20
community_num = 20
p=0.01
graph = nx.connected_caveman_graph(community_num, community_size)
count = 0
for (u, v) in graph.edges():
if random.random() < p: # rewire the edge
x = random.choice(list(graph.nodes))
if graph.has_edge(u, x):
continue
graph.remove_edge(u, v)
graph.add_edge(u, x)
count += 1
print('rewire:', count)
n = graph.number_of_nodes()
label = np.zeros((n,n),dtype=int)
for u in list(graph.nodes):
for v in list(graph.nodes):
if u//community_size == v//community_size and u>v:
label[u,v] = 1
rand_order = np.random.permutation(graph.number_of_nodes())
feature = np.identity(graph.number_of_nodes())[:,rand_order]
graphs.append(graph)
features.append(feature)
edge_labels.append(label)
elif dataset_str == 'protein':
graphs_all, features_all, labels_all = Graph_load_batch(name='PROTEINS_full')
features_all = (features_all-np.mean(features_all,axis=-1,keepdims=True))/np.std(features_all,axis=-1,keepdims=True)
graphs = []
features = []
edge_labels = []
for graph in graphs_all:
n = graph.number_of_nodes()
label = np.zeros((n, n),dtype=int)
for i,u in enumerate(graph.nodes()):
for j,v in enumerate(graph.nodes()):
if labels_all[u-1] == labels_all[v-1] and u>v:
label[i,j] = 1
if label.sum() > n*n/4:
continue
graphs.append(graph)
edge_labels.append(label)
idx = [node-1 for node in graph.nodes()]
feature = features_all[idx,:]
features.append(feature)
print('final num', len(graphs))
elif dataset_str == 'email':
with open('data/email.txt', 'rb') as f:
graph = nx.read_edgelist(f)
label_all = np.loadtxt('data/email_labels.txt')
graph_label_all = label_all.copy()
graph_label_all[:,1] = graph_label_all[:,1]//6
for edge in list(graph.edges()):
if graph_label_all[int(edge[0])][1] != graph_label_all[int(edge[1])][1]:
graph.remove_edge(edge[0], edge[1])
comps = [comp for comp in nx.connected_components(graph) if len(comp)>10]
graphs = [graph.subgraph(comp) for comp in comps]
edge_labels = []
features = []
for g in graphs:
n = g.number_of_nodes()
feature = np.ones((n, 1))
features.append(feature)
label = np.zeros((n, n),dtype=int)
for i, u in enumerate(g.nodes()):
for j, v in enumerate(g.nodes()):
if label_all[int(u)][1] == label_all[int(v)][1] and i>j:
label[i, j] = 1
label = label
edge_labels.append(label)
elif dataset_str == 'ppi':
dataset_dir = 'data/ppi'
print("Loading data...")
G = json_graph.node_link_graph(json.load(open(dataset_dir + "/ppi-G.json")))
edge_labels_internal = json.load(open(dataset_dir + "/ppi-class_map.json"))
edge_labels_internal = {int(i): l for i, l in edge_labels_internal.items()}
train_ids = [n for n in G.nodes()]
train_labels = np.array([edge_labels_internal[i] for i in train_ids])
if train_labels.ndim == 1:
train_labels = np.expand_dims(train_labels, 1)
print("Using only features..")
feats = np.load(dataset_dir + "/ppi-feats.npy")
## Logistic gets thrown off by big counts, so log transform num comments and score
feats[:, 0] = np.log(feats[:, 0] + 1.0)
feats[:, 1] = np.log(feats[:, 1] - min(np.min(feats[:, 1]), -1))
feat_id_map = json.load(open(dataset_dir + "/ppi-id_map.json"))
feat_id_map = {int(id): val for id, val in feat_id_map.items()}
train_feats = feats[[feat_id_map[id] for id in train_ids]]
node_dict = {}
for id,node in enumerate(G.nodes()):
node_dict[node] = id
comps = [comp for comp in nx.connected_components(G) if len(comp)>10]
graphs = [G.subgraph(comp) for comp in comps]
id_all = []
for comp in comps:
id_temp = []
for node in comp:
id = node_dict[node]
id_temp.append(id)
id_all.append(np.array(id_temp))
features = [train_feats[id_temp,:]+0.1 for id_temp in id_all]
else:
raise NotImplementedError
return graphs, features, edge_labels, node_labels, idx_train, idx_val, idx_test
def load_tg_dataset(name='communities'):
graphs, features, edge_labels,_,_,_,_ = load_graphs(name)
return nx_to_tg_data(graphs, features, edge_labels)