-
Notifications
You must be signed in to change notification settings - Fork 3
/
README.Rmd
284 lines (206 loc) · 8.75 KB
/
README.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
---
output: rmarkdown::github_document
---
<!-- README.md is generated from README.Rmd. Please edit that file -->
# hystReet
<!-- badges: start -->
[![CRAN](http://www.r-pkg.org/badges/version/hystReet)](https://CRAN.R-project.org/package=hystReet)
[![Downloads](https://cranlogs.r-pkg.org/badges/grand-total/hystReet)](https://www.r-pkg.org/pkg/hystReet)
[![Build Status](https://travis-ci.org/JohannesFriedrich/hystReet.svg?branch=master)](https://travis-ci.org/JohannesFriedrich/hystReet)
[![Build status](https://ci.appveyor.com/api/projects/status/hfno1wngf2yqs4e9?svg=true)](https://ci.appveyor.com/project/JohannesFriedrich/hystreet)
[![R-CMD-check](https://github.com/JohannesFriedrich/hystReet/workflows/R-CMD-check/badge.svg)](https://github.com/JohannesFriedrich/hystReet/actions)
[![Project Status: Active – The project has reached a stable, usable state and is being actively developed.](http://www.repostatus.org/badges/latest/active.svg)](http://www.repostatus.org/#active)
<!-- badges: end -->
```{r setup, include=FALSE, echo = FALSE}
knitr::opts_chunk$set(collapse = TRUE,
comment = "##",
fig.retina = 2,
fig.align = "center",
fig.path = "README_figs/README-")
Sys.setlocale("LC_TIME", "C")
```
## Introduction
[hystreet](https://hystreet.com) is a company that collects data on pedestrian traffic in shopping streets of different German cities. After registering you can access and download the data via their website.
## Installation
The package is now on CRAN. The easiest way to download is via:
```{r, eval=FALSE}
install.packages("hystReet")
```
You can install the development version from GitHub with the following command:
```{r, eval = FALSE}
if (!require("devtools"))
install.packages("devtools")
devtools::install_github("JohannesFriedrich/hystReet")
```
```{r message=FALSE, warning=FALSE, include=FALSE}
library(tidyverse)
library(readr)
library(lubridate)
library(scales)
```
## API Keys
To use this package, you will first need to get a hystreet API key. To do so, you first need to set up an account on [https://hystreet.com/](https://hystreet.com/). After that you can request an API key via [e-mail](mailto:[email protected]). Once your request has been granted, you will find you key in your hystreet account profile.
Now you have three options:
(1)
Once you have your key, you can save it as an environment variable for the current session by running the following command:
```{r, eval = FALSE}
Sys.setenv(HYSTREET_API_TOKEN = "PASTE YOUR API TOKEN HERE")
```
(2)
Alternatively, you can set it permanently with the help of `usethis::edit_r_environ()` by adding the following line to your `.Renviron`:
```
HYSTREET_API_TOKEN = PASTE YOUR API TOKEN HERE
```
(3)
If you don't want to save your API token here, you can enter it for each function of this package using the `API_token` parameter.
## Usage
Function name | Description | Example
--------------------|----------------------------------------------------| -------
get_hystreet_stats() | request common statistics about the hystreet project | get_hystreet_stats()
get_hystreet_locations() | request all available locations | get_hystreet_locations()
get_hystreet_station_data() | request data from a stations | get_hystreet_station_data(71)
set_hystreet_token() | set your API token | set_hystreet_token(123456789)
### Load some statistics
The function `get_hystreet_stats()` summarises the number of available stations and the sum of all counted pedestrians.
```{r}
library(hystReet)
stats <- get_hystreet_stats()
```
```{r, eval = FALSE}
stats
```
```{r echo=FALSE}
knitr::kable(
stats,
format = "html"
)
```
### Request all stations
The function `get_hystreet_locations()` generates a data frame with all available stations of the project.
```{r}
locations <- get_hystreet_locations()
```
```{r, eval = FALSE}
locations
```
```{r echo=FALSE}
knitr::kable(
locations[1:10,],
format = "html"
)
```
### Request data from a specific station
The (probably) most interesting function is `get_hystreet_station_data()`. Using the hystreetID it is possible to request a specific station. By default, all the data from the current day are received.
With the `query` argument it is possible to define the time and sampling frame of the data more precisely:
* `from`: datetime of earliest measurement (default: today 00:00:00:): e.g. "2021-10-01 12:00:00" or "2021-10-01"
* `to` : datetime of latest measurement (default: today 23:59:59): e.g. "2021-12-01 12:00:00" or "2021-12-01"
* `resolution`: Resolution for the measurement (default: hour): "day", "hour", "month", "week"
```{r}
data <- get_hystreet_station_data(
hystreetId = 71,
query = list(from = "2021-12-01", to = "2021-12-31", resolution = "day"))
```
## Some ideas for visualising the data
Let´s see if we can find the busiest days in December 2021. Saturdays were probably quite busy, while there should have been substantially less pedestrian traffic on the 25th and 26th of December, both of which are holidays in Germany.
```{r}
data <- get_hystreet_station_data(
hystreetId = 71,
query = list(from = "2021-12-01", to = "2022-01-01", resolution = "hour"))
```
```{r station_71}
ggplot(data$measurements, aes(x = timestamp, y = pedestrians_count, colour = weekdays(timestamp))) +
geom_path(group = 1) +
scale_x_datetime(date_breaks = "7 days", labels = date_format("%d.%m.%Y")) +
labs(x = "Date",
y = "Pedestrians",
colour = "Day")
```
### Compare different stations
Now let´s compare data from different stations:
1) Load the data
```{r}
data_73 <- get_hystreet_station_data(
hystreetId = 73,
query = list(from = "2022-01-01", to = "2022-01-31", resolution = "day"))$measurements %>%
select(pedestrians_count, timestamp) %>%
mutate(station = 73)
data_74 <- get_hystreet_station_data(
hystreetId = 74,
query = list(from = "2022-01-01", to = "2022-01-31", resolution = "day"))$measurements %>%
select(pedestrians_count, timestamp) %>%
mutate(station = 74)
data_73_74 <- bind_rows(data_73, data_74)
```
```{r station_73_74}
ggplot(data_73_74, aes(x = timestamp, y = pedestrians_count, fill = weekdays(timestamp))) +
geom_bar(stat = "identity") +
scale_x_datetime(labels = date_format("%d.%m.%Y")) +
facet_wrap(~station, scales = "free_y") +
theme(legend.position = "bottom",
axis.text.x = element_text(angle = 45, hjust = 1))
```
### Highest ratio (pedestrians/day)
Now a little bit of big data analysis. Let´s find the station with the highest pedestrians per day ratio:
```{r message=FALSE, warning=FALSE}
hystreet_ids <- get_hystreet_locations()
all_data <- lapply(hystreet_ids[,"id"], function(ID){
temp <- get_hystreet_station_data(
hystreetId = ID,
query = list(from = "2021-01-01", to = "2021-12-31", resolution = "day"))
lifetime_count <- temp$statistics$timerange_count
days_counted <- as.integer(ymd(temp$metadata$measured_to) - ymd(temp$metadata$measured_from))
return(data.frame(
id = ID,
station = paste0(temp$city, " (",temp$name,")"),
ratio = lifetime_count/days_counted))
})
ratio <- bind_rows(all_data)
```
Which stations have the highest ratio?
```{r}
ratio %>%
top_n(5, ratio) %>%
arrange(desc(ratio))
```
Now let´s visualise the top 10 locations:
```{r ratio_plot}
ggplot(ratio %>%
top_n(10,ratio), aes(station, ratio)) +
geom_bar(stat = "identity") +
labs(x = "Location",
y = "Pedestrians per day") +
theme(legend.position = "bottom",
axis.text.x = element_text(angle = 45, hjust = 1))
```
### Corona effects
The Hystreet-API is a great source of analysing the social effects of the Corona pandemic in 2020.
Let´s collect all german stations since March 2020 and analyse the pedestrian count until 10th June 2020.
```{r corona_effects_data}
data <- lapply(hystreet_ids[,"id"], function(ID){
temp <- get_hystreet_station_data(
hystreetId = ID,
query = list(from = "2020-03-01", to = "2020-06-10", resolution = "day")
)
return(data.frame(
name = temp$name,
city = temp$city,
timestamp = format(as.POSIXct(temp$measurements$timestamp), "%Y-%m-%d"),
pedestrians_count = temp$measurements$pedestrians_count,
legend = paste(temp$city, temp$name, sep = " - ")
))
})
data_all <- bind_rows(data)
```
```{r corona_effects_plot}
data_all %>%
ggplot(aes(ymd(timestamp), pedestrians_count, colour = legend)) +
geom_line(alpha = 0.2) +
scale_x_date(labels = date_format("%d.%m.%Y"),
breaks = date_breaks("7 days")
) +
theme(legend.position = "none",
legend.title = element_text("Legende"),
axis.text.x = element_text(angle = 45, hjust = 1)) +
labs(x = "Date",
y = "Persons/Day")
```