diff --git a/docs/_posts/Mary-Sci/2023-11-11-finassertion_aspect_based_sentiment_md_en.md b/docs/_posts/Mary-Sci/2023-11-11-finassertion_aspect_based_sentiment_md_en.md
new file mode 100644
index 0000000000..12ca101255
--- /dev/null
+++ b/docs/_posts/Mary-Sci/2023-11-11-finassertion_aspect_based_sentiment_md_en.md
@@ -0,0 +1,131 @@
+---
+layout: model
+title: Financial Assertion of Aspect-Based Sentiment (md, Medium)
+author: John Snow Labs
+name: finassertion_aspect_based_sentiment_md
+date: 2023-11-11
+tags: [assertion, licensed, en, finance]
+task: Assertion Status
+language: en
+edition: Finance NLP 1.0.0
+spark_version: 3.0
+supported: true
+annotator: AssertionDLModel
+article_header:
+type: cover
+use_language_switcher: "Python-Scala-Java"
+---
+
+## Description
+
+This assertion model classifies financial entities into an aspect-based sentiment. It is designed to be used together with the associated NER model.
+
+## Predicted Entities
+
+`POSITIVE`, `NEGATIVE`, `NEUTRAL`
+
+{:.btn-box}
+
+
+[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/finance/models/finassertion_aspect_based_sentiment_md_en_1.0.0_3.0_1699705705778.zip){:.button.button-orange.button-orange-trans.arr.button-icon.hidden}
+[Copy S3 URI](s3://auxdata.johnsnowlabs.com/finance/models/finassertion_aspect_based_sentiment_md_en_1.0.0_3.0_1699705705778.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3}
+
+## How to use
+
+
+
+
+{% include programmingLanguageSelectScalaPythonNLU.html %}
+```python
+documentAssembler = nlp.DocumentAssembler()\
+ .setInputCol("text")\
+ .setOutputCol("document")
+
+# Sentence Detector annotator, processes various sentences per line
+sentenceDetector = nlp.SentenceDetector()\
+ .setInputCols(["document"])\
+ .setOutputCol("sentence")
+
+# Tokenizer splits words in a relevant format for NLP
+tokenizer = nlp.Tokenizer()\
+ .setInputCols(["sentence"])\
+ .setOutputCol("token")
+
+bert_embeddings = nlp.BertEmbeddings.pretrained("bert_embeddings_sec_bert_base", "en")\
+ .setInputCols("sentence", "token")\
+ .setOutputCol("embeddings")\
+ .setMaxSentenceLength(512)
+
+finance_ner = finance.NerModel.pretrained("finner_aspect_based_sentiment_md", "en", "finance/models")\
+ .setInputCols(["sentence", "token", "embeddings"])\
+ .setOutputCol("ner")
+
+ner_converter = finance.NerConverterInternal()\
+ .setInputCols(["sentence", "token", "ner"])\
+ .setOutputCol("ner_chunk")
+
+assertion_model = finance.AssertionDLModel.pretrained("finassertion_aspect_based_sentiment_md", "en", "finance/models")\
+ .setInputCols(["sentence", "ner_chunk", "embeddings"])\
+ .setOutputCol("assertion")
+
+
+nlpPipeline = nlp.Pipeline(
+ stages=[documentAssembler,
+ sentenceDetector,
+ tokenizer,
+ bert_embeddings,
+ finance_ner,
+ ner_converter,
+ assertion_model])
+
+text = "Equity and earnings of affiliates in Latin America increased to $4.8 million in the quarter from $2.2 million in the prior year as the commodity markets in Latin America remain strong through the end of the quarter."
+
+spark_df = spark.createDataFrame([[text]]).toDF("text")
+
+result = nlpPipeline.fit(spark_df ).transform(spark_df)
+
+result.select(F.explode(F.arrays_zip("ner_chunk.result", "ner_chunk.metadata", "assertion.result", "assertion.metadata")).alias("cols"))\
+ .select(F.expr("cols['0']").alias("entity"),
+ F.expr("cols['1']['entity']").alias("label"),
+ F.expr("cols['2']").alias("assertion"),
+ F.expr("cols['3']['confidence']").alias("confidence")).show(50, truncate=False)
+```
+
+
+
+## Results
+
+```bash
++--------+---------+---------+----------+
+|entity |label |assertion|confidence|
++--------+---------+---------+----------+
+|Equity |LIABILITY|POSITIVE |0.9895 |
+|earnings|PROFIT |POSITIVE |0.995 |
++--------+---------+---------+----------+
+```
+
+{:.model-param}
+## Model Information
+
+{:.table-model}
+|---|---|
+|Model Name:|finassertion_aspect_based_sentiment_md|
+|Compatibility:|Finance NLP 1.0.0+|
+|License:|Licensed|
+|Edition:|Official|
+|Input Labels:|[document, chunk, embeddings]|
+|Output Labels:|[assertion]|
+|Language:|en|
+|Size:|2.7 MB|
+
+## Benchmarking
+
+```bash
+ label precision recall f1-score support
+ NEGATIVE 0.68 0.43 0.53 232
+ NEUTRAL 0.44 0.65 0.53 441
+ POSITIVE 0.79 0.69 0.74 947
+ accuracy - - 0.64 1620
+ macro-avg 0.64 0.59 0.60 1620
+ weighted-avg 0.68 0.64 0.65 1620
+```
diff --git a/docs/_posts/Mary-Sci/2023-11-11-finner_aspect_based_sentiment_md_en.md b/docs/_posts/Mary-Sci/2023-11-11-finner_aspect_based_sentiment_md_en.md
new file mode 100644
index 0000000000..fb1df22a2a
--- /dev/null
+++ b/docs/_posts/Mary-Sci/2023-11-11-finner_aspect_based_sentiment_md_en.md
@@ -0,0 +1,136 @@
+---
+layout: model
+title: Financial NER on Aspect-Based Sentiment Analysis
+author: John Snow Labs
+name: finner_aspect_based_sentiment_md
+date: 2023-11-11
+tags: [ner, licensed, finance, en]
+task: Named Entity Recognition
+language: en
+edition: Finance NLP 1.0.0
+spark_version: 3.0
+supported: true
+annotator: FinanceNerModel
+article_header:
+type: cover
+use_language_switcher: "Python-Scala-Java"
+---
+
+## Description
+
+This NER model identifies entities that can be associated with a financial sentiment. The model is designed to be used with the associated Assertion Status model that classifies the entities into a sentiment category.
+
+## Predicted Entities
+
+`ASSET`, `CASHFLOW`, `EXPENSE`, `FREE_CASH_FLOW`, `GAINS`, `KPI`, `LIABILITY`, `LOSSES`, `PROFIT`, `REVENUE`
+
+{:.btn-box}
+
+
+[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/finance/models/finner_aspect_based_sentiment_md_en_1.0.0_3.0_1699704469251.zip){:.button.button-orange.button-orange-trans.arr.button-icon.hidden}
+[Copy S3 URI](s3://auxdata.johnsnowlabs.com/finance/models/finner_aspect_based_sentiment_md_en_1.0.0_3.0_1699704469251.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3}
+
+## How to use
+
+
+
+
+{% include programmingLanguageSelectScalaPythonNLU.html %}
+```python
+documentAssembler = nlp.DocumentAssembler()\
+ .setInputCol("text")\
+ .setOutputCol("document")
+
+# Sentence Detector annotator, processes various sentences per line
+sentenceDetector = nlp.SentenceDetector()\
+ .setInputCols(["document"])\
+ .setOutputCol("sentence")
+
+# Tokenizer splits words in a relevant format for NLP
+tokenizer = nlp.Tokenizer()\
+ .setInputCols(["sentence"])\
+ .setOutputCol("token")
+
+bert_embeddings = nlp.BertEmbeddings.pretrained("bert_embeddings_sec_bert_base", "en")\
+ .setInputCols("sentence", "token")\
+ .setOutputCol("embeddings")\
+ .setMaxSentenceLength(512)
+
+
+ner_model = finance.NerModel().pretrained("finner_aspect_based_sentiment_md", "en", "finance/models")\
+ .setInputCols(["sentence", "token", "embeddings"])\
+ .setOutputCol("ner")
+
+ner_converter = nlp.NerConverter()\
+ .setInputCols(["sentence","token","ner"])\
+ .setOutputCol("ner_chunk")
+
+nlpPipeline = nlp.Pipeline(stages=[
+ documentAssembler,
+ sentenceDetector,
+ tokenizer,
+ bert_embeddings,
+ ner_model,
+ ner_converter])
+
+empty_data = spark.createDataFrame([[""]]).toDF("text")
+model = nlpPipeline.fit(empty_data)
+
+text = ["""Equity and earnings of affiliates in Latin America increased to $4.8 million in the quarter from $2.2 million in the prior year as the commodity markets in Latin America remain strong through the end of the quarter."""]
+result = model.transform(spark.createDataFrame([text]).toDF("text"))
+
+from pyspark.sql import functions as F
+
+result.select(F.explode(F.arrays_zip(result.ner_chunk.result, result.ner_chunk.begin, result.ner_chunk.end, result.ner_chunk.metadata)).alias("cols")) \
+ .select(F.expr("cols['0']").alias("chunk"),
+ F.expr("cols['1']").alias("begin"),
+ F.expr("cols['2']").alias("end"),
+ F.expr("cols['3']['entity']").alias("ner_label")
+ ).show(100, truncate=False)
+```
+
+