forked from ljpzzz/machinelearning
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathactor_critic.py
182 lines (155 loc) · 6.78 KB
/
actor_critic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
#######################################################################
# Copyright (C) #
# 2016 - 2019 Pinard Liu([email protected]) #
# https://www.cnblogs.com/pinard #
# Permission given to modify the code as long as you keep this #
# declaration at the top #
#######################################################################
## https://www.cnblogs.com/pinard/p/10272023.html ##
## 强化学习(十四) Actor-Critic ##
import gym
import tensorflow as tf
import numpy as np
import random
from collections import deque
# Hyper Parameters
GAMMA = 0.95 # discount factor
LEARNING_RATE=0.01
class Actor():
def __init__(self, env, sess):
# init some parameters
self.time_step = 0
self.state_dim = env.observation_space.shape[0]
self.action_dim = env.action_space.n
self.create_softmax_network()
# Init session
self.session = sess
self.session.run(tf.global_variables_initializer())
def create_softmax_network(self):
# network weights
W1 = self.weight_variable([self.state_dim, 20])
b1 = self.bias_variable([20])
W2 = self.weight_variable([20, self.action_dim])
b2 = self.bias_variable([self.action_dim])
# input layer
self.state_input = tf.placeholder("float", [None, self.state_dim])
self.tf_acts = tf.placeholder(tf.int32, [None,2], name="actions_num")
self.td_error = tf.placeholder(tf.float32, None, "td_error") # TD_error
# hidden layers
h_layer = tf.nn.relu(tf.matmul(self.state_input, W1) + b1)
# softmax layer
self.softmax_input = tf.matmul(h_layer, W2) + b2
# softmax output
self.all_act_prob = tf.nn.softmax(self.softmax_input, name='act_prob')
self.neg_log_prob = tf.nn.softmax_cross_entropy_with_logits(logits=self.softmax_input,
labels=self.tf_acts)
self.exp = tf.reduce_mean(self.neg_log_prob * self.td_error)
#这里需要最大化当前策略的价值,因此需要最大化self.exp,即最小化-self.exp
self.train_op = tf.train.AdamOptimizer(LEARNING_RATE).minimize(-self.exp)
def weight_variable(self, shape):
initial = tf.truncated_normal(shape)
return tf.Variable(initial)
def bias_variable(self, shape):
initial = tf.constant(0.01, shape=shape)
return tf.Variable(initial)
def choose_action(self, observation):
prob_weights = self.session.run(self.all_act_prob, feed_dict={self.state_input: observation[np.newaxis, :]})
action = np.random.choice(range(prob_weights.shape[1]), p=prob_weights.ravel()) # select action w.r.t the actions prob
return action
def learn(self, state, action, td_error):
s = state[np.newaxis, :]
one_hot_action = np.zeros(self.action_dim)
one_hot_action[action] = 1
a = one_hot_action[np.newaxis, :]
# train on episode
self.session.run(self.train_op, feed_dict={
self.state_input: s,
self.tf_acts: a,
self.td_error: td_error,
})
EPSILON = 0.01 # final value of epsilon
REPLAY_SIZE = 10000 # experience replay buffer size
BATCH_SIZE = 32 # size of minibatch
REPLACE_TARGET_FREQ = 10 # frequency to update target Q network
class Critic():
def __init__(self, env, sess):
# init some parameters
self.time_step = 0
self.epsilon = EPSILON
self.state_dim = env.observation_space.shape[0]
self.action_dim = env.action_space.n
self.create_Q_network()
self.create_training_method()
# Init session
self.session = sess
self.session.run(tf.global_variables_initializer())
def create_Q_network(self):
# network weights
W1q = self.weight_variable([self.state_dim, 20])
b1q = self.bias_variable([20])
W2q = self.weight_variable([20, 1])
b2q = self.bias_variable([1])
self.state_input = tf.placeholder(tf.float32, [1, self.state_dim], "state")
# hidden layers
h_layerq = tf.nn.relu(tf.matmul(self.state_input, W1q) + b1q)
# Q Value layer
self.Q_value = tf.matmul(h_layerq, W2q) + b2q
def create_training_method(self):
self.next_value = tf.placeholder(tf.float32, [1,1], "v_next")
self.reward = tf.placeholder(tf.float32, None, 'reward')
with tf.variable_scope('squared_TD_error'):
self.td_error = self.reward + GAMMA * self.next_value - self.Q_value
self.loss = tf.square(self.td_error)
with tf.variable_scope('train'):
self.train_op = tf.train.AdamOptimizer(self.epsilon).minimize(self.loss)
def train_Q_network(self, state, reward, next_state):
s, s_ = state[np.newaxis, :], next_state[np.newaxis, :]
v_ = self.session.run(self.Q_value, {self.state_input: s_})
td_error, _ = self.session.run([self.td_error, self.train_op],
{self.state_input: s, self.next_value: v_, self.reward: reward})
return td_error
def weight_variable(self,shape):
initial = tf.truncated_normal(shape)
return tf.Variable(initial)
def bias_variable(self,shape):
initial = tf.constant(0.01, shape = shape)
return tf.Variable(initial)
# Hyper Parameters
ENV_NAME = 'CartPole-v0'
EPISODE = 3000 # Episode limitation
STEP = 3000 # Step limitation in an episode
TEST = 10 # The number of experiment test every 100 episode
def main():
# initialize OpenAI Gym env and dqn agent
sess = tf.InteractiveSession()
env = gym.make(ENV_NAME)
actor = Actor(env, sess)
critic = Critic(env, sess)
for episode in range(EPISODE):
# initialize task
state = env.reset()
# Train
for step in range(STEP):
action = actor.choose_action(state) # e-greedy action for train
next_state,reward,done,_ = env.step(action)
td_error = critic.train_Q_network(state, reward, next_state) # gradient = grad[r + gamma * V(s_) - V(s)]
actor.learn(state, action, td_error) # true_gradient = grad[logPi(s,a) * td_error]
state = next_state
if done:
break
# Test every 100 episodes
if episode % 100 == 0:
total_reward = 0
for i in range(TEST):
state = env.reset()
for j in range(STEP):
env.render()
action = actor.choose_action(state) # direct action for test
state,reward,done,_ = env.step(action)
total_reward += reward
if done:
break
ave_reward = total_reward/TEST
print ('episode: ',episode,'Evaluation Average Reward:',ave_reward)
if __name__ == '__main__':
main()