.
@@ -159,9 +114,6 @@ Dr. Dr Felice Lacer, IDXO:4884578, IP 444.444.444.444.
He is a 75 male was admitted to the MADISON VALLEY MEDICAL CENTER for cystectomy on 07-01-1972.
Patient's VIN : 2BBBB11BBBB222999, SSN SSN-814-86-1962, Driver's license P055567317431.
Phone 0381-6762484, Budaörsi út 14., New brunswick, E-MAIL: Reba@google.com.
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-17-explain_clinical_doc_ade_en.md b/docs/_posts/C-K-Loan/2023-06-17-explain_clinical_doc_ade_en.md
index ae4e6d1e61..61309c4d7b 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-explain_clinical_doc_ade_en.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-explain_clinical_doc_ade_en.md
@@ -34,6 +34,7 @@ A pipeline for Adverse Drug Events (ADE) with `ner_ade_biobert`, `assertion_dl_b
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -62,43 +63,10 @@ nlu.load("en.explain_doc.clinical_ade").predict("""Been taking Lipitor for 15 ye
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("explain_clinical_doc_ade", "en", "clinical/models")
-
-text = """Been taking Lipitor for 15 years , have experienced severe fatigue a lot!!! . Doctor moved me to voltaren 2 months ago , so far , have only experienced cramps"""
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("explain_clinical_doc_ade", "en", "clinical/models")
-
-val text = """Been taking Lipitor for 15 years , have experienced severe fatigue a lot!!! . Doctor moved me to voltaren 2 months ago , so far , have only experienced cramps"""
-
-val result = pipeline.fullAnnotate(text)
-```
-
-{:.nlu-block}
-```python
-import nlu
-nlu.load("en.explain_doc.clinical_ade").predict("""Been taking Lipitor for 15 years , have experienced severe fatigue a lot!!! . Doctor moved me to voltaren 2 months ago , so far , have only experienced cramps""")
-```
-
## Results
```bash
-Results
-
-
-
-Class: True
-
NER_Assertion:
| | chunk | entitiy | assertion |
|----|-------------------------|------------|-------------|
@@ -114,10 +82,6 @@ Relations:
| 1 | cramps | ADE | Lipitor | DRUG | 0 |
| 2 | severe fatigue | ADE | voltaren | DRUG | 0 |
| 3 | cramps | ADE | voltaren | DRUG | 1 |
-
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-17-explain_clinical_doc_carp_en.md b/docs/_posts/C-K-Loan/2023-06-17-explain_clinical_doc_carp_en.md
index db7a0188e5..ba3ead56e1 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-explain_clinical_doc_carp_en.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-explain_clinical_doc_carp_en.md
@@ -34,6 +34,7 @@ A pipeline with `ner_clinical`, `assertion_dl`, `re_clinical` and `ner_posology`
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -62,72 +63,10 @@ nlu.load("en.explain_doc.carp").predict("""A 28-year-old female with a history o
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("explain_clinical_doc_carp", "en", "clinical/models")
-
-text = """A 28-year-old female with a history of gestational diabetes mellitus, used to take metformin 1000 mg two times a day, presented with a one-week history of polyuria , polydipsia , poor appetite , and vomiting. She was seen by the endocrinology service and discharged on 40 units of insulin glargine at night, 12 units of insulin lispro with meals."""
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("explain_clinical_doc_carp", "en", "clinical/models")
-
-val text = """A 28-year-old female with a history of gestational diabetes mellitus, used to take metformin 1000 mg two times a day, presented with a one-week history of polyuria , polydipsia , poor appetite , and vomiting. She was seen by the endocrinology service and discharged on 40 units of insulin glargine at night, 12 units of insulin lispro with meals."""
-
-val result = pipeline.fullAnnotate(text)
-```
-
-{:.nlu-block}
-```python
-import nlu
-nlu.load("en.explain_doc.carp").predict("""A 28-year-old female with a history of gestational diabetes mellitus, used to take metformin 1000 mg two times a day, presented with a one-week history of polyuria , polydipsia , poor appetite , and vomiting. She was seen by the endocrinology service and discharged on 40 units of insulin glargine at night, 12 units of insulin lispro with meals.""")
-```
-
-
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("explain_clinical_doc_carp", "en", "clinical/models")
-
-text = """A 28-year-old female with a history of gestational diabetes mellitus, used to take metformin 1000 mg two times a day, presented with a one-week history of polyuria , polydipsia , poor appetite , and vomiting. She was seen by the endocrinology service and discharged on 40 units of insulin glargine at night, 12 units of insulin lispro with meals."""
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("explain_clinical_doc_carp", "en", "clinical/models")
-
-val text = """A 28-year-old female with a history of gestational diabetes mellitus, used to take metformin 1000 mg two times a day, presented with a one-week history of polyuria , polydipsia , poor appetite , and vomiting. She was seen by the endocrinology service and discharged on 40 units of insulin glargine at night, 12 units of insulin lispro with meals."""
-
-val result = pipeline.fullAnnotate(text)
-```
-
-{:.nlu-block}
-```python
-import nlu
-nlu.load("en.explain_doc.carp").predict("""A 28-year-old female with a history of gestational diabetes mellitus, used to take metformin 1000 mg two times a day, presented with a one-week history of polyuria , polydipsia , poor appetite , and vomiting. She was seen by the endocrinology service and discharged on 40 units of insulin glargine at night, 12 units of insulin lispro with meals.""")
-```
-
## Results
```bash
-Results
-
-
-Results
-
-
-
| | chunks | ner_clinical | assertion | posology_chunk | ner_posology | relations |
|---|-------------------------------|--------------|-----------|------------------|--------------|-----------|
| 0 | gestational diabetes mellitus | PROBLEM | present | metformin | Drug | TrAP |
@@ -137,13 +76,6 @@ Results
| 4 | poor appetite | PROBLEM | present | insulin glargine | Drug | TrCP |
| 5 | vomiting | PROBLEM | present | at night | Frequency | TrAP |
| 6 | insulin glargine | TREATMENT | present | 12 units | Dosage | TrAP |
-
-
-
-{:.model-param}
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-17-explain_clinical_doc_era_en.md b/docs/_posts/C-K-Loan/2023-06-17-explain_clinical_doc_era_en.md
index d8c7ed1d26..f460bb9897 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-explain_clinical_doc_era_en.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-explain_clinical_doc_era_en.md
@@ -34,6 +34,7 @@ A pipeline with `ner_clinical_events`, `assertion_dl` and `re_temporal_events_cl
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -62,71 +63,11 @@ nlu.load("en.explain_doc.era").predict("""She is admitted to The John Hopkins Ho
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("explain_clinical_doc_era", "en", "clinical/models")
-
-text = """She is admitted to The John Hopkins Hospital 2 days ago with a history of gestational diabetes mellitus diagnosed. She denied pain and any headache. She was seen by the endocrinology service and she was discharged on 03/02/2018 on 40 units of insulin glargine, 12 units of insulin lispro, and metformin 1000 mg two times a day. She had close follow-up with endocrinology post discharge. """
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("explain_clinical_doc_era", "en", "clinical/models")
-
-val text = """She is admitted to The John Hopkins Hospital 2 days ago with a history of gestational diabetes mellitus diagnosed. She denied pain and any headache. She was seen by the endocrinology service and she was discharged on 03/02/2018 on 40 units of insulin glargine, 12 units of insulin lispro, and metformin 1000 mg two times a day. She had close follow-up with endocrinology post discharge. """
-
-val result = pipeline.fullAnnotate(text)
-```
-
-{:.nlu-block}
-```python
-import nlu
-nlu.load("en.explain_doc.era").predict("""She is admitted to The John Hopkins Hospital 2 days ago with a history of gestational diabetes mellitus diagnosed. She denied pain and any headache. She was seen by the endocrinology service and she was discharged on 03/02/2018 on 40 units of insulin glargine, 12 units of insulin lispro, and metformin 1000 mg two times a day. She had close follow-up with endocrinology post discharge. """)
-```
-
-
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("explain_clinical_doc_era", "en", "clinical/models")
-text = """She is admitted to The John Hopkins Hospital 2 days ago with a history of gestational diabetes mellitus diagnosed. She denied pain and any headache. She was seen by the endocrinology service and she was discharged on 03/02/2018 on 40 units of insulin glargine, 12 units of insulin lispro, and metformin 1000 mg two times a day. She had close follow-up with endocrinology post discharge. """
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("explain_clinical_doc_era", "en", "clinical/models")
-
-val text = """She is admitted to The John Hopkins Hospital 2 days ago with a history of gestational diabetes mellitus diagnosed. She denied pain and any headache. She was seen by the endocrinology service and she was discharged on 03/02/2018 on 40 units of insulin glargine, 12 units of insulin lispro, and metformin 1000 mg two times a day. She had close follow-up with endocrinology post discharge. """
-
-val result = pipeline.fullAnnotate(text)
-```
-
-{:.nlu-block}
-```python
-import nlu
-nlu.load("en.explain_doc.era").predict("""She is admitted to The John Hopkins Hospital 2 days ago with a history of gestational diabetes mellitus diagnosed. She denied pain and any headache. She was seen by the endocrinology service and she was discharged on 03/02/2018 on 40 units of insulin glargine, 12 units of insulin lispro, and metformin 1000 mg two times a day. She had close follow-up with endocrinology post discharge. """)
-```
-
## Results
```bash
-Results
-
-
-Results
-
-
| | relation | entity1 | entity1_begin | entity1_end | chunk1 | entity2 | entity2_begin | entity2_end | chunk2 | confidence |
|---:|:-----------|:--------------|----------------:|--------------:|:--------------------------|:--------------|----------------:|--------------:|:------------------------------|-------------:|
@@ -138,13 +79,6 @@ Results
| 5 | OVERLAP | DATE | 45 | 54 | 2 days ago | PROBLEM | 74 | 102 | gestational diabetes mellitus | 0.996954 |
| 6 | BEFORE | EVIDENTIAL | 119 | 124 | denied | PROBLEM | 126 | 129 | pain | 1 |
| 7 | BEFORE | EVIDENTIAL | 119 | 124 | denied | PROBLEM | 135 | 146 | any headache | 1 |
-
-
-
-{:.model-param}
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-17-explain_clinical_doc_medication_en.md b/docs/_posts/C-K-Loan/2023-06-17-explain_clinical_doc_medication_en.md
index d4d5a55356..56f1516387 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-explain_clinical_doc_medication_en.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-explain_clinical_doc_medication_en.md
@@ -34,6 +34,7 @@ A pipeline for detecting posology entities with the `ner_posology_large` NER mod
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -62,72 +63,11 @@ nlu.load("en.explain_dco.clinical_medication.pipeline").predict("""The patient i
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("explain_clinical_doc_medication", "en", "clinical/models")
-
-text = '''The patient is a 30-year-old female with a long history of insulin dependent diabetes, type 2. She received a course of Bactrim for 14 days for UTI. She was prescribed 5000 units of Fragmin subcutaneously daily, and along with Lantus 40 units subcutaneously at bedtime.'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("explain_clinical_doc_medication", "en", "clinical/models")
-
-val text = "The patient is a 30-year-old female with a long history of insulin dependent diabetes, type 2. She received a course of Bactrim for 14 days for UTI. She was prescribed 5000 units of Fragmin subcutaneously daily, and along with Lantus 40 units subcutaneously at bedtime."
-
-val result = pipeline.fullAnnotate(text)
-```
-
-{:.nlu-block}
-```python
-import nlu
-nlu.load("en.explain_dco.clinical_medication.pipeline").predict("""The patient is a 30-year-old female with a long history of insulin dependent diabetes, type 2. She received a course of Bactrim for 14 days for UTI. She was prescribed 5000 units of Fragmin subcutaneously daily, and along with Lantus 40 units subcutaneously at bedtime.""")
-```
-
-
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-pipeline = PretrainedPipeline("explain_clinical_doc_medication", "en", "clinical/models")
-
-text = '''The patient is a 30-year-old female with a long history of insulin dependent diabetes, type 2. She received a course of Bactrim for 14 days for UTI. She was prescribed 5000 units of Fragmin subcutaneously daily, and along with Lantus 40 units subcutaneously at bedtime.'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("explain_clinical_doc_medication", "en", "clinical/models")
-
-val text = "The patient is a 30-year-old female with a long history of insulin dependent diabetes, type 2. She received a course of Bactrim for 14 days for UTI. She was prescribed 5000 units of Fragmin subcutaneously daily, and along with Lantus 40 units subcutaneously at bedtime."
-
-val result = pipeline.fullAnnotate(text)
-```
-
-{:.nlu-block}
-```python
-import nlu
-nlu.load("en.explain_dco.clinical_medication.pipeline").predict("""The patient is a 30-year-old female with a long history of insulin dependent diabetes, type 2. She received a course of Bactrim for 14 days for UTI. She was prescribed 5000 units of Fragmin subcutaneously daily, and along with Lantus 40 units subcutaneously at bedtime.""")
-```
-
## Results
```bash
-Results
-
-
-Results
-
-
-
+----+----------------+------------+
| | chunks | entities |
|---:|:---------------|:-----------|
@@ -164,13 +104,6 @@ Results
| DRUG-ROUTE | DRUG | Lantus | ROUTE | subcutaneously |
| DRUG-FREQUENCY | DRUG | Lantus | FREQUENCY | at bedtime |
+----------------+-----------+------------+-----------+----------------+
-
-
-
-{:.model-param}
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-17-explain_clinical_doc_radiology_en.md b/docs/_posts/C-K-Loan/2023-06-17-explain_clinical_doc_radiology_en.md
index f71fea5ba2..cfd286f4b9 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-explain_clinical_doc_radiology_en.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-explain_clinical_doc_radiology_en.md
@@ -34,6 +34,7 @@ A pipeline for detecting posology entities with the `ner_radiology` NER model, a
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -62,41 +63,9 @@ nlu.load("en.explain_doc.clinical_radiology.pipeline").predict("""Bilateral brea
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("explain_clinical_doc_radiology", "en", "clinical/models")
-
-text = """Bilateral breast ultrasound was subsequently performed, which demonstrated an ovoid mass measuring approximately 0.5 x 0.5 x 0.4 cm in diameter located within the anteromedial aspect of the left shoulder. This mass demonstrates isoechoic echotexture to the adjacent muscle, with no evidence of internal color flow. This may represent benign fibrous tissue or a lipoma."""
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("explain_clinical_doc_radiology", "en", "clinical/models")
-
-val text = """Bilateral breast ultrasound was subsequently performed, which demonstrated an ovoid mass measuring approximately 0.5 x 0.5 x 0.4 cm in diameter located within the anteromedial aspect of the left shoulder. This mass demonstrates isoechoic echotexture to the adjacent muscle, with no evidence of internal color flow. This may represent benign fibrous tissue or a lipoma."""
-
-val result = pipeline.fullAnnotate(text)
-```
-
-{:.nlu-block}
-```python
-import nlu
-nlu.load("en.explain_doc.clinical_radiology.pipeline").predict("""Bilateral breast ultrasound was subsequently performed, which demonstrated an ovoid mass measuring approximately 0.5 x 0.5 x 0.4 cm in diameter located within the anteromedial aspect of the left shoulder. This mass demonstrates isoechoic echotexture to the adjacent muscle, with no evidence of internal color flow. This may represent benign fibrous tissue or a lipoma.""")
-```
-
-
## Results
```bash
-Results
-
-
-
+----+------------------------------------------+---------------------------+
| | chunks | entities |
|---:|:-----------------------------------------|:--------------------------|
@@ -132,10 +101,6 @@ Results
| 1 | ImagingTest | ultrasound | ImagingFindings | ovoid mass |
| 0 | ImagingFindings | benign fibrous tissue | Disease_Syndrome_Disorder | lipoma |
+---------+-----------------+-----------------------+---------------------------+------------+
-
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-17-icd10_icd9_mapping_en.md b/docs/_posts/C-K-Loan/2023-06-17-icd10_icd9_mapping_en.md
index 3c1091d9e4..f13858e1af 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-icd10_icd9_mapping_en.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-icd10_icd9_mapping_en.md
@@ -34,6 +34,7 @@ This pretrained pipeline is built on the top of `icd10_icd9_mapper` model.
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -58,74 +59,14 @@ nlu.load("en.icd10_icd9.mapping").predict("""Put your text here.""")
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("icd10_icd9_mapping", "en", "clinical/models")
-
-result = pipeline.fullAnnotate(Z833 A0100 A000)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("icd10_icd9_mapping", "en", "clinical/models")
-
-val result = pipeline.fullAnnotate(Z833 A0100 A000)
-```
-
-{:.nlu-block}
-```python
-import nlu
-nlu.load("en.icd10_icd9.mapping").predict("""Put your text here.""")
-```
-
-
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-pipeline = PretrainedPipeline("icd10_icd9_mapping", "en", "clinical/models")
-
-result = pipeline.fullAnnotate(Z833 A0100 A000)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("icd10_icd9_mapping", "en", "clinical/models")
-
-val result = pipeline.fullAnnotate(Z833 A0100 A000)
-```
-
-{:.nlu-block}
-```python
-import nlu
-nlu.load("en.icd10_icd9.mapping").predict("""Put your text here.""")
-```
-
## Results
```bash
-Results
-
-
-Results
-
-
-
| | icd10_code | icd9_code |
|---:|:--------------------|:-------------------|
| 0 | Z833 | A0100 | A000 | V180 | 0020 | 0010 |
-
-
-
-{:.model-param}
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-17-icd10cm_snomed_mapping_en.md b/docs/_posts/C-K-Loan/2023-06-17-icd10cm_snomed_mapping_en.md
index 03eb72f72c..ed47b5ff40 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-icd10cm_snomed_mapping_en.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-icd10cm_snomed_mapping_en.md
@@ -34,6 +34,7 @@ This pretrained pipeline is built on the top of `icd10cm_snomed_mapper` model.
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -58,74 +59,14 @@ nlu.load("en.map_entity.icd10cm_to_snomed.pipe").predict("""Put your text here."
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("icd10cm_snomed_mapping", "en", "clinical/models")
-
-result = pipeline.fullAnnotate(R079 N4289 M62830)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("icd10cm_snomed_mapping", "en", "clinical/models")
-
-val result = pipeline.fullAnnotate(R079 N4289 M62830)
-```
-
-{:.nlu-block}
-```python
-import nlu
-nlu.load("en.map_entity.icd10cm_to_snomed.pipe").predict("""Put your text here.""")
-```
-
-
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-pipeline = PretrainedPipeline("icd10cm_snomed_mapping", "en", "clinical/models")
-
-result = pipeline.fullAnnotate(R079 N4289 M62830)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("icd10cm_snomed_mapping", "en", "clinical/models")
-
-val result = pipeline.fullAnnotate(R079 N4289 M62830)
-```
-
-{:.nlu-block}
-```python
-import nlu
-nlu.load("en.map_entity.icd10cm_to_snomed.pipe").predict("""Put your text here.""")
-```
-
## Results
```bash
-Results
-
-
-Results
-
-
-
| | icd10cm_code | snomed_code |
|---:|:----------------------|:-----------------------------------------|
| 0 | R079 | N4289 | M62830 | 161972006 | 22035000 | 16410651000119105 |
-
-
-
-{:.model-param}
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-17-icd10cm_umls_mapping_en.md b/docs/_posts/C-K-Loan/2023-06-17-icd10cm_umls_mapping_en.md
index 869e432bd6..21c54cdf07 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-icd10cm_umls_mapping_en.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-icd10cm_umls_mapping_en.md
@@ -34,6 +34,7 @@ This pretrained pipeline maps ICD10CM codes to UMLS codes without using any text
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -58,73 +59,13 @@ nlu.load("en.icd10cm.umls.mapping").predict("""Put your text here.""")
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("icd10cm_umls_mapping", "en", "clinical/models")
-
-result = pipeline.fullAnnotate(['M8950', 'R822', 'R0901'])
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("icd10cm_umls_mapping", "en", "clinical/models")
-
-val result = pipeline.fullAnnotate(['M8950', 'R822', 'R0901'])
-```
-
-{:.nlu-block}
-```python
-import nlu
-nlu.load("en.icd10cm.umls.mapping").predict("""Put your text here.""")
-```
-
-
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-pipeline = PretrainedPipeline("icd10cm_umls_mapping", "en", "clinical/models")
-
-result = pipeline.fullAnnotate(['M8950', 'R822', 'R0901'])
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("icd10cm_umls_mapping", "en", "clinical/models")
-
-val result = pipeline.fullAnnotate(['M8950', 'R822', 'R0901'])
-```
-
-{:.nlu-block}
-```python
-import nlu
-nlu.load("en.icd10cm.umls.mapping").predict("""Put your text here.""")
-```
-
## Results
```bash
-Results
-
-
-Results
-
-
-
{'icd10cm': ['M89.50', 'R82.2', 'R09.01'],
'umls': ['C4721411', 'C0159076', 'C0004044']}
-
-
-
-{:.model-param}
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-17-icdo_snomed_mapping_en.md b/docs/_posts/C-K-Loan/2023-06-17-icdo_snomed_mapping_en.md
index 783cdd7ea2..a1b3283fc7 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-icdo_snomed_mapping_en.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-icdo_snomed_mapping_en.md
@@ -34,6 +34,7 @@ This pretrained pipeline is built on the top of `icdo_snomed_mapper` model.
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -58,74 +59,14 @@ nlu.load("en.map_entity.icdo_to_snomed.pipe").predict("""Put your text here.""")
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("icdo_snomed_mapping", "en", "clinical/models")
-
-result = pipeline.fullAnnotate(8120/1 8170/3 8380/3)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("icdo_snomed_mapping", "en", "clinical/models")
-
-val result = pipeline.fullAnnotate(8120/1 8170/3 8380/3)
-```
-
-{:.nlu-block}
-```python
-import nlu
-nlu.load("en.map_entity.icdo_to_snomed.pipe").predict("""Put your text here.""")
-```
-
-
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-pipeline = PretrainedPipeline("icdo_snomed_mapping", "en", "clinical/models")
-
-result = pipeline.fullAnnotate(8120/1 8170/3 8380/3)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("icdo_snomed_mapping", "en", "clinical/models")
-
-val result = pipeline.fullAnnotate(8120/1 8170/3 8380/3)
-```
-
-{:.nlu-block}
-```python
-import nlu
-nlu.load("en.map_entity.icdo_to_snomed.pipe").predict("""Put your text here.""")
-```
-
## Results
```bash
-Results
-
-
-Results
-
-
-
| | icdo_code | snomed_code |
|---:|:-------------------------|:-------------------------------|
| 0 | 8120/1 | 8170/3 | 8380/3 | 45083001 | 25370001 | 30289006 |
-
-
-
-{:.model-param}
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-17-jsl_ner_wip_clinical_pipeline_en.md b/docs/_posts/C-K-Loan/2023-06-17-jsl_ner_wip_clinical_pipeline_en.md
index 1be298566e..130a89b426 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-jsl_ner_wip_clinical_pipeline_en.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-jsl_ner_wip_clinical_pipeline_en.md
@@ -34,6 +34,7 @@ This pretrained pipeline is built on the top of [jsl_ner_wip_clinical](https://n
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -62,40 +63,11 @@ nlu.load("en.med_ner.jsl_wip_clinical.pipeline").predict("""The patient is a 21-
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("jsl_ner_wip_clinical_pipeline", "en", "clinical/models")
-
-text = '''The patient is a 21-day-old Caucasian male here for 2 days of congestion - mom has been suctioning yellow discharge from the patient's nares, plus she has noticed some mild problems with his breathing while feeding (but negative for any perioral cyanosis or retractions). One day ago, mom also noticed a tactile temperature and gave the patient Tylenol. Baby also has had some decreased p.o. intake. His normal breast-feeding is down from 20 minutes q.2h. to 5 to 10 minutes secondary to his respiratory congestion. He sleeps well, but has been more tired and has been fussy over the past 2 days. The parents noticed no improvement with albuterol treatments given in the ER. His urine output has also decreased; normally he has 8 to 10 wet and 5 dirty diapers per 24 hours, now he has down to 4 wet diapers per 24 hours. Mom denies any diarrhea. His bowel movements are yellow colored and soft in nature.'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("jsl_ner_wip_clinical_pipeline", "en", "clinical/models")
-
-val text = "The patient is a 21-day-old Caucasian male here for 2 days of congestion - mom has been suctioning yellow discharge from the patient's nares, plus she has noticed some mild problems with his breathing while feeding (but negative for any perioral cyanosis or retractions). One day ago, mom also noticed a tactile temperature and gave the patient Tylenol. Baby also has had some decreased p.o. intake. His normal breast-feeding is down from 20 minutes q.2h. to 5 to 10 minutes secondary to his respiratory congestion. He sleeps well, but has been more tired and has been fussy over the past 2 days. The parents noticed no improvement with albuterol treatments given in the ER. His urine output has also decreased; normally he has 8 to 10 wet and 5 dirty diapers per 24 hours, now he has down to 4 wet diapers per 24 hours. Mom denies any diarrhea. His bowel movements are yellow colored and soft in nature."
-
-val result = pipeline.fullAnnotate(text)
-```
-{:.nlu-block}
-```python
-import nlu
-nlu.load("en.med_ner.jsl_wip_clinical.pipeline").predict("""The patient is a 21-day-old Caucasian male here for 2 days of congestion - mom has been suctioning yellow discharge from the patient's nares, plus she has noticed some mild problems with his breathing while feeding (but negative for any perioral cyanosis or retractions). One day ago, mom also noticed a tactile temperature and gave the patient Tylenol. Baby also has had some decreased p.o. intake. His normal breast-feeding is down from 20 minutes q.2h. to 5 to 10 minutes secondary to his respiratory congestion. He sleeps well, but has been more tired and has been fussy over the past 2 days. The parents noticed no improvement with albuterol treatments given in the ER. His urine output has also decreased; normally he has 8 to 10 wet and 5 dirty diapers per 24 hours, now he has down to 4 wet diapers per 24 hours. Mom denies any diarrhea. His bowel movements are yellow colored and soft in nature.""")
-```
-
## Results
```bash
-Results
-
-
| | ner_chunk | begin | end | ner_label | confidence |
|---:|:------------------------------------------|--------:|------:|:-----------------------------|-------------:|
| 0 | 21-day-old | 17 | 26 | Age | 0.9984 |
@@ -123,9 +95,6 @@ Results
| 22 | 5 to 10 minutes | 459 | 473 | Duration | 0.152125 |
| 23 | his | 488 | 490 | Gender | 0.9987 |
| 24 | respiratory congestion | 492 | 513 | VS_Finding | 0.6458 |
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-17-jsl_ner_wip_greedy_biobert_pipeline_en.md b/docs/_posts/C-K-Loan/2023-06-17-jsl_ner_wip_greedy_biobert_pipeline_en.md
index e11d61ad57..37518f3ab2 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-jsl_ner_wip_greedy_biobert_pipeline_en.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-jsl_ner_wip_greedy_biobert_pipeline_en.md
@@ -34,6 +34,7 @@ This pretrained pipeline is built on the top of [jsl_ner_wip_greedy_biobert](htt
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -62,40 +63,11 @@ nlu.load("en.med_ner.greedy_wip_biobert.pipeline").predict("""The patient is a 2
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("jsl_ner_wip_greedy_biobert_pipeline", "en", "clinical/models")
-
-text = '''The patient is a 21-day-old Caucasian male here for 2 days of congestion - mom has been suctioning yellow discharge from the patient's nares, plus she has noticed some mild problems with his breathing while feeding (but negative for any perioral cyanosis or retractions). One day ago, mom also noticed a tactile temperature and gave the patient Tylenol. Baby also has had some decreased p.o. intake. His normal breast-feeding is down from 20 minutes q.2h. to 5 to 10 minutes secondary to his respiratory congestion. He sleeps well, but has been more tired and has been fussy over the past 2 days. The parents noticed no improvement with albuterol treatments given in the ER. His urine output has also decreased; normally he has 8 to 10 wet and 5 dirty diapers per 24 hours, now he has down to 4 wet diapers per 24 hours. Mom denies any diarrhea. His bowel movements are yellow colored and soft in nature.'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("jsl_ner_wip_greedy_biobert_pipeline", "en", "clinical/models")
-
-val text = "The patient is a 21-day-old Caucasian male here for 2 days of congestion - mom has been suctioning yellow discharge from the patient's nares, plus she has noticed some mild problems with his breathing while feeding (but negative for any perioral cyanosis or retractions). One day ago, mom also noticed a tactile temperature and gave the patient Tylenol. Baby also has had some decreased p.o. intake. His normal breast-feeding is down from 20 minutes q.2h. to 5 to 10 minutes secondary to his respiratory congestion. He sleeps well, but has been more tired and has been fussy over the past 2 days. The parents noticed no improvement with albuterol treatments given in the ER. His urine output has also decreased; normally he has 8 to 10 wet and 5 dirty diapers per 24 hours, now he has down to 4 wet diapers per 24 hours. Mom denies any diarrhea. His bowel movements are yellow colored and soft in nature."
-
-val result = pipeline.fullAnnotate(text)
-```
-{:.nlu-block}
-```python
-import nlu
-nlu.load("en.med_ner.greedy_wip_biobert.pipeline").predict("""The patient is a 21-day-old Caucasian male here for 2 days of congestion - mom has been suctioning yellow discharge from the patient's nares, plus she has noticed some mild problems with his breathing while feeding (but negative for any perioral cyanosis or retractions). One day ago, mom also noticed a tactile temperature and gave the patient Tylenol. Baby also has had some decreased p.o. intake. His normal breast-feeding is down from 20 minutes q.2h. to 5 to 10 minutes secondary to his respiratory congestion. He sleeps well, but has been more tired and has been fussy over the past 2 days. The parents noticed no improvement with albuterol treatments given in the ER. His urine output has also decreased; normally he has 8 to 10 wet and 5 dirty diapers per 24 hours, now he has down to 4 wet diapers per 24 hours. Mom denies any diarrhea. His bowel movements are yellow colored and soft in nature.""")
-```
-
## Results
```bash
-Results
-
-
| | ner_chunk | begin | end | ner_label | confidence |
|---:|:-----------------------------------------------|--------:|------:|:-----------------------------|-------------:|
| 0 | 21-day-old | 17 | 26 | Age | 1 |
@@ -123,9 +95,6 @@ Results
| 22 | He | 516 | 517 | Gender | 0.9998 |
| 23 | tired | 550 | 554 | Symptom | 0.8912 |
| 24 | fussy | 569 | 573 | Symptom | 0.9541 |
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-17-jsl_ner_wip_greedy_clinical_pipeline_en.md b/docs/_posts/C-K-Loan/2023-06-17-jsl_ner_wip_greedy_clinical_pipeline_en.md
index 5242f81a35..23bea0c9b4 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-jsl_ner_wip_greedy_clinical_pipeline_en.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-jsl_ner_wip_greedy_clinical_pipeline_en.md
@@ -34,6 +34,7 @@ This pretrained pipeline is built on the top of [jsl_ner_wip_greedy_clinical](ht
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -62,40 +63,10 @@ nlu.load("en.med_ner.wip_greedy_clinical.pipeline").predict("""The patient is a
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("jsl_ner_wip_greedy_clinical_pipeline", "en", "clinical/models")
-
-text = '''The patient is a 21-day-old Caucasian male here for 2 days of congestion - mom has been suctioning yellow discharge from the patient's nares, plus she has noticed some mild problems with his breathing while feeding (but negative for any perioral cyanosis or retractions). One day ago, mom also noticed a tactile temperature and gave the patient Tylenol. Baby also has had some decreased p.o. intake. His normal breast-feeding is down from 20 minutes q.2h. to 5 to 10 minutes secondary to his respiratory congestion. He sleeps well, but has been more tired and has been fussy over the past 2 days. The parents noticed no improvement with albuterol treatments given in the ER. His urine output has also decreased; normally he has 8 to 10 wet and 5 dirty diapers per 24 hours, now he has down to 4 wet diapers per 24 hours. Mom denies any diarrhea. His bowel movements are yellow colored and soft in nature..'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("jsl_ner_wip_greedy_clinical_pipeline", "en", "clinical/models")
-
-val text = "The patient is a 21-day-old Caucasian male here for 2 days of congestion - mom has been suctioning yellow discharge from the patient's nares, plus she has noticed some mild problems with his breathing while feeding (but negative for any perioral cyanosis or retractions). One day ago, mom also noticed a tactile temperature and gave the patient Tylenol. Baby also has had some decreased p.o. intake. His normal breast-feeding is down from 20 minutes q.2h. to 5 to 10 minutes secondary to his respiratory congestion. He sleeps well, but has been more tired and has been fussy over the past 2 days. The parents noticed no improvement with albuterol treatments given in the ER. His urine output has also decreased; normally he has 8 to 10 wet and 5 dirty diapers per 24 hours, now he has down to 4 wet diapers per 24 hours. Mom denies any diarrhea. His bowel movements are yellow colored and soft in nature.."
-
-val result = pipeline.fullAnnotate(text)
-```
-
-{:.nlu-block}
-```python
-import nlu
-nlu.load("en.med_ner.wip_greedy_clinical.pipeline").predict("""The patient is a 21-day-old Caucasian male here for 2 days of congestion - mom has been suctioning yellow discharge from the patient's nares, plus she has noticed some mild problems with his breathing while feeding (but negative for any perioral cyanosis or retractions). One day ago, mom also noticed a tactile temperature and gave the patient Tylenol. Baby also has had some decreased p.o. intake. His normal breast-feeding is down from 20 minutes q.2h. to 5 to 10 minutes secondary to his respiratory congestion. He sleeps well, but has been more tired and has been fussy over the past 2 days. The parents noticed no improvement with albuterol treatments given in the ER. His urine output has also decreased; normally he has 8 to 10 wet and 5 dirty diapers per 24 hours, now he has down to 4 wet diapers per 24 hours. Mom denies any diarrhea. His bowel movements are yellow colored and soft in nature..""")
-```
-
## Results
```bash
-Results
-
-
| | ner_chunks | begin | end | ner_label | confidence |
|---:|:-----------------------------------------------|--------:|------:|:-----------------------------|-------------:|
| 0 | 21-day-old | 17 | 26 | Age | 0.9817 |
@@ -123,9 +94,6 @@ Results
| 22 | his | 488 | 490 | Gender | 0.9904 |
| 23 | respiratory congestion | 492 | 513 | Symptom | 0.5294 |
| 24 | He | 516 | 517 | Gender | 0.9989 |
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-17-jsl_ner_wip_modifier_clinical_pipeline_en.md b/docs/_posts/C-K-Loan/2023-06-17-jsl_ner_wip_modifier_clinical_pipeline_en.md
index 5866ef572c..3f3ead4d62 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-jsl_ner_wip_modifier_clinical_pipeline_en.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-jsl_ner_wip_modifier_clinical_pipeline_en.md
@@ -34,6 +34,7 @@ This pretrained pipeline is built on the top of [jsl_ner_wip_modifier_clinical](
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -62,40 +63,11 @@ nlu.load("en.med_ner.wip_modifier_clinical.pipeline").predict("""The patient is
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("jsl_ner_wip_modifier_clinical_pipeline", "en", "clinical/models")
-
-text = '''The patient is a 21-day-old Caucasian male here for 2 days of congestion - mom has been suctioning yellow discharge from the patient's nares, plus she has noticed some mild problems with his breathing while feeding (but negative for any perioral cyanosis or retractions). One day ago, mom also noticed a tactile temperature and gave the patient Tylenol. Baby also has had some decreased p.o. intake. His normal breast-feeding is down from 20 minutes q.2h. to 5 to 10 minutes secondary to his respiratory congestion. He sleeps well, but has been more tired and has been fussy over the past 2 days. The parents noticed no improvement with albuterol treatments given in the ER. His urine output has also decreased; normally he has 8 to 10 wet and 5 dirty diapers per 24 hours, now he has down to 4 wet diapers per 24 hours. Mom denies any diarrhea. His bowel movements are yellow colored and soft in nature..'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("jsl_ner_wip_modifier_clinical_pipeline", "en", "clinical/models")
-
-val text = "The patient is a 21-day-old Caucasian male here for 2 days of congestion - mom has been suctioning yellow discharge from the patient's nares, plus she has noticed some mild problems with his breathing while feeding (but negative for any perioral cyanosis or retractions). One day ago, mom also noticed a tactile temperature and gave the patient Tylenol. Baby also has had some decreased p.o. intake. His normal breast-feeding is down from 20 minutes q.2h. to 5 to 10 minutes secondary to his respiratory congestion. He sleeps well, but has been more tired and has been fussy over the past 2 days. The parents noticed no improvement with albuterol treatments given in the ER. His urine output has also decreased; normally he has 8 to 10 wet and 5 dirty diapers per 24 hours, now he has down to 4 wet diapers per 24 hours. Mom denies any diarrhea. His bowel movements are yellow colored and soft in nature.."
-
-val result = pipeline.fullAnnotate(text)
-```
-{:.nlu-block}
-```python
-import nlu
-nlu.load("en.med_ner.wip_modifier_clinical.pipeline").predict("""The patient is a 21-day-old Caucasian male here for 2 days of congestion - mom has been suctioning yellow discharge from the patient's nares, plus she has noticed some mild problems with his breathing while feeding (but negative for any perioral cyanosis or retractions). One day ago, mom also noticed a tactile temperature and gave the patient Tylenol. Baby also has had some decreased p.o. intake. His normal breast-feeding is down from 20 minutes q.2h. to 5 to 10 minutes secondary to his respiratory congestion. He sleeps well, but has been more tired and has been fussy over the past 2 days. The parents noticed no improvement with albuterol treatments given in the ER. His urine output has also decreased; normally he has 8 to 10 wet and 5 dirty diapers per 24 hours, now he has down to 4 wet diapers per 24 hours. Mom denies any diarrhea. His bowel movements are yellow colored and soft in nature..""")
-```
-
## Results
```bash
-Results
-
-
| | ner_chunks | begin | end | ner_label | confidence |
|---:|:-----------------------------------------------|--------:|------:|:-----------------------------|-------------:|
| 0 | 21-day-old | 17 | 26 | Age | 0.9817 |
@@ -123,9 +95,6 @@ Results
| 22 | his | 488 | 490 | Gender | 0.9904 |
| 23 | respiratory congestion | 492 | 513 | Symptom | 0.5294 |
| 24 | He | 516 | 517 | Gender | 0.9989 |
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-17-jsl_rd_ner_wip_greedy_biobert_pipeline_en.md b/docs/_posts/C-K-Loan/2023-06-17-jsl_rd_ner_wip_greedy_biobert_pipeline_en.md
index 67af1fae49..cf03171d2e 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-jsl_rd_ner_wip_greedy_biobert_pipeline_en.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-jsl_rd_ner_wip_greedy_biobert_pipeline_en.md
@@ -34,6 +34,7 @@ This pretrained pipeline is built on the top of [jsl_rd_ner_wip_greedy_biobert](
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -62,40 +63,10 @@ nlu.load("en.med_ner.wip_greedy_biobert.pipeline").predict("""Bilateral breast u
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("jsl_rd_ner_wip_greedy_biobert_pipeline", "en", "clinical/models")
-
-text = '''Bilateral breast ultrasound was subsequently performed, which demonstrated an ovoid mass measuring approximately 0.5 x 0.5 x 0.4 cm in diameter located within the anteromedial aspect of the left shoulder. This mass demonstrates isoechoic echotexture to the adjacent muscle, with no evidence of internal color flow. This may represent benign fibrous tissue or a lipoma.'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("jsl_rd_ner_wip_greedy_biobert_pipeline", "en", "clinical/models")
-
-val text = "Bilateral breast ultrasound was subsequently performed, which demonstrated an ovoid mass measuring approximately 0.5 x 0.5 x 0.4 cm in diameter located within the anteromedial aspect of the left shoulder. This mass demonstrates isoechoic echotexture to the adjacent muscle, with no evidence of internal color flow. This may represent benign fibrous tissue or a lipoma."
-
-val result = pipeline.fullAnnotate(text)
-```
-
-{:.nlu-block}
-```python
-import nlu
-nlu.load("en.med_ner.wip_greedy_biobert.pipeline").predict("""Bilateral breast ultrasound was subsequently performed, which demonstrated an ovoid mass measuring approximately 0.5 x 0.5 x 0.4 cm in diameter located within the anteromedial aspect of the left shoulder. This mass demonstrates isoechoic echotexture to the adjacent muscle, with no evidence of internal color flow. This may represent benign fibrous tissue or a lipoma.""")
-```
-
## Results
```bash
-Results
-
-
| | ner_chunk | begin | end | ner_label | confidence |
|---:|:----------------------|--------:|------:|:--------------------------|-------------:|
| 0 | Bilateral | 0 | 8 | Direction | 0.9875 |
@@ -112,9 +83,6 @@ Results
| 11 | internal color flow | 294 | 312 | ImagingFindings | 0.3726 |
| 12 | benign fibrous tissue | 334 | 354 | ImagingFindings | 0.484533 |
| 13 | lipoma | 361 | 366 | Disease_Syndrome_Disorder | 0.8955 |
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-17-jsl_rd_ner_wip_greedy_clinical_pipeline_en.md b/docs/_posts/C-K-Loan/2023-06-17-jsl_rd_ner_wip_greedy_clinical_pipeline_en.md
index f1a4f80fb2..95df40eda5 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-jsl_rd_ner_wip_greedy_clinical_pipeline_en.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-jsl_rd_ner_wip_greedy_clinical_pipeline_en.md
@@ -34,6 +34,7 @@ This pretrained pipeline is built on the top of [jsl_rd_ner_wip_greedy_clinical]
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -62,40 +63,10 @@ nlu.load("en.med_ner.jsl_rd_wip_greedy.pipeline").predict("""The patient is a 21
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("jsl_rd_ner_wip_greedy_clinical_pipeline", "en", "clinical/models")
-
-text = '''The patient is a 21-day-old Caucasian male here for 2 days of congestion - mom has been suctioning yellow discharge from the patient's nares, plus she has noticed some mild problems with his breathing while feeding (but negative for any perioral cyanosis or retractions). One day ago, mom also noticed a tactile temperature and gave the patient Tylenol. Baby also has had some decreased p.o. intake. His normal breast-feeding is down from 20 minutes q.2h. to 5 to 10 minutes secondary to his respiratory congestion. He sleeps well, but has been more tired and has been fussy over the past 2 days. The parents noticed no improvement with albuterol treatments given in the ER. His urine output has also decreased; normally he has 8 to 10 wet and 5 dirty diapers per 24 hours, now he has down to 4 wet diapers per 24 hours. Mom denies any diarrhea. His bowel movements are yellow colored and soft in nature..'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("jsl_rd_ner_wip_greedy_clinical_pipeline", "en", "clinical/models")
-
-val text = "The patient is a 21-day-old Caucasian male here for 2 days of congestion - mom has been suctioning yellow discharge from the patient's nares, plus she has noticed some mild problems with his breathing while feeding (but negative for any perioral cyanosis or retractions). One day ago, mom also noticed a tactile temperature and gave the patient Tylenol. Baby also has had some decreased p.o. intake. His normal breast-feeding is down from 20 minutes q.2h. to 5 to 10 minutes secondary to his respiratory congestion. He sleeps well, but has been more tired and has been fussy over the past 2 days. The parents noticed no improvement with albuterol treatments given in the ER. His urine output has also decreased; normally he has 8 to 10 wet and 5 dirty diapers per 24 hours, now he has down to 4 wet diapers per 24 hours. Mom denies any diarrhea. His bowel movements are yellow colored and soft in nature.."
-
-val result = pipeline.fullAnnotate(text)
-```
-
-{:.nlu-block}
-```python
-import nlu
-nlu.load("en.med_ner.jsl_rd_wip_greedy.pipeline").predict("""The patient is a 21-day-old Caucasian male here for 2 days of congestion - mom has been suctioning yellow discharge from the patient's nares, plus she has noticed some mild problems with his breathing while feeding (but negative for any perioral cyanosis or retractions). One day ago, mom also noticed a tactile temperature and gave the patient Tylenol. Baby also has had some decreased p.o. intake. His normal breast-feeding is down from 20 minutes q.2h. to 5 to 10 minutes secondary to his respiratory congestion. He sleeps well, but has been more tired and has been fussy over the past 2 days. The parents noticed no improvement with albuterol treatments given in the ER. His urine output has also decreased; normally he has 8 to 10 wet and 5 dirty diapers per 24 hours, now he has down to 4 wet diapers per 24 hours. Mom denies any diarrhea. His bowel movements are yellow colored and soft in nature..""")
-```
-
## Results
```bash
-Results
-
-
| | ner_chunks | begin | end | ner_label | confidence |
|---:|:----------------------------|--------:|------:|:---------------|-------------:|
| 0 | 21-day-old | 17 | 26 | Age | 0.9913 |
@@ -123,9 +94,6 @@ Results
| 22 | respiratory congestion | 492 | 513 | Symptom | 0.25015 |
| 23 | He | 516 | 517 | Gender | 0.9998 |
| 24 | tired | 550 | 554 | Symptom | 0.8179 |
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-17-mesh_umls_mapping_en.md b/docs/_posts/C-K-Loan/2023-06-17-mesh_umls_mapping_en.md
index 28419dcf0f..0386b8cf61 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-mesh_umls_mapping_en.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-mesh_umls_mapping_en.md
@@ -34,6 +34,7 @@ This pretrained pipeline is built on the top of `mesh_umls_mapper` model.
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -58,74 +59,14 @@ nlu.load("en.mesh.umls.mapping").predict("""Put your text here.""")
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("mesh_umls_mapping", "en", "clinical/models")
-
-result = pipeline.fullAnnotate(C028491 D019326 C579867)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("mesh_umls_mapping", "en", "clinical/models")
-
-val result = pipeline.fullAnnotate(C028491 D019326 C579867)
-```
-
-{:.nlu-block}
-```python
-import nlu
-nlu.load("en.mesh.umls.mapping").predict("""Put your text here.""")
-```
-
-
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-pipeline = PretrainedPipeline("mesh_umls_mapping", "en", "clinical/models")
-
-result = pipeline.fullAnnotate(C028491 D019326 C579867)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("mesh_umls_mapping", "en", "clinical/models")
-
-val result = pipeline.fullAnnotate(C028491 D019326 C579867)
-```
-
-{:.nlu-block}
-```python
-import nlu
-nlu.load("en.mesh.umls.mapping").predict("""Put your text here.""")
-```
-
## Results
```bash
-Results
-
-
-Results
-
-
-
| | mesh_code | umls_code |
|---:|:----------------------------|:-------------------------------|
| 0 | C028491 | D019326 | C579867 | C0043904 | C0045010 | C3696376 |
-
-
-
-{:.model-param}
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-17-ner_abbreviation_clinical_pipeline_en.md b/docs/_posts/C-K-Loan/2023-06-17-ner_abbreviation_clinical_pipeline_en.md
index 1dc2e4758e..eb40e54214 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-ner_abbreviation_clinical_pipeline_en.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-ner_abbreviation_clinical_pipeline_en.md
@@ -34,6 +34,7 @@ This pretrained pipeline is built on the top of [ner_abbreviation_clinical](http
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -62,49 +63,17 @@ nlu.load("en.med_ner.clinical-abbreviation.pipeline").predict("""Gravid with est
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_abbreviation_clinical_pipeline", "en", "clinical/models")
-
-text = '''Gravid with estimated fetal weight of 6-6/12 pounds. LOWER EXTREMITIES: No edema. LABORATORY DATA: Laboratory tests include a CBC which is normal. Blood Type: AB positive. Rubella: Immune. VDRL: Nonreactive. Hepatitis C surface antigen: Negative. HIV: Negative. One-Hour Glucose: 117. Group B strep has not been done as yet.'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("ner_abbreviation_clinical_pipeline", "en", "clinical/models")
-
-val text = "Gravid with estimated fetal weight of 6-6/12 pounds. LOWER EXTREMITIES: No edema. LABORATORY DATA: Laboratory tests include a CBC which is normal. Blood Type: AB positive. Rubella: Immune. VDRL: Nonreactive. Hepatitis C surface antigen: Negative. HIV: Negative. One-Hour Glucose: 117. Group B strep has not been done as yet."
-
-val result = pipeline.fullAnnotate(text)
-```
-{:.nlu-block}
-```python
-import nlu
-nlu.load("en.med_ner.clinical-abbreviation.pipeline").predict("""Gravid with estimated fetal weight of 6-6/12 pounds. LOWER EXTREMITIES: No edema. LABORATORY DATA: Laboratory tests include a CBC which is normal. Blood Type: AB positive. Rubella: Immune. VDRL: Nonreactive. Hepatitis C surface antigen: Negative. HIV: Negative. One-Hour Glucose: 117. Group B strep has not been done as yet.""")
-```
-
## Results
```bash
-Results
-
-
| | ner_chunks | begin | end | ner_label | confidence |
|---:|:-------------|--------:|------:|:------------|-------------:|
| 0 | CBC | 126 | 128 | ABBR | 1 |
| 1 | AB | 159 | 160 | ABBR | 1 |
| 2 | VDRL | 189 | 192 | ABBR | 1 |
| 3 | HIV | 247 | 249 | ABBR | 1 |
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-17-ner_ade_biobert_pipeline_en.md b/docs/_posts/C-K-Loan/2023-06-17-ner_ade_biobert_pipeline_en.md
index 5049f9f3b7..829b5e97d7 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-ner_ade_biobert_pipeline_en.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-ner_ade_biobert_pipeline_en.md
@@ -34,6 +34,7 @@ This pretrained pipeline is built on the top of [ner_ade_biobert](https://nlp.jo
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -62,49 +63,17 @@ nlu.load("en.med_ner.biobert_ade.pipeline").predict("""Been taking Lipitor for 1
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_ade_biobert_pipeline", "en", "clinical/models")
-
-text = '''Been taking Lipitor for 15 years , have experienced severe fatigue a lot!!! . Doctor moved me to voltaren 2 months ago , so far , have only experienced cramps'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("ner_ade_biobert_pipeline", "en", "clinical/models")
-
-val text = "Been taking Lipitor for 15 years , have experienced severe fatigue a lot!!! . Doctor moved me to voltaren 2 months ago , so far , have only experienced cramps"
-
-val result = pipeline.fullAnnotate(text)
-```
-{:.nlu-block}
-```python
-import nlu
-nlu.load("en.med_ner.biobert_ade.pipeline").predict("""Been taking Lipitor for 15 years , have experienced severe fatigue a lot!!! . Doctor moved me to voltaren 2 months ago , so far , have only experienced cramps""")
-```
-
## Results
```bash
-Results
-
-
| | ner_chunk | begin | end | ner_label | confidence |
|---:|:---------------|--------:|------:|:------------|-------------:|
| 0 | Lipitor | 12 | 18 | DRUG | 0.9996 |
| 1 | severe fatigue | 52 | 65 | ADE | 0.7588 |
| 2 | voltaren | 97 | 104 | DRUG | 0.998 |
| 3 | cramps | 152 | 157 | ADE | 0.9258 |
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-17-ner_ade_clinical_pipeline_en.md b/docs/_posts/C-K-Loan/2023-06-17-ner_ade_clinical_pipeline_en.md
index 58f6cef354..d48cf7e8b8 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-ner_ade_clinical_pipeline_en.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-ner_ade_clinical_pipeline_en.md
@@ -34,6 +34,7 @@ This pretrained pipeline is built on the top of [ner_ade_clinical](https://nlp.j
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -62,49 +63,17 @@ nlu.load("en.med_ner.ade_clinical.pipeline").predict("""Been taking Lipitor for
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_ade_clinical_pipeline", "en", "clinical/models")
-
-text = '''Been taking Lipitor for 15 years , have experienced severe fatigue a lot!!! . Doctor moved me to voltaren 2 months ago , so far , have only experienced cramps.'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("ner_ade_clinical_pipeline", "en", "clinical/models")
-
-val text = "Been taking Lipitor for 15 years , have experienced severe fatigue a lot!!! . Doctor moved me to voltaren 2 months ago , so far , have only experienced cramps."
-
-val result = pipeline.fullAnnotate(text)
-```
-{:.nlu-block}
-```python
-import nlu
-nlu.load("en.med_ner.ade_clinical.pipeline").predict("""Been taking Lipitor for 15 years , have experienced severe fatigue a lot!!! . Doctor moved me to voltaren 2 months ago , so far , have only experienced cramps.""")
-```
-
## Results
```bash
-Results
-
-
| | ner_chunks | begin | end | ner_label | confidence |
|---:|:---------------|--------:|------:|:------------|-------------:|
| 0 | Lipitor | 12 | 18 | DRUG | 0.9969 |
| 1 | severe fatigue | 52 | 65 | ADE | 0.48995 |
| 2 | voltaren | 97 | 104 | DRUG | 0.9889 |
| 3 | cramps | 152 | 157 | ADE | 0.7472 |
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-17-ner_ade_clinicalbert_pipeline_en.md b/docs/_posts/C-K-Loan/2023-06-17-ner_ade_clinicalbert_pipeline_en.md
index 0ecd6f2b94..26e4c0e306 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-ner_ade_clinicalbert_pipeline_en.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-ner_ade_clinicalbert_pipeline_en.md
@@ -34,6 +34,7 @@ This pretrained pipeline is built on the top of [ner_ade_clinicalbert](https://n
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -62,49 +63,17 @@ nlu.load("en.med_ner.clinical_bert_ade.pipeline").predict("""Been taking Lipitor
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_ade_clinicalbert_pipeline", "en", "clinical/models")
-
-text = '''Been taking Lipitor for 15 years , have experienced severe fatigue a lot!!! . Doctor moved me to voltaren 2 months ago , so far , have only experienced cramps.'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("ner_ade_clinicalbert_pipeline", "en", "clinical/models")
-
-val text = "Been taking Lipitor for 15 years , have experienced severe fatigue a lot!!! . Doctor moved me to voltaren 2 months ago , so far , have only experienced cramps."
-
-val result = pipeline.fullAnnotate(text)
-```
-{:.nlu-block}
-```python
-import nlu
-nlu.load("en.med_ner.clinical_bert_ade.pipeline").predict("""Been taking Lipitor for 15 years , have experienced severe fatigue a lot!!! . Doctor moved me to voltaren 2 months ago , so far , have only experienced cramps.""")
-```
-
## Results
```bash
-Results
-
-
| | ner_chunks | begin | end | ner_label | confidence |
|---:|:---------------|--------:|------:|:------------|-------------:|
| 0 | Lipitor | 12 | 18 | DRUG | 0.9975 |
| 1 | severe fatigue | 52 | 65 | ADE | 0.7094 |
| 2 | voltaren | 97 | 104 | DRUG | 0.9202 |
| 3 | cramps | 152 | 157 | ADE | 0.5992 |
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-17-ner_ade_healthcare_pipeline_en.md b/docs/_posts/C-K-Loan/2023-06-17-ner_ade_healthcare_pipeline_en.md
index ff0bef2695..0fe0cf6daf 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-ner_ade_healthcare_pipeline_en.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-ner_ade_healthcare_pipeline_en.md
@@ -34,6 +34,7 @@ This pretrained pipeline is built on the top of [ner_ade_healthcare](https://nlp
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -62,49 +63,17 @@ nlu.load("en.med_ner.healthcare_ade.pipeline").predict("""Been taking Lipitor fo
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_ade_healthcare_pipeline", "en", "clinical/models")
-
-text = '''Been taking Lipitor for 15 years , have experienced severe fatigue a lot!!! . Doctor moved me to voltaren 2 months ago , so far , have only experienced cramps.'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("ner_ade_healthcare_pipeline", "en", "clinical/models")
-
-val text = "Been taking Lipitor for 15 years , have experienced severe fatigue a lot!!! . Doctor moved me to voltaren 2 months ago , so far , have only experienced cramps."
-
-val result = pipeline.fullAnnotate(text)
-```
-{:.nlu-block}
-```python
-import nlu
-nlu.load("en.med_ner.healthcare_ade.pipeline").predict("""Been taking Lipitor for 15 years , have experienced severe fatigue a lot!!! . Doctor moved me to voltaren 2 months ago , so far , have only experienced cramps.""")
-```
-
## Results
```bash
-Results
-
-
| | ner_chunks | begin | end | ner_label | confidence |
|---:|:---------------|--------:|------:|:------------|-------------:|
| 0 | Lipitor | 12 | 18 | DRUG | 0.998 |
| 1 | severe fatigue | 52 | 65 | ADE | 0.67055 |
| 2 | voltaren | 97 | 104 | DRUG | 0.9255 |
| 3 | cramps | 152 | 157 | ADE | 0.9392 |
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-17-ner_anatomy_biobert_pipeline_en.md b/docs/_posts/C-K-Loan/2023-06-17-ner_anatomy_biobert_pipeline_en.md
index f861974531..bef7b679fc 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-ner_anatomy_biobert_pipeline_en.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-ner_anatomy_biobert_pipeline_en.md
@@ -34,6 +34,7 @@ This pretrained pipeline is built on the top of [ner_anatomy_biobert](https://nl
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -80,58 +81,11 @@ Dermatologic: She has got redness along her right great toe, but no bleeding or
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_anatomy_biobert_pipeline", "en", "clinical/models")
-
-text = '''This is an 11-year-old female who comes in for two different things. 1. She was seen by the allergist. No allergies present, so she stopped her Allegra, but she is still real congested and does a lot of snorting. They do not notice a lot of snoring at night though, but she seems to be always like that. 2. On her right great toe, she has got some redness and erythema. Her skin is kind of peeling a little bit, but it has been like that for about a week and a half now.
-General: Well-developed female, in no acute distress, afebrile.
-HEENT: Sclerae and conjunctivae clear. Extraocular muscles intact. TMs clear. Nares patent. A little bit of swelling of the turbinates on the left. Oropharynx is essentially clear. Mucous membranes are moist.
-Neck: No lymphadenopathy.
-Chest: Clear.
-Abdomen: Positive bowel sounds and soft.
-Dermatologic: She has got redness along her right great toe, but no bleeding or oozing. Some dryness of her skin. Her toenails themselves are very short and even on her left foot and her left great toe the toenails are very short.'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("ner_anatomy_biobert_pipeline", "en", "clinical/models")
-
-val text = "This is an 11-year-old female who comes in for two different things. 1. She was seen by the allergist. No allergies present, so she stopped her Allegra, but she is still real congested and does a lot of snorting. They do not notice a lot of snoring at night though, but she seems to be always like that. 2. On her right great toe, she has got some redness and erythema. Her skin is kind of peeling a little bit, but it has been like that for about a week and a half now.
-General: Well-developed female, in no acute distress, afebrile.
-HEENT: Sclerae and conjunctivae clear. Extraocular muscles intact. TMs clear. Nares patent. A little bit of swelling of the turbinates on the left. Oropharynx is essentially clear. Mucous membranes are moist.
-Neck: No lymphadenopathy.
-Chest: Clear.
-Abdomen: Positive bowel sounds and soft.
-Dermatologic: She has got redness along her right great toe, but no bleeding or oozing. Some dryness of her skin. Her toenails themselves are very short and even on her left foot and her left great toe the toenails are very short."
-
-val result = pipeline.fullAnnotate(text)
-```
-{:.nlu-block}
-```python
-import nlu
-nlu.load("en.med_ner.anatomy_biobert.pipeline").predict("""This is an 11-year-old female who comes in for two different things. 1. She was seen by the allergist. No allergies present, so she stopped her Allegra, but she is still real congested and does a lot of snorting. They do not notice a lot of snoring at night though, but she seems to be always like that. 2. On her right great toe, she has got some redness and erythema. Her skin is kind of peeling a little bit, but it has been like that for about a week and a half now.
-General: Well-developed female, in no acute distress, afebrile.
-HEENT: Sclerae and conjunctivae clear. Extraocular muscles intact. TMs clear. Nares patent. A little bit of swelling of the turbinates on the left. Oropharynx is essentially clear. Mucous membranes are moist.
-Neck: No lymphadenopathy.
-Chest: Clear.
-Abdomen: Positive bowel sounds and soft.
-Dermatologic: She has got redness along her right great toe, but no bleeding or oozing. Some dryness of her skin. Her toenails themselves are very short and even on her left foot and her left great toe the toenails are very short.""")
-```
-
## Results
```bash
-Results
-
-
| | ner_chunk | begin | end | ner_label | confidence |
|---:|:-----------------|--------:|------:|:-----------------------|-------------:|
| 0 | right | 314 | 318 | Organism_subdivision | 0.9948 |
@@ -154,9 +108,6 @@ Results
| 17 | foot | 999 | 1002 | Organism_subdivision | 0.9831 |
| 18 | toe | 1023 | 1025 | Organism_subdivision | 0.9653 |
| 19 | toenails | 1031 | 1038 | Organism_subdivision | 0.9999 |
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-17-ner_anatomy_coarse_biobert_pipeline_en.md b/docs/_posts/C-K-Loan/2023-06-17-ner_anatomy_coarse_biobert_pipeline_en.md
index 98cf54ac07..2c8ac33305 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-ner_anatomy_coarse_biobert_pipeline_en.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-ner_anatomy_coarse_biobert_pipeline_en.md
@@ -34,6 +34,7 @@ This pretrained pipeline is built on the top of [ner_anatomy_coarse_biobert](htt
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -62,46 +63,14 @@ nlu.load("en.med_ner.anatomy_coarse_biobert.pipeline").predict("""content in the
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_anatomy_coarse_biobert_pipeline", "en", "clinical/models")
-
-text = '''content in the lung tissue'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("ner_anatomy_coarse_biobert_pipeline", "en", "clinical/models")
-
-val text = "content in the lung tissue"
-
-val result = pipeline.fullAnnotate(text)
-```
-{:.nlu-block}
-```python
-import nlu
-nlu.load("en.med_ner.anatomy_coarse_biobert.pipeline").predict("""content in the lung tissue""")
-```
-
## Results
```bash
-Results
-
-
| | ner_chunk | begin | end | ner_label | confidence |
|---:|:------------|--------:|------:|:------------|-------------:|
| 0 | lung tissue | 15 | 25 | Anatomy | 0.99155 |
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-17-ner_anatomy_coarse_pipeline_en.md b/docs/_posts/C-K-Loan/2023-06-17-ner_anatomy_coarse_pipeline_en.md
index f8d876ad75..b335b54704 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-ner_anatomy_coarse_pipeline_en.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-ner_anatomy_coarse_pipeline_en.md
@@ -34,6 +34,7 @@ This pretrained pipeline is built on the top of [ner_anatomy_coarse](https://nlp
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -62,46 +63,13 @@ nlu.load("en.med_ner.anatomy_coarse.pipeline").predict("""content in the lung ti
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_anatomy_coarse_pipeline", "en", "clinical/models")
-
-text = '''content in the lung tissue'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("ner_anatomy_coarse_pipeline", "en", "clinical/models")
-
-val text = "content in the lung tissue"
-
-val result = pipeline.fullAnnotate(text)
-```
-
-{:.nlu-block}
-```python
-import nlu
-nlu.load("en.med_ner.anatomy_coarse.pipeline").predict("""content in the lung tissue""")
-```
-
## Results
```bash
-Results
-
-
| | ner_chunks | begin | end | ner_label | confidence |
|---:|:-------------|--------:|------:|:------------|-------------:|
| 0 | lung tissue | 15 | 25 | Anatomy | 0.99655 |
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-17-ner_anatomy_pipeline_en.md b/docs/_posts/C-K-Loan/2023-06-17-ner_anatomy_pipeline_en.md
index 23c2a7514e..95bd554235 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-ner_anatomy_pipeline_en.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-ner_anatomy_pipeline_en.md
@@ -34,6 +34,7 @@ This pretrained pipeline is built on the top of [ner_anatomy](https://nlp.johnsn
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -80,58 +81,11 @@ Dermatologic: She has got redness along the lateral portion of her right great t
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_anatomy_pipeline", "en", "clinical/models")
-
-text = '''This is an 11-year-old female who comes in for two different things. 1. She was seen by the allergist. No allergies present, so she stopped her Allegra, but she is still real congested and does a lot of snorting. They do not notice a lot of snoring at night though, but she seems to be always like that. 2. On her right great toe, she has got some redness and erythema. Her skin is kind of peeling a little bit, but it has been like that for about a week and a half now.
-General: Well-developed female, in no acute distress, afebrile.
-HEENT: Sclerae and conjunctivae clear. Extraocular muscles intact. TMs clear. Nares patent. A little bit of swelling of the turbinates on the left. Oropharynx is essentially clear. Mucous membranes are moist.
-Neck: No lymphadenopathy.
-Chest: Clear.
-Abdomen: Positive bowel sounds and soft.
-Dermatologic: She has got redness along the lateral portion of her right great toe, but no bleeding or oozing. Some dryness of her skin. Her toenails themselves are very short and even on her left foot and her left great toe the toenails are very short.'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("ner_anatomy_pipeline", "en", "clinical/models")
-
-val text = "This is an 11-year-old female who comes in for two different things. 1. She was seen by the allergist. No allergies present, so she stopped her Allegra, but she is still real congested and does a lot of snorting. They do not notice a lot of snoring at night though, but she seems to be always like that. 2. On her right great toe, she has got some redness and erythema. Her skin is kind of peeling a little bit, but it has been like that for about a week and a half now.
-General: Well-developed female, in no acute distress, afebrile.
-HEENT: Sclerae and conjunctivae clear. Extraocular muscles intact. TMs clear. Nares patent. A little bit of swelling of the turbinates on the left. Oropharynx is essentially clear. Mucous membranes are moist.
-Neck: No lymphadenopathy.
-Chest: Clear.
-Abdomen: Positive bowel sounds and soft.
-Dermatologic: She has got redness along the lateral portion of her right great toe, but no bleeding or oozing. Some dryness of her skin. Her toenails themselves are very short and even on her left foot and her left great toe the toenails are very short."
-
-val result = pipeline.fullAnnotate(text)
-```
-{:.nlu-block}
-```python
-import nlu
-nlu.load("en.med_ner.anatom.pipeline").predict("""This is an 11-year-old female who comes in for two different things. 1. She was seen by the allergist. No allergies present, so she stopped her Allegra, but she is still real congested and does a lot of snorting. They do not notice a lot of snoring at night though, but she seems to be always like that. 2. On her right great toe, she has got some redness and erythema. Her skin is kind of peeling a little bit, but it has been like that for about a week and a half now.
-General: Well-developed female, in no acute distress, afebrile.
-HEENT: Sclerae and conjunctivae clear. Extraocular muscles intact. TMs clear. Nares patent. A little bit of swelling of the turbinates on the left. Oropharynx is essentially clear. Mucous membranes are moist.
-Neck: No lymphadenopathy.
-Chest: Clear.
-Abdomen: Positive bowel sounds and soft.
-Dermatologic: She has got redness along the lateral portion of her right great toe, but no bleeding or oozing. Some dryness of her skin. Her toenails themselves are very short and even on her left foot and her left great toe the toenails are very short.""")
-```
-
## Results
```bash
-Results
-
-
| | ner_chunks | begin | end | ner_label | confidence |
|---:|:--------------------|--------:|------:|:-----------------------|-------------:|
| 0 | skin | 374 | 377 | Organ | 1 |
@@ -140,9 +94,6 @@ Results
| 3 | Mucous membranes | 716 | 731 | Tissue | 0.90445 |
| 4 | bowel | 802 | 806 | Organ | 0.9648 |
| 5 | skin | 956 | 959 | Organ | 0.9999 |
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-17-ner_bacterial_species_pipeline_en.md b/docs/_posts/C-K-Loan/2023-06-17-ner_bacterial_species_pipeline_en.md
index 1586c94748..7889b96bfd 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-ner_bacterial_species_pipeline_en.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-ner_bacterial_species_pipeline_en.md
@@ -34,6 +34,7 @@ This pretrained pipeline is built on the top of [ner_bacterial_species](https://
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -62,48 +63,16 @@ nlu.load("en.med_ner.bacterial_species.pipeline").predict("""Based on these gene
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_bacterial_species_pipeline", "en", "clinical/models")
-
-text = '''Based on these genetic and phenotypic properties, we propose that strain SMSP (T) represents a novel species of the genus Methanoregula, for which we propose the name Methanoregula formicica sp. nov., with the type strain SMSP (T) (= NBRC 105244 (T) = DSM 22288 (T)).'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("ner_bacterial_species_pipeline", "en", "clinical/models")
-
-val text = "Based on these genetic and phenotypic properties, we propose that strain SMSP (T) represents a novel species of the genus Methanoregula, for which we propose the name Methanoregula formicica sp. nov., with the type strain SMSP (T) (= NBRC 105244 (T) = DSM 22288 (T))."
-
-val result = pipeline.fullAnnotate(text)
-```
-{:.nlu-block}
-```python
-import nlu
-nlu.load("en.med_ner.bacterial_species.pipeline").predict("""Based on these genetic and phenotypic properties, we propose that strain SMSP (T) represents a novel species of the genus Methanoregula, for which we propose the name Methanoregula formicica sp. nov., with the type strain SMSP (T) (= NBRC 105244 (T) = DSM 22288 (T)).""")
-```
-
## Results
```bash
-Results
-
-
| | ner_chunks | begin | end | ner_label | confidence |
|---:|:------------------------|--------:|------:|:------------|-------------:|
| 0 | SMSP (T) | 73 | 80 | SPECIES | 0.9725 |
| 1 | Methanoregula formicica | 167 | 189 | SPECIES | 0.97935 |
| 2 | SMSP (T) | 222 | 229 | SPECIES | 0.991975 |
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-17-ner_biomedical_bc2gm_pipeline_en.md b/docs/_posts/C-K-Loan/2023-06-17-ner_biomedical_bc2gm_pipeline_en.md
index ff196ff560..c55d6c6abc 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-ner_biomedical_bc2gm_pipeline_en.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-ner_biomedical_bc2gm_pipeline_en.md
@@ -34,6 +34,7 @@ This pretrained pipeline is built on the top of [ner_biomedical_bc2gm](https://n
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -62,48 +63,16 @@ nlu.load("en.med_ner.biomedical_bc2gm.pipeline").predict("""Immunohistochemical
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_biomedical_bc2gm_pipeline", "en", "clinical/models")
-
-text = '''Immunohistochemical staining was positive for S-100 in all 9 cases stained, positive for HMB-45 in 9 (90%) of 10, and negative for cytokeratin in all 9 cases in which myxoid melanoma remained in the block after previous sections.'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("ner_biomedical_bc2gm_pipeline", "en", "clinical/models")
-
-val text = "Immunohistochemical staining was positive for S-100 in all 9 cases stained, positive for HMB-45 in 9 (90%) of 10, and negative for cytokeratin in all 9 cases in which myxoid melanoma remained in the block after previous sections."
-
-val result = pipeline.fullAnnotate(text)
-```
-{:.nlu-block}
-```python
-import nlu
-nlu.load("en.med_ner.biomedical_bc2gm.pipeline").predict("""Immunohistochemical staining was positive for S-100 in all 9 cases stained, positive for HMB-45 in 9 (90%) of 10, and negative for cytokeratin in all 9 cases in which myxoid melanoma remained in the block after previous sections.""")
-```
-
## Results
```bash
-Results
-
-
| | ner_chunks | begin | end | ner_label | confidence |
|---:|:-------------|--------:|------:|:-------------|-------------:|
| 0 | S-100 | 46 | 50 | GENE_PROTEIN | 0.9911 |
| 1 | HMB-45 | 89 | 94 | GENE_PROTEIN | 0.9944 |
| 2 | cytokeratin | 131 | 141 | GENE_PROTEIN | 0.9951 |
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-17-ner_bionlp_biobert_pipeline_en.md b/docs/_posts/C-K-Loan/2023-06-17-ner_bionlp_biobert_pipeline_en.md
index 456f200b37..59d6808869 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-ner_bionlp_biobert_pipeline_en.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-ner_bionlp_biobert_pipeline_en.md
@@ -34,6 +34,7 @@ This pretrained pipeline is built on the top of [ner_bionlp_biobert](https://nlp
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -62,40 +63,11 @@ nlu.load("en.med_ner.bionlp_biobert.pipeline").predict("""Both the erbA IRES and
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_bionlp_biobert_pipeline", "en", "clinical/models")
-
-text = '''Both the erbA IRES and the erbA/myb virus constructs transformed erythroid cells after infection of bone marrow or blastoderm cultures. The erbA/myb IRES virus exhibited a 5-10-fold higher transformed colony forming efficiency than the erbA IRES virus in the blastoderm assay'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("ner_bionlp_biobert_pipeline", "en", "clinical/models")
-
-val text = "Both the erbA IRES and the erbA/myb virus constructs transformed erythroid cells after infection of bone marrow or blastoderm cultures. The erbA/myb IRES virus exhibited a 5-10-fold higher transformed colony forming efficiency than the erbA IRES virus in the blastoderm assay"
-
-val result = pipeline.fullAnnotate(text)
-```
-{:.nlu-block}
-```python
-import nlu
-nlu.load("en.med_ner.bionlp_biobert.pipeline").predict("""Both the erbA IRES and the erbA/myb virus constructs transformed erythroid cells after infection of bone marrow or blastoderm cultures. The erbA/myb IRES virus exhibited a 5-10-fold higher transformed colony forming efficiency than the erbA IRES virus in the blastoderm assay""")
-```
-
## Results
```bash
-Results
-
-
| | ner_chunk | begin | end | ner_label | confidence |
|---:|:--------------------|--------:|------:|:-----------------------|-------------:|
| 0 | erbA | 9 | 12 | Gene_or_gene_product | 1 |
@@ -109,9 +81,6 @@ Results
| 8 | erbA | 236 | 239 | Gene_or_gene_product | 0.9977 |
| 9 | IRES virus | 241 | 250 | Organism | 0.9911 |
| 10 | blastoderm | 259 | 268 | Cell | 0.9941 |
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-17-ner_bionlp_pipeline_en.md b/docs/_posts/C-K-Loan/2023-06-17-ner_bionlp_pipeline_en.md
index 3e4069f194..5ce50a806f 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-ner_bionlp_pipeline_en.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-ner_bionlp_pipeline_en.md
@@ -34,6 +34,7 @@ This pretrained pipeline is built on the top of [ner_bionlp](https://nlp.johnsno
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -62,40 +63,11 @@ nlu.load("en.med_ner.bionlp.pipeline").predict("""The human KCNJ9 (Kir 3.3, GIRK
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_bionlp_pipeline", "en", "clinical/models")
-
-text = '''The human KCNJ9 (Kir 3.3, GIRK3) is a member of the G-protein-activated inwardly rectifying potassium (GIRK) channel family. Here we describe the genomicorganization of the KCNJ9 locus on chromosome 1q21-23 as a candidate gene forType II diabetes mellitus in the Pima Indian population. The gene spansapproximately 7.6 kb and contains one noncoding and two coding exons separated byapproximately 2.2 and approximately 2.6 kb introns, respectively. We identified14 single nucleotide polymorphisms (SNPs), including one that predicts aVal366Ala substitution, and an 8 base-pair (bp) insertion/deletion. Ourexpression studies revealed the presence of the transcript in various humantissues including pancreas, and two major insulin-responsive tissues: fat andskeletal muscle. The characterization of the KCNJ9 gene should facilitate furtherstudies on the function of the KCNJ9 protein and allow evaluation of thepotential role of the locus in Type II diabetes.'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("ner_bionlp_pipeline", "en", "clinical/models")
-
-val text = "The human KCNJ9 (Kir 3.3, GIRK3) is a member of the G-protein-activated inwardly rectifying potassium (GIRK) channel family. Here we describe the genomicorganization of the KCNJ9 locus on chromosome 1q21-23 as a candidate gene forType II diabetes mellitus in the Pima Indian population. The gene spansapproximately 7.6 kb and contains one noncoding and two coding exons separated byapproximately 2.2 and approximately 2.6 kb introns, respectively. We identified14 single nucleotide polymorphisms (SNPs), including one that predicts aVal366Ala substitution, and an 8 base-pair (bp) insertion/deletion. Ourexpression studies revealed the presence of the transcript in various humantissues including pancreas, and two major insulin-responsive tissues: fat andskeletal muscle. The characterization of the KCNJ9 gene should facilitate furtherstudies on the function of the KCNJ9 protein and allow evaluation of thepotential role of the locus in Type II diabetes."
-
-val result = pipeline.fullAnnotate(text)
-```
-{:.nlu-block}
-```python
-import nlu
-nlu.load("en.med_ner.bionlp.pipeline").predict("""The human KCNJ9 (Kir 3.3, GIRK3) is a member of the G-protein-activated inwardly rectifying potassium (GIRK) channel family. Here we describe the genomicorganization of the KCNJ9 locus on chromosome 1q21-23 as a candidate gene forType II diabetes mellitus in the Pima Indian population. The gene spansapproximately 7.6 kb and contains one noncoding and two coding exons separated byapproximately 2.2 and approximately 2.6 kb introns, respectively. We identified14 single nucleotide polymorphisms (SNPs), including one that predicts aVal366Ala substitution, and an 8 base-pair (bp) insertion/deletion. Ourexpression studies revealed the presence of the transcript in various humantissues including pancreas, and two major insulin-responsive tissues: fat andskeletal muscle. The characterization of the KCNJ9 gene should facilitate furtherstudies on the function of the KCNJ9 protein and allow evaluation of thepotential role of the locus in Type II diabetes.""")
-```
-
## Results
```bash
-Results
-
-
| | ner_chunk | begin | end | ner_label | confidence |
|---:|:-----------------------|--------:|------:|:---------------------|-------------:|
| 0 | human | 4 | 8 | Organism | 0.9996 |
@@ -109,9 +81,6 @@ Results
| 8 | fat andskeletal muscle | 749 | 770 | Tissue | 0.955433 |
| 9 | KCNJ9 | 801 | 805 | Gene_or_gene_product | 0.9172 |
| 10 | Type II | 940 | 946 | Gene_or_gene_product | 0.98845 |
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-17-ner_cancer_genetics_pipeline_en.md b/docs/_posts/C-K-Loan/2023-06-17-ner_cancer_genetics_pipeline_en.md
index 6f81f69edb..2e3bf3a30d 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-ner_cancer_genetics_pipeline_en.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-ner_cancer_genetics_pipeline_en.md
@@ -34,6 +34,7 @@ This pretrained pipeline is built on the top of [ner_cancer_genetics](https://nl
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -62,39 +63,11 @@ nlu.load("en.med_ner.cancer_genetics.pipeline").predict("""The human KCNJ9 (Kir
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_cancer_genetics_pipeline", "en", "clinical/models")
-
-text = '''The human KCNJ9 (Kir 3.3, GIRK3) is a member of the G-protein-activated inwardly rectifying potassium (GIRK) channel family. Here we describe the genomicorganization of the KCNJ9 locus on chromosome 1q21-23 as a candidate gene forType II diabetes mellitus in the Pima Indian population. The gene spansapproximately 7.6 kb and contains one noncoding and two coding exons separated byapproximately 2.2 and approximately 2.6 kb introns, respectively. We identified14 single nucleotide polymorphisms (SNPs), including one that predicts aVal366Ala substitution, and an 8 base-pair (bp) insertion/deletion. Ourexpression studies revealed the presence of the transcript in various humantissues including pancreas, and two major insulin-responsive tissues: fat andskeletal muscle. The characterization of the KCNJ9 gene should facilitate furtherstudies on the function of the KCNJ9 protein and allow evaluation of thepotential role of the locus in Type II diabetes.'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-val pipeline = new PretrainedPipeline("ner_cancer_genetics_pipeline", "en", "clinical/models")
-
-val text = "The human KCNJ9 (Kir 3.3, GIRK3) is a member of the G-protein-activated inwardly rectifying potassium (GIRK) channel family. Here we describe the genomicorganization of the KCNJ9 locus on chromosome 1q21-23 as a candidate gene forType II diabetes mellitus in the Pima Indian population. The gene spansapproximately 7.6 kb and contains one noncoding and two coding exons separated byapproximately 2.2 and approximately 2.6 kb introns, respectively. We identified14 single nucleotide polymorphisms (SNPs), including one that predicts aVal366Ala substitution, and an 8 base-pair (bp) insertion/deletion. Ourexpression studies revealed the presence of the transcript in various humantissues including pancreas, and two major insulin-responsive tissues: fat andskeletal muscle. The characterization of the KCNJ9 gene should facilitate furtherstudies on the function of the KCNJ9 protein and allow evaluation of thepotential role of the locus in Type II diabetes."
-
-val result = pipeline.fullAnnotate(text)
-```
-
-{:.nlu-block}
-```python
-import nlu
-nlu.load("en.med_ner.cancer_genetics.pipeline").predict("""The human KCNJ9 (Kir 3.3, GIRK3) is a member of the G-protein-activated inwardly rectifying potassium (GIRK) channel family. Here we describe the genomicorganization of the KCNJ9 locus on chromosome 1q21-23 as a candidate gene forType II diabetes mellitus in the Pima Indian population. The gene spansapproximately 7.6 kb and contains one noncoding and two coding exons separated byapproximately 2.2 and approximately 2.6 kb introns, respectively. We identified14 single nucleotide polymorphisms (SNPs), including one that predicts aVal366Ala substitution, and an 8 base-pair (bp) insertion/deletion. Ourexpression studies revealed the presence of the transcript in various humantissues including pancreas, and two major insulin-responsive tissues: fat andskeletal muscle. The characterization of the KCNJ9 gene should facilitate furtherstudies on the function of the KCNJ9 protein and allow evaluation of thepotential role of the locus in Type II diabetes.""")
-```
-
## Results
```bash
-Results
-
| | ner_chunk | begin | end | ner_label | confidence |
|---:|:------------------------------------------------------------------------|--------:|------:|:------------|-------------:|
@@ -110,9 +83,6 @@ Results
| 9 | KCNJ9 gene | 801 | 810 | DNA | 0.95605 |
| 10 | KCNJ9 protein | 868 | 880 | protein | 0.844 |
| 11 | locus | 931 | 935 | DNA | 0.9685 |
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-17-ner_cellular_biobert_pipeline_en.md b/docs/_posts/C-K-Loan/2023-06-17-ner_cellular_biobert_pipeline_en.md
index 180263ffea..1d1e845674 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-ner_cellular_biobert_pipeline_en.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-ner_cellular_biobert_pipeline_en.md
@@ -34,6 +34,7 @@ This pretrained pipeline is built on the top of [ner_cellular_biobert](https://n
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -62,40 +63,11 @@ nlu.load("en.med_ner.cellular_biobert.pipeline").predict("""Detection of various
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_cellular_biobert_pipeline", "en", "clinical/models")
-
-text = '''Detection of various other intracellular signaling proteins is also described. Genetic characterization of transactivation of the human T-cell leukemia virus type 1 promoter: Binding of Tax to Tax-responsive element 1 is mediated by the cyclic AMP-responsive members of the CREB/ATF family of transcription factors. To achieve a better understanding of the mechanism of transactivation by Tax of human T-cell leukemia virus type 1 Tax-responsive element 1 (TRE-1), we developed a genetic approach with Saccharomyces cerevisiae. We constructed a yeast reporter strain containing the lacZ gene under the control of the CYC1 promoter associated with three copies of TRE-1. Expression of either the cyclic AMP response element-binding protein (CREB) or CREB fused to the GAL4 activation domain (GAD) in this strain did not modify the expression of the reporter gene. Tax alone was also inactive.'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("ner_cellular_biobert_pipeline", "en", "clinical/models")
-
-val text = "Detection of various other intracellular signaling proteins is also described. Genetic characterization of transactivation of the human T-cell leukemia virus type 1 promoter: Binding of Tax to Tax-responsive element 1 is mediated by the cyclic AMP-responsive members of the CREB/ATF family of transcription factors. To achieve a better understanding of the mechanism of transactivation by Tax of human T-cell leukemia virus type 1 Tax-responsive element 1 (TRE-1), we developed a genetic approach with Saccharomyces cerevisiae. We constructed a yeast reporter strain containing the lacZ gene under the control of the CYC1 promoter associated with three copies of TRE-1. Expression of either the cyclic AMP response element-binding protein (CREB) or CREB fused to the GAL4 activation domain (GAD) in this strain did not modify the expression of the reporter gene. Tax alone was also inactive."
-
-val result = pipeline.fullAnnotate(text)
-```
-{:.nlu-block}
-```python
-import nlu
-nlu.load("en.med_ner.cellular_biobert.pipeline").predict("""Detection of various other intracellular signaling proteins is also described. Genetic characterization of transactivation of the human T-cell leukemia virus type 1 promoter: Binding of Tax to Tax-responsive element 1 is mediated by the cyclic AMP-responsive members of the CREB/ATF family of transcription factors. To achieve a better understanding of the mechanism of transactivation by Tax of human T-cell leukemia virus type 1 Tax-responsive element 1 (TRE-1), we developed a genetic approach with Saccharomyces cerevisiae. We constructed a yeast reporter strain containing the lacZ gene under the control of the CYC1 promoter associated with three copies of TRE-1. Expression of either the cyclic AMP response element-binding protein (CREB) or CREB fused to the GAL4 activation domain (GAD) in this strain did not modify the expression of the reporter gene. Tax alone was also inactive.""")
-```
-
## Results
```bash
-Results
-
-
| | ner_chunk | begin | end | ner_label | confidence |
|---:|:--------------------------------------------|--------:|------:|:------------|-------------:|
| 0 | intracellular signaling proteins | 27 | 58 | protein | 0.673333 |
@@ -118,9 +90,6 @@ Results
| 17 | GAD | 791 | 793 | protein | 0.6432 |
| 18 | reporter gene | 848 | 860 | DNA | 0.61005 |
| 19 | Tax | 863 | 865 | protein | 0.99 |
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-17-ner_cellular_pipeline_en.md b/docs/_posts/C-K-Loan/2023-06-17-ner_cellular_pipeline_en.md
index d7af732d36..cf6104e050 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-ner_cellular_pipeline_en.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-ner_cellular_pipeline_en.md
@@ -34,6 +34,7 @@ This pretrained pipeline is built on the top of [ner_cellular](https://nlp.johns
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -62,40 +63,11 @@ nlu.load("en.med_ner.cellular.pipeline").predict("""Detection of various other i
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_cellular_pipeline", "en", "clinical/models")
-
-text = '''Detection of various other intracellular signaling proteins is also described. Genetic characterization of transactivation of the human T-cell leukemia virus type 1 promoter: Binding of Tax to Tax-responsive element 1 is mediated by the cyclic AMP-responsive members of the CREB/ATF family of transcription factors. To achieve a better understanding of the mechanism of transactivation by Tax of human T-cell leukemia virus type 1 Tax-responsive element 1 (TRE-1), we developed a genetic approach with Saccharomyces cerevisiae. We constructed a yeast reporter strain containing the lacZ gene under the control of the CYC1 promoter associated with three copies of TRE-1. Expression of either the cyclic AMP response element-binding protein (CREB) or CREB fused to the GAL4 activation domain (GAD) in this strain did not modify the expression of the reporter gene. Tax alone was also inactive.'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("ner_cellular_pipeline", "en", "clinical/models")
-
-val text = "Detection of various other intracellular signaling proteins is also described. Genetic characterization of transactivation of the human T-cell leukemia virus type 1 promoter: Binding of Tax to Tax-responsive element 1 is mediated by the cyclic AMP-responsive members of the CREB/ATF family of transcription factors. To achieve a better understanding of the mechanism of transactivation by Tax of human T-cell leukemia virus type 1 Tax-responsive element 1 (TRE-1), we developed a genetic approach with Saccharomyces cerevisiae. We constructed a yeast reporter strain containing the lacZ gene under the control of the CYC1 promoter associated with three copies of TRE-1. Expression of either the cyclic AMP response element-binding protein (CREB) or CREB fused to the GAL4 activation domain (GAD) in this strain did not modify the expression of the reporter gene. Tax alone was also inactive."
-
-val result = pipeline.fullAnnotate(text)
-```
-{:.nlu-block}
-```python
-import nlu
-nlu.load("en.med_ner.cellular.pipeline").predict("""Detection of various other intracellular signaling proteins is also described. Genetic characterization of transactivation of the human T-cell leukemia virus type 1 promoter: Binding of Tax to Tax-responsive element 1 is mediated by the cyclic AMP-responsive members of the CREB/ATF family of transcription factors. To achieve a better understanding of the mechanism of transactivation by Tax of human T-cell leukemia virus type 1 Tax-responsive element 1 (TRE-1), we developed a genetic approach with Saccharomyces cerevisiae. We constructed a yeast reporter strain containing the lacZ gene under the control of the CYC1 promoter associated with three copies of TRE-1. Expression of either the cyclic AMP response element-binding protein (CREB) or CREB fused to the GAL4 activation domain (GAD) in this strain did not modify the expression of the reporter gene. Tax alone was also inactive.""")
-```
-
## Results
```bash
-Results
-
-
| | ner_chunk | begin | end | ner_label | confidence |
|---:|:------------------------------------------------------------|--------:|------:|:------------|-------------:|
| 0 | intracellular signaling proteins | 27 | 58 | protein | 0.763367 |
@@ -118,9 +90,6 @@ Results
| 17 | GAD | 791 | 793 | protein | 0.9932 |
| 18 | reporter gene | 848 | 860 | DNA | 0.78715 |
| 19 | Tax | 863 | 865 | protein | 0.9986 |
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-17-ner_chemd_clinical_pipeline_en.md b/docs/_posts/C-K-Loan/2023-06-17-ner_chemd_clinical_pipeline_en.md
index 9de56acc69..8c1d6f3827 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-ner_chemd_clinical_pipeline_en.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-ner_chemd_clinical_pipeline_en.md
@@ -32,52 +32,10 @@ This pretrained pipeline is built on the top of [ner_chemd_clinical](https://nlp
## How to use
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_chemd_clinical_pipeline", "en", "clinical/models")
-
-text = '''Isolation, Structure Elucidation, and Iron-Binding Properties of Lystabactins, Siderophores Isolated from a Marine Pseudoalteromonas sp. The marine bacterium Pseudoalteromonas sp. S2B, isolated from the Gulf of Mexico after the Deepwater Horizon oil spill, was found to produce lystabactins A, B, and C (1-3), three new siderophores. The structures were elucidated through mass spectrometry, amino acid analysis, and NMR. The lystabactins are composed of serine (Ser), asparagine (Asn), two formylated/hydroxylated ornithines (FOHOrn), dihydroxy benzoic acid (Dhb), and a very unusual nonproteinogenic amino acid, 4,8-diamino-3-hydroxyoctanoic acid (LySta). The iron-binding properties of the compounds were investigated through a spectrophotometric competition.'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("ner_chemd_clinical_pipeline", "en", "clinical/models")
-
-val text = "Isolation, Structure Elucidation, and Iron-Binding Properties of Lystabactins, Siderophores Isolated from a Marine Pseudoalteromonas sp. The marine bacterium Pseudoalteromonas sp. S2B, isolated from the Gulf of Mexico after the Deepwater Horizon oil spill, was found to produce lystabactins A, B, and C (1-3), three new siderophores. The structures were elucidated through mass spectrometry, amino acid analysis, and NMR. The lystabactins are composed of serine (Ser), asparagine (Asn), two formylated/hydroxylated ornithines (FOHOrn), dihydroxy benzoic acid (Dhb), and a very unusual nonproteinogenic amino acid, 4,8-diamino-3-hydroxyoctanoic acid (LySta). The iron-binding properties of the compounds were investigated through a spectrophotometric competition."
-
-val result = pipeline.fullAnnotate(text)
-```
-
{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_chemd_clinical_pipeline", "en", "clinical/models")
-
-text = '''Isolation, Structure Elucidation, and Iron-Binding Properties of Lystabactins, Siderophores Isolated from a Marine Pseudoalteromonas sp. The marine bacterium Pseudoalteromonas sp. S2B, isolated from the Gulf of Mexico after the Deepwater Horizon oil spill, was found to produce lystabactins A, B, and C (1-3), three new siderophores. The structures were elucidated through mass spectrometry, amino acid analysis, and NMR. The lystabactins are composed of serine (Ser), asparagine (Asn), two formylated/hydroxylated ornithines (FOHOrn), dihydroxy benzoic acid (Dhb), and a very unusual nonproteinogenic amino acid, 4,8-diamino-3-hydroxyoctanoic acid (LySta). The iron-binding properties of the compounds were investigated through a spectrophotometric competition.'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("ner_chemd_clinical_pipeline", "en", "clinical/models")
-
-val text = "Isolation, Structure Elucidation, and Iron-Binding Properties of Lystabactins, Siderophores Isolated from a Marine Pseudoalteromonas sp. The marine bacterium Pseudoalteromonas sp. S2B, isolated from the Gulf of Mexico after the Deepwater Horizon oil spill, was found to produce lystabactins A, B, and C (1-3), three new siderophores. The structures were elucidated through mass spectrometry, amino acid analysis, and NMR. The lystabactins are composed of serine (Ser), asparagine (Asn), two formylated/hydroxylated ornithines (FOHOrn), dihydroxy benzoic acid (Dhb), and a very unusual nonproteinogenic amino acid, 4,8-diamino-3-hydroxyoctanoic acid (LySta). The iron-binding properties of the compounds were investigated through a spectrophotometric competition."
-
-val result = pipeline.fullAnnotate(text)
-```
-
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -112,12 +70,6 @@ result = pipeline.fullAnnotate(text)
## Results
```bash
-Results
-
-
-Results
-
-
| | ner_chunks | begin | end | ner_label | confidence |
|---:|:-----------------------------------|--------:|------:|:-------------|-------------:|
| 0 | Lystabactins | 65 | 76 | FAMILY | 0.9841 |
@@ -134,12 +86,6 @@ Results
| 11 | amino acid | 602 | 611 | FAMILY | 0.4204 |
| 12 | 4,8-diamino-3-hydroxyoctanoic acid | 614 | 647 | SYSTEMATIC | 0.9124 |
| 13 | LySta | 650 | 654 | ABBREVIATION | 0.9193 |
-
-
-{:.model-param}
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-17-ner_chemicals_pipeline_en.md b/docs/_posts/C-K-Loan/2023-06-17-ner_chemicals_pipeline_en.md
index a0e7622711..6aa6f91e40 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-ner_chemicals_pipeline_en.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-ner_chemicals_pipeline_en.md
@@ -34,6 +34,7 @@ This pretrained pipeline is built on the top of [ner_chemicals](https://nlp.john
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -62,40 +63,11 @@ nlu.load("en.med_ner.chemicals.pipeline").predict("""The results have shown that
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_chemicals_pipeline", "en", "clinical/models")
-
-text = '''The results have shown that the product p - choloroaniline is not a significant factor in chlorhexidine - digluconate associated erosive cystitis. A high percentage of kanamycin - colistin and povidone - iodine irrigations were associated with erosive cystitis.'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("ner_chemicals_pipeline", "en", "clinical/models")
-
-val text = "The results have shown that the product p - choloroaniline is not a significant factor in chlorhexidine - digluconate associated erosive cystitis. A high percentage of kanamycin - colistin and povidone - iodine irrigations were associated with erosive cystitis."
-
-val result = pipeline.fullAnnotate(text)
-```
-{:.nlu-block}
-```python
-import nlu
-nlu.load("en.med_ner.chemicals.pipeline").predict("""The results have shown that the product p - choloroaniline is not a significant factor in chlorhexidine - digluconate associated erosive cystitis. A high percentage of kanamycin - colistin and povidone - iodine irrigations were associated with erosive cystitis.""")
-```
-
## Results
```bash
-Results
-
-
| | ner_chunks | begin | end | ner_label | confidence |
|---:|:----------------------------|--------:|------:|:------------|-------------:|
| 0 | p - choloroaniline | 40 | 57 | CHEM | 0.935767 |
@@ -103,9 +75,6 @@ Results
| 2 | kanamycin | 168 | 176 | CHEM | 0.9824 |
| 3 | colistin | 180 | 187 | CHEM | 0.9911 |
| 4 | povidone - iodine | 193 | 209 | CHEM | 0.8111 |
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-17-ner_chemprot_biobert_pipeline_en.md b/docs/_posts/C-K-Loan/2023-06-17-ner_chemprot_biobert_pipeline_en.md
index f9b87559da..8e0cf17b33 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-ner_chemprot_biobert_pipeline_en.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-ner_chemprot_biobert_pipeline_en.md
@@ -34,6 +34,7 @@ This pretrained pipeline is built on the top of [ner_chemprot_biobert](https://n
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -62,40 +63,11 @@ nlu.load("en.med_ner.chemprot_biobert.pipeline").predict("""Keratinocyte growth
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_chemprot_biobert_pipeline", "en", "clinical/models")
-
-text = '''Keratinocyte growth factor and acidic fibroblast growth factor are mitogens for primary cultures of mammary epithelium.'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("ner_chemprot_biobert_pipeline", "en", "clinical/models")
-
-val text = "Keratinocyte growth factor and acidic fibroblast growth factor are mitogens for primary cultures of mammary epithelium."
-
-val result = pipeline.fullAnnotate(text)
-```
-{:.nlu-block}
-```python
-import nlu
-nlu.load("en.med_ner.chemprot_biobert.pipeline").predict("""Keratinocyte growth factor and acidic fibroblast growth factor are mitogens for primary cultures of mammary epithelium.""")
-```
-
## Results
```bash
-Results
-
-
| | ner_chunk | begin | end | ner_label | confidence |
|---:|:-------------|--------:|------:|:------------|-------------:|
| 0 | Keratinocyte | 0 | 11 | GENE-Y | 0.894 |
@@ -105,9 +77,6 @@ Results
| 4 | fibroblast | 38 | 47 | GENE-Y | 0.3905 |
| 5 | growth | 49 | 54 | GENE-Y | 0.7109 |
| 6 | factor | 56 | 61 | GENE-Y | 0.8693 |
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-17-ner_chemprot_clinical_pipeline_en.md b/docs/_posts/C-K-Loan/2023-06-17-ner_chemprot_clinical_pipeline_en.md
index 736b4ddb74..e3c0eac25f 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-ner_chemprot_clinical_pipeline_en.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-ner_chemprot_clinical_pipeline_en.md
@@ -34,6 +34,7 @@ This pretrained pipeline is built on the top of [ner_chemprot_clinical](https://
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -62,40 +63,11 @@ nlu.load("en.med_ner.chemprot_clinical.pipeline").predict("""Keratinocyte growth
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_chemprot_clinical_pipeline", "en", "clinical/models")
-
-text = '''Keratinocyte growth factor and acidic fibroblast growth factor are mitogens for primary cultures of mammary epithelium.'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("ner_chemprot_clinical_pipeline", "en", "clinical/models")
-
-val text = "Keratinocyte growth factor and acidic fibroblast growth factor are mitogens for primary cultures of mammary epithelium."
-
-val result = pipeline.fullAnnotate(text)
-```
-{:.nlu-block}
-```python
-import nlu
-nlu.load("en.med_ner.chemprot_clinical.pipeline").predict("""Keratinocyte growth factor and acidic fibroblast growth factor are mitogens for primary cultures of mammary epithelium.""")
-```
-
## Results
```bash
-Results
-
-
| | ner_chunk | begin | end | ner_label | confidence |
|---:|:-------------|--------:|------:|:------------|-------------:|
| 0 | Keratinocyte | 0 | 11 | GENE-Y | 0.7433 |
@@ -105,9 +77,6 @@ Results
| 4 | fibroblast | 38 | 47 | GENE-Y | 0.5111 |
| 5 | growth | 49 | 54 | GENE-Y | 0.4559 |
| 6 | factor | 56 | 61 | GENE-Y | 0.5213 |
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-17-ner_chexpert_pipeline_en.md b/docs/_posts/C-K-Loan/2023-06-17-ner_chexpert_pipeline_en.md
index ed2d5037d8..c51370b881 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-ner_chexpert_pipeline_en.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-ner_chexpert_pipeline_en.md
@@ -34,6 +34,7 @@ This pretrained pipeline is built on the top of [ner_chexpert](https://nlp.johns
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -62,40 +63,10 @@ nlu.load("en.med_ner.chexpert.pipeline").predict("""FINAL REPORT HISTORY : Chest
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_chexpert_pipeline", "en", "clinical/models")
-
-text = '''FINAL REPORT HISTORY : Chest tube leak , to assess for pneumothorax. FINDINGS : In comparison with study of ___ , the endotracheal tube and Swan - Ganz catheter have been removed . The left chest tube remains in place and there is no evidence of pneumothorax. Mild atelectatic changes are seen at the left base.'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("ner_chexpert_pipeline", "en", "clinical/models")
-
-val text = "FINAL REPORT HISTORY : Chest tube leak , to assess for pneumothorax. FINDINGS : In comparison with study of ___ , the endotracheal tube and Swan - Ganz catheter have been removed . The left chest tube remains in place and there is no evidence of pneumothorax. Mild atelectatic changes are seen at the left base."
-
-val result = pipeline.fullAnnotate(text)
-```
-
-{:.nlu-block}
-```python
-import nlu
-nlu.load("en.med_ner.chexpert.pipeline").predict("""FINAL REPORT HISTORY : Chest tube leak , to assess for pneumothorax. FINDINGS : In comparison with study of ___ , the endotracheal tube and Swan - Ganz catheter have been removed . The left chest tube remains in place and there is no evidence of pneumothorax. Mild atelectatic changes are seen at the left base.""")
-```
-
## Results
```bash
-Results
-
-
| | ner_chunks | begin | end | ner_label | confidence |
|---:|:-------------|--------:|------:|:------------|-------------:|
| 0 | endotracheal | 118 | 129 | OBS | 0.9881 |
@@ -112,9 +83,6 @@ Results
| 11 | changes | 277 | 283 | OBS | 0.9984 |
| 12 | left | 301 | 304 | ANAT | 0.9999 |
| 13 | base | 306 | 309 | ANAT | 0.9999 |
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-17-ner_clinical_bert_pipeline_ro.md b/docs/_posts/C-K-Loan/2023-06-17-ner_clinical_bert_pipeline_ro.md
index 4bd986770b..7bd253102d 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-ner_clinical_bert_pipeline_ro.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-ner_clinical_bert_pipeline_ro.md
@@ -32,52 +32,10 @@ This pretrained pipeline is built on the top of [ner_clinical_bert](https://nlp.
## How to use
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_clinical_bert_pipeline", "ro", "clinical/models")
-
-text = '''Solicitare: Angio CT cardio-toracic Dg. de trimitere Atrezie de valva pulmonara. Hipoplazie VS. Atrezie VAV stang. Anastomoza Glenn. Sp. Tromboza la nivelul anastomozei. Trimis de: Sectia Clinica Cardiologie (dr. Sue T.) Procedura Aparat GE Revolution HD. Branula albastra montata la nivelul membrului superior drept. Scout. Se administreaza 30 ml Iomeron 350 cu flux 2.2 ml/s, urmate de 20 ml ser fiziologic cu acelasi flux. Se efectueaza o examinare angio-CT cardiotoracica cu achizitii secventiale prospective la o frecventa cardiaca medie de 100/min.'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("ner_clinical_bert_pipeline", "ro", "clinical/models")
-
-val text = "Solicitare: Angio CT cardio-toracic Dg. de trimitere Atrezie de valva pulmonara. Hipoplazie VS. Atrezie VAV stang. Anastomoza Glenn. Sp. Tromboza la nivelul anastomozei. Trimis de: Sectia Clinica Cardiologie (dr. Sue T.) Procedura Aparat GE Revolution HD. Branula albastra montata la nivelul membrului superior drept. Scout. Se administreaza 30 ml Iomeron 350 cu flux 2.2 ml/s, urmate de 20 ml ser fiziologic cu acelasi flux. Se efectueaza o examinare angio-CT cardiotoracica cu achizitii secventiale prospective la o frecventa cardiaca medie de 100/min."
-
-val result = pipeline.fullAnnotate(text)
-```
-
{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-pipeline = PretrainedPipeline("ner_clinical_bert_pipeline", "ro", "clinical/models")
-
-text = '''Solicitare: Angio CT cardio-toracic Dg. de trimitere Atrezie de valva pulmonara. Hipoplazie VS. Atrezie VAV stang. Anastomoza Glenn. Sp. Tromboza la nivelul anastomozei. Trimis de: Sectia Clinica Cardiologie (dr. Sue T.) Procedura Aparat GE Revolution HD. Branula albastra montata la nivelul membrului superior drept. Scout. Se administreaza 30 ml Iomeron 350 cu flux 2.2 ml/s, urmate de 20 ml ser fiziologic cu acelasi flux. Se efectueaza o examinare angio-CT cardiotoracica cu achizitii secventiale prospective la o frecventa cardiaca medie de 100/min.'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("ner_clinical_bert_pipeline", "ro", "clinical/models")
-
-val text = "Solicitare: Angio CT cardio-toracic Dg. de trimitere Atrezie de valva pulmonara. Hipoplazie VS. Atrezie VAV stang. Anastomoza Glenn. Sp. Tromboza la nivelul anastomozei. Trimis de: Sectia Clinica Cardiologie (dr. Sue T.) Procedura Aparat GE Revolution HD. Branula albastra montata la nivelul membrului superior drept. Scout. Se administreaza 30 ml Iomeron 350 cu flux 2.2 ml/s, urmate de 20 ml ser fiziologic cu acelasi flux. Se efectueaza o examinare angio-CT cardiotoracica cu achizitii secventiale prospective la o frecventa cardiaca medie de 100/min."
-
-val result = pipeline.fullAnnotate(text)
-```
-
-
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -112,12 +70,6 @@ result = pipeline.fullAnnotate(text)
## Results
```bash
-Results
-
-
-Results
-
-bass
| | ner_chunks | begin | end | ner_label | confidence |
|---:|:----------------------------------|--------:|------:|:--------------------------|-------------:|
| 0 | Angio CT | 12 | 19 | Imaging_Test | 0.96415 |
@@ -144,12 +96,6 @@ bass
| 21 | cardiotoracica | 461 | 474 | Body_Part | 0.9344 |
| 22 | achizitii secventiale prospective | 479 | 511 | Imaging_Technique | 0.966833 |
| 23 | 100/min | 546 | 552 | Pulse | 0.9128 |
-
-
-{:.model-param}
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-17-ner_clinical_biobert_pipeline_en.md b/docs/_posts/C-K-Loan/2023-06-17-ner_clinical_biobert_pipeline_en.md
index 6df1a1f2dd..a84e1a593a 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-ner_clinical_biobert_pipeline_en.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-ner_clinical_biobert_pipeline_en.md
@@ -34,6 +34,7 @@ This pretrained pipeline is built on the top of [ner_clinical_biobert](https://n
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -62,40 +63,11 @@ nlu.load("en.med_ner.clinical_biobert.pipeline").predict("""The patient is a 21-
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_clinical_biobert_pipeline", "en", "clinical/models")
-
-text = '''The patient is a 21-day-old Caucasian male here for 2 days of congestion - mom has been suctioning yellow discharge from the patient's nares, plus she has noticed some mild problems with his breathing while feeding (but negative for any perioral cyanosis or retractions). One day ago, mom also noticed a tactile temperature and gave the patient Tylenol. Baby also has had some decreased p.o. intake. His normal breast-feeding is down from 20 minutes q.2h. to 5 to 10 minutes secondary to his respiratory congestion. He sleeps well, but has been more tired and has been fussy over the past 2 days. The parents noticed no improvement with albuterol treatments given in the ER. His urine output has also decreased; normally he has 8 to 10 wet and 5 dirty diapers per 24 hours, now he has down to 4 wet diapers per 24 hours. Mom denies any diarrhea. His bowel movements are yellow colored and soft in nature.'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("ner_clinical_biobert_pipeline", "en", "clinical/models")
-
-val text = "The patient is a 21-day-old Caucasian male here for 2 days of congestion - mom has been suctioning yellow discharge from the patient's nares, plus she has noticed some mild problems with his breathing while feeding (but negative for any perioral cyanosis or retractions). One day ago, mom also noticed a tactile temperature and gave the patient Tylenol. Baby also has had some decreased p.o. intake. His normal breast-feeding is down from 20 minutes q.2h. to 5 to 10 minutes secondary to his respiratory congestion. He sleeps well, but has been more tired and has been fussy over the past 2 days. The parents noticed no improvement with albuterol treatments given in the ER. His urine output has also decreased; normally he has 8 to 10 wet and 5 dirty diapers per 24 hours, now he has down to 4 wet diapers per 24 hours. Mom denies any diarrhea. His bowel movements are yellow colored and soft in nature."
-
-val result = pipeline.fullAnnotate(text)
-```
-{:.nlu-block}
-```python
-import nlu
-nlu.load("en.med_ner.clinical_biobert.pipeline").predict("""The patient is a 21-day-old Caucasian male here for 2 days of congestion - mom has been suctioning yellow discharge from the patient's nares, plus she has noticed some mild problems with his breathing while feeding (but negative for any perioral cyanosis or retractions). One day ago, mom also noticed a tactile temperature and gave the patient Tylenol. Baby also has had some decreased p.o. intake. His normal breast-feeding is down from 20 minutes q.2h. to 5 to 10 minutes secondary to his respiratory congestion. He sleeps well, but has been more tired and has been fussy over the past 2 days. The parents noticed no improvement with albuterol treatments given in the ER. His urine output has also decreased; normally he has 8 to 10 wet and 5 dirty diapers per 24 hours, now he has down to 4 wet diapers per 24 hours. Mom denies any diarrhea. His bowel movements are yellow colored and soft in nature.""")
-```
-
## Results
```bash
-Results
-
-
| | ner_chunk | begin | end | ner_label | confidence |
|---:|:----------------------------------------------------|--------:|------:|:------------|-------------:|
| 0 | congestion | 62 | 71 | PROBLEM | 0.5069 |
@@ -112,9 +84,6 @@ Results
| 11 | albuterol treatments | 637 | 656 | TREATMENT | 0.8917 |
| 12 | His urine output | 675 | 690 | TEST | 0.7114 |
| 13 | any diarrhea | 832 | 843 | PROBLEM | 0.73595 |
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-17-ner_clinical_large_pipeline_en.md b/docs/_posts/C-K-Loan/2023-06-17-ner_clinical_large_pipeline_en.md
index b56d06cf79..9a977cf773 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-ner_clinical_large_pipeline_en.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-ner_clinical_large_pipeline_en.md
@@ -34,6 +34,7 @@ This pretrained pipeline is built on the top of [ner_clinical_large](https://nlp
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -62,40 +63,11 @@ nlu.load("en.med_ner.clinical_large.pipeline").predict("""The human KCNJ9 (Kir 3
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_clinical_large_pipeline", "en", "clinical/models")
-
-text = '''The human KCNJ9 (Kir 3.3, GIRK3) is a member of the G-protein-activated inwardly rectifying potassium (GIRK) channel family. Here we describe the genomicorganization of the KCNJ9 locus on chromosome 1q21-23 as a candidate gene forType II diabetes mellitus in the Pima Indian population. The gene spansapproximately 7.6 kb and contains one noncoding and two coding exons separated byapproximately 2.2 and approximately 2.6 kb introns, respectively. We identified14 single nucleotide polymorphisms (SNPs), including one that predicts aVal366Ala substitution, and an 8 base-pair (bp) insertion/deletion. Ourexpression studies revealed the presence of the transcript in various humantissues including pancreas, and two major insulin-responsive tissues: fat andskeletal muscle. The characterization of the KCNJ9 gene should facilitate furtherstudies on the function of the KCNJ9 protein and allow evaluation of thepotential role of the locus in Type II diabetes. BACKGROUND: At present, it is one of the most important issues for the treatment of breast cancer to develop the standard therapy for patients previously treated with anthracyclines and taxanes.'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("ner_clinical_large_pipeline", "en", "clinical/models")
-
-val text = "The human KCNJ9 (Kir 3.3, GIRK3) is a member of the G-protein-activated inwardly rectifying potassium (GIRK) channel family. Here we describe the genomicorganization of the KCNJ9 locus on chromosome 1q21-23 as a candidate gene forType II diabetes mellitus in the Pima Indian population. The gene spansapproximately 7.6 kb and contains one noncoding and two coding exons separated byapproximately 2.2 and approximately 2.6 kb introns, respectively. We identified14 single nucleotide polymorphisms (SNPs), including one that predicts aVal366Ala substitution, and an 8 base-pair (bp) insertion/deletion. Ourexpression studies revealed the presence of the transcript in various humantissues including pancreas, and two major insulin-responsive tissues: fat andskeletal muscle. The characterization of the KCNJ9 gene should facilitate furtherstudies on the function of the KCNJ9 protein and allow evaluation of thepotential role of the locus in Type II diabetes. BACKGROUND: At present, it is one of the most important issues for the treatment of breast cancer to develop the standard therapy for patients previously treated with anthracyclines and taxanes."
-
-val result = pipeline.fullAnnotate(text)
-```
-{:.nlu-block}
-```python
-import nlu
-nlu.load("en.med_ner.clinical_large.pipeline").predict("""The human KCNJ9 (Kir 3.3, GIRK3) is a member of the G-protein-activated inwardly rectifying potassium (GIRK) channel family. Here we describe the genomicorganization of the KCNJ9 locus on chromosome 1q21-23 as a candidate gene forType II diabetes mellitus in the Pima Indian population. The gene spansapproximately 7.6 kb and contains one noncoding and two coding exons separated byapproximately 2.2 and approximately 2.6 kb introns, respectively. We identified14 single nucleotide polymorphisms (SNPs), including one that predicts aVal366Ala substitution, and an 8 base-pair (bp) insertion/deletion. Ourexpression studies revealed the presence of the transcript in various humantissues including pancreas, and two major insulin-responsive tissues: fat andskeletal muscle. The characterization of the KCNJ9 gene should facilitate furtherstudies on the function of the KCNJ9 protein and allow evaluation of thepotential role of the locus in Type II diabetes. BACKGROUND: At present, it is one of the most important issues for the treatment of breast cancer to develop the standard therapy for patients previously treated with anthracyclines and taxanes.""")
-```
-
## Results
```bash
-Results
-
-
| | ner_chunk | begin | end | ner_label | confidence |
|---:|:------------------------------------------------------------|--------:|------:|:------------|-------------:|
| 0 | the G-protein-activated inwardly rectifying potassium (GIRK | 48 | 106 | TREATMENT | 0.6926 |
@@ -118,9 +90,6 @@ Results
| 17 | the standard therapy | 1067 | 1086 | TREATMENT | 0.757767 |
| 18 | anthracyclines | 1125 | 1138 | TREATMENT | 0.9999 |
| 19 | taxanes | 1144 | 1150 | TREATMENT | 0.9999 |
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-17-ner_clinical_pipeline_en.md b/docs/_posts/C-K-Loan/2023-06-17-ner_clinical_pipeline_en.md
index 237f3742f6..aded43e25a 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-ner_clinical_pipeline_en.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-ner_clinical_pipeline_en.md
@@ -34,6 +34,7 @@ This pretrained pipeline is built on the top of [ner_clinical](https://nlp.johns
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -62,40 +63,10 @@ nlu.load("en.med_ner.clinical.pipeline").predict("""The human KCNJ9 (Kir 3.3, GI
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_clinical_pipeline", "en", "clinical/models")
-
-text = '''The human KCNJ9 (Kir 3.3, GIRK3) is a member of the G-protein-activated inwardly rectifying potassium (GIRK) channel family. Here we describe the genomicorganization of the KCNJ9 locus on chromosome 1q21-23 as a candidate gene forType II diabetes mellitus in the Pima Indian population. The gene spansapproximately 7.6 kb and contains one noncoding and two coding exons separated byapproximately 2.2 and approximately 2.6 kb introns, respectively. We identified14 single nucleotide polymorphisms (SNPs), including one that predicts aVal366Ala substitution, and an 8 base-pair (bp) insertion/deletion. Ourexpression studies revealed the presence of the transcript in various humantissues including pancreas, and two major insulin-responsive tissues: fat andskeletal muscle. The characterization of the KCNJ9 gene should facilitate furtherstudies on the function of the KCNJ9 protein and allow evaluation of thepotential role of the locus in Type II diabetes. BACKGROUND: At present, it is one of the most important issues for the treatment of breast cancer to develop the standard therapy for patients previously treated with anthracyclines and taxanes.'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("ner_clinical_pipeline", "en", "clinical/models")
-
-val text = "The human KCNJ9 (Kir 3.3, GIRK3) is a member of the G-protein-activated inwardly rectifying potassium (GIRK) channel family. Here we describe the genomicorganization of the KCNJ9 locus on chromosome 1q21-23 as a candidate gene forType II diabetes mellitus in the Pima Indian population. The gene spansapproximately 7.6 kb and contains one noncoding and two coding exons separated byapproximately 2.2 and approximately 2.6 kb introns, respectively. We identified14 single nucleotide polymorphisms (SNPs), including one that predicts aVal366Ala substitution, and an 8 base-pair (bp) insertion/deletion. Ourexpression studies revealed the presence of the transcript in various humantissues including pancreas, and two major insulin-responsive tissues: fat andskeletal muscle. The characterization of the KCNJ9 gene should facilitate furtherstudies on the function of the KCNJ9 protein and allow evaluation of thepotential role of the locus in Type II diabetes. BACKGROUND: At present, it is one of the most important issues for the treatment of breast cancer to develop the standard therapy for patients previously treated with anthracyclines and taxanes."
-
-val result = pipeline.fullAnnotate(text)
-```
-
-{:.nlu-block}
-```python
-import nlu
-nlu.load("en.med_ner.clinical.pipeline").predict("""The human KCNJ9 (Kir 3.3, GIRK3) is a member of the G-protein-activated inwardly rectifying potassium (GIRK) channel family. Here we describe the genomicorganization of the KCNJ9 locus on chromosome 1q21-23 as a candidate gene forType II diabetes mellitus in the Pima Indian population. The gene spansapproximately 7.6 kb and contains one noncoding and two coding exons separated byapproximately 2.2 and approximately 2.6 kb introns, respectively. We identified14 single nucleotide polymorphisms (SNPs), including one that predicts aVal366Ala substitution, and an 8 base-pair (bp) insertion/deletion. Ourexpression studies revealed the presence of the transcript in various humantissues including pancreas, and two major insulin-responsive tissues: fat andskeletal muscle. The characterization of the KCNJ9 gene should facilitate furtherstudies on the function of the KCNJ9 protein and allow evaluation of thepotential role of the locus in Type II diabetes. BACKGROUND: At present, it is one of the most important issues for the treatment of breast cancer to develop the standard therapy for patients previously treated with anthracyclines and taxanes.""")
-```
-
## Results
```bash
-Results
-
-
| | ner_chunk | begin | end | ner_label | confidence |
|---:|:------------------------------------------------------------|--------:|------:|:------------|-------------:|
| 0 | the G-protein-activated inwardly rectifying potassium (GIRK | 48 | 106 | TREATMENT | 0.6926 |
@@ -118,9 +89,6 @@ Results
| 17 | the standard therapy | 1067 | 1086 | TREATMENT | 0.757767 |
| 18 | anthracyclines | 1125 | 1138 | TREATMENT | 0.9999 |
| 19 | taxanes | 1144 | 1150 | TREATMENT | 0.9999 |
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-17-ner_clinical_pipeline_ro.md b/docs/_posts/C-K-Loan/2023-06-17-ner_clinical_pipeline_ro.md
index f513967008..25a5ac24f7 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-ner_clinical_pipeline_ro.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-ner_clinical_pipeline_ro.md
@@ -32,52 +32,11 @@ This pretrained pipeline is built on the top of [ner_clinical](https://nlp.johns
## How to use
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_clinical_pipeline", "ro", "clinical/models")
-
-text = ''' Solicitare: Angio CT cardio-toracic Dg. de trimitere Atrezie de valva pulmonara. Hipoplazie VS. Atrezie VAV stang. Anastomoza Glenn. Sp. Tromboza la nivelul anastomozei. Trimis de: Sectia Clinica Cardiologie (dr. Sue T.) Procedura Aparat GE Revolution HD. Branula albastra montata la nivelul membrului superior drept. Se administreaza 30 ml Iomeron 350 cu flux 2.2 ml/s, urmate de 20 ml ser fiziologic cu acelasi flux. Se efectueaza o examinare angio-CT cardiotoracica cu achizitii secventiale prospective la o frecventa cardiaca medie de 100/min.'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-val pipeline = new PretrainedPipeline("ner_clinical_pipeline", "ro", "clinical/models")
-
-val text = " Solicitare: Angio CT cardio-toracic Dg. de trimitere Atrezie de valva pulmonara. Hipoplazie VS. Atrezie VAV stang. Anastomoza Glenn. Sp. Tromboza la nivelul anastomozei. Trimis de: Sectia Clinica Cardiologie (dr. Sue T.) Procedura Aparat GE Revolution HD. Branula albastra montata la nivelul membrului superior drept. Se administreaza 30 ml Iomeron 350 cu flux 2.2 ml/s, urmate de 20 ml ser fiziologic cu acelasi flux. Se efectueaza o examinare angio-CT cardiotoracica cu achizitii secventiale prospective la o frecventa cardiaca medie de 100/min."
-
-val result = pipeline.fullAnnotate(text)
-```
-
{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_clinical_pipeline", "ro", "clinical/models")
-
-text = ''' Solicitare: Angio CT cardio-toracic Dg. de trimitere Atrezie de valva pulmonara. Hipoplazie VS. Atrezie VAV stang. Anastomoza Glenn. Sp. Tromboza la nivelul anastomozei. Trimis de: Sectia Clinica Cardiologie (dr. Sue T.) Procedura Aparat GE Revolution HD. Branula albastra montata la nivelul membrului superior drept. Se administreaza 30 ml Iomeron 350 cu flux 2.2 ml/s, urmate de 20 ml ser fiziologic cu acelasi flux. Se efectueaza o examinare angio-CT cardiotoracica cu achizitii secventiale prospective la o frecventa cardiaca medie de 100/min.'''
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("ner_clinical_pipeline", "ro", "clinical/models")
-
-val text = " Solicitare: Angio CT cardio-toracic Dg. de trimitere Atrezie de valva pulmonara. Hipoplazie VS. Atrezie VAV stang. Anastomoza Glenn. Sp. Tromboza la nivelul anastomozei. Trimis de: Sectia Clinica Cardiologie (dr. Sue T.) Procedura Aparat GE Revolution HD. Branula albastra montata la nivelul membrului superior drept. Se administreaza 30 ml Iomeron 350 cu flux 2.2 ml/s, urmate de 20 ml ser fiziologic cu acelasi flux. Se efectueaza o examinare angio-CT cardiotoracica cu achizitii secventiale prospective la o frecventa cardiaca medie de 100/min."
-
-val result = pipeline.fullAnnotate(text)
-```
-
-
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -112,12 +71,6 @@ result = pipeline.fullAnnotate(text)
## Results
```bash
-Results
-
-
-Results
-
-
| | ner_chunks | begin | end | ner_label | confidence |
|---:|:----------------------------------|--------:|------:|:--------------------------|-------------:|
| 0 | Angio CT | 13 | 20 | Imaging_Test | 0.92675 |
@@ -145,12 +98,6 @@ Results
| 22 | cardiotoracica | 455 | 468 | Body_Part | 0.9995 |
| 23 | achizitii secventiale prospective | 473 | 505 | Imaging_Technique | 0.8514 |
| 24 | 100/min | 540 | 546 | Pulse | 0.8501 |
-
-
-{:.model-param}
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-17-ner_clinical_trials_abstracts_pipeline_en.md b/docs/_posts/C-K-Loan/2023-06-17-ner_clinical_trials_abstracts_pipeline_en.md
index 58e338598c..aceffb4b81 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-ner_clinical_trials_abstracts_pipeline_en.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-ner_clinical_trials_abstracts_pipeline_en.md
@@ -34,6 +34,7 @@ This pretrained pipeline is built on the top of [ner_clinical_trials_abstracts](
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -62,40 +63,10 @@ nlu.load("en.med_ner.clinical_trials_abstracts.pipe").predict("""A one-year, ran
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_clinical_trials_abstracts_pipeline", "en", "clinical/models")
-
-text = '''A one-year, randomised, multicentre trial comparing insulin glargine with NPH insulin in combination with oral agents in patients with type 2 diabetes. In a multicentre, open, randomised study, 570 patients with Type 2 diabetes, aged 34 - 80 years, were treated for 52 weeks with insulin glargine or NPH insulin given once daily at bedtime.'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("ner_clinical_trials_abstracts_pipeline", "en", "clinical/models")
-
-val text = "A one-year, randomised, multicentre trial comparing insulin glargine with NPH insulin in combination with oral agents in patients with type 2 diabetes. In a multicentre, open, randomised study, 570 patients with Type 2 diabetes, aged 34 - 80 years, were treated for 52 weeks with insulin glargine or NPH insulin given once daily at bedtime."
-
-val result = pipeline.fullAnnotate(text)
-```
-
-{:.nlu-block}
-```python
-import nlu
-nlu.load("en.med_ner.clinical_trials_abstracts.pipe").predict("""A one-year, randomised, multicentre trial comparing insulin glargine with NPH insulin in combination with oral agents in patients with type 2 diabetes. In a multicentre, open, randomised study, 570 patients with Type 2 diabetes, aged 34 - 80 years, were treated for 52 weeks with insulin glargine or NPH insulin given once daily at bedtime.""")
-```
-
## Results
```bash
-Results
-
-
| | ner_chunks | begin | end | ner_label | confidence |
|---:|:-----------------|--------:|------:|:-------------------|-------------:|
| 0 | randomised | 12 | 21 | CTDesign | 0.9996 |
@@ -115,9 +86,6 @@ Results
| 14 | NPH insulin | 300 | 310 | Drug | 0.97955 |
| 15 | once daily | 318 | 327 | DrugTime | 0.999 |
| 16 | bedtime | 332 | 338 | DrugTime | 0.9937 |
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-17-ner_clinical_trials_abstracts_pipeline_es.md b/docs/_posts/C-K-Loan/2023-06-17-ner_clinical_trials_abstracts_pipeline_es.md
index 58b9c13cb7..7cad1e122e 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-ner_clinical_trials_abstracts_pipeline_es.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-ner_clinical_trials_abstracts_pipeline_es.md
@@ -32,52 +32,10 @@ This pretrained pipeline is built on the top of [ner_clinical_trials_abstracts](
## How to use
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_clinical_trials_abstracts_pipeline", "es", "clinical/models")
-
-text = '''Efecto de la suplementación con ácido fólico sobre los niveles de homocisteína total en pacientes en hemodiálisis. La hiperhomocisteinemia es un marcador de riesgo independiente de morbimortalidad cardiovascular. Hemos prospectivamente reducir los niveles de homocisteína total (tHcy) mediante suplemento con ácido fólico y vitamina B6 (pp), valorando su posible correlación con dosis de diálisis, función residual y parámetros nutricionales.'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("ner_clinical_trials_abstracts_pipeline", "es", "clinical/models")
-
-val text = "Efecto de la suplementación con ácido fólico sobre los niveles de homocisteína total en pacientes en hemodiálisis. La hiperhomocisteinemia es un marcador de riesgo independiente de morbimortalidad cardiovascular. Hemos prospectivamente reducir los niveles de homocisteína total (tHcy) mediante suplemento con ácido fólico y vitamina B6 (pp), valorando su posible correlación con dosis de diálisis, función residual y parámetros nutricionales."
-
-val result = pipeline.fullAnnotate(text)
-```
-
{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_clinical_trials_abstracts_pipeline", "es", "clinical/models")
-
-text = '''Efecto de la suplementación con ácido fólico sobre los niveles de homocisteína total en pacientes en hemodiálisis. La hiperhomocisteinemia es un marcador de riesgo independiente de morbimortalidad cardiovascular. Hemos prospectivamente reducir los niveles de homocisteína total (tHcy) mediante suplemento con ácido fólico y vitamina B6 (pp), valorando su posible correlación con dosis de diálisis, función residual y parámetros nutricionales.'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("ner_clinical_trials_abstracts_pipeline", "es", "clinical/models")
-
-val text = "Efecto de la suplementación con ácido fólico sobre los niveles de homocisteína total en pacientes en hemodiálisis. La hiperhomocisteinemia es un marcador de riesgo independiente de morbimortalidad cardiovascular. Hemos prospectivamente reducir los niveles de homocisteína total (tHcy) mediante suplemento con ácido fólico y vitamina B6 (pp), valorando su posible correlación con dosis de diálisis, función residual y parámetros nutricionales."
-
-val result = pipeline.fullAnnotate(text)
-```
-
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -112,12 +70,6 @@ result = pipeline.fullAnnotate(text)
## Results
```bash
-Results
-
-
-Results
-
-
| | ner_chunks | begin | end | ner_label | confidence |
|---:|:------------------------------|--------:|------:|:------------|-------------:|
| 0 | suplementación | 13 | 26 | PROC | 0.9987 |
@@ -132,12 +84,6 @@ Results
| 9 | pp | 337 | 338 | CHEM | 0.96 |
| 10 | diálisis | 388 | 395 | PROC | 0.9982 |
| 11 | función residual | 398 | 414 | PROC | 0.73045 |
-
-
-{:.model-param}
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-17-ner_covid_trials_pipeline_en.md b/docs/_posts/C-K-Loan/2023-06-17-ner_covid_trials_pipeline_en.md
index bdd57d4f0d..192c876f51 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-ner_covid_trials_pipeline_en.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-ner_covid_trials_pipeline_en.md
@@ -34,50 +34,7 @@ This pretrained pipeline is built on the top of [ner_covid_trials](https://nlp.j
{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_covid_trials_pipeline", "en", "clinical/models")
-
-text = '''In December 2019 , a group of patients with the acute respiratory disease was detected in Wuhan , Hubei Province of China . A month later , a new beta-coronavirus was identified as the cause of the 2019 coronavirus infection . SARS-CoV-2 is a coronavirus that belongs to the group of β-coronaviruses of the subgenus Coronaviridae . The SARS-CoV-2 is the third known zoonotic coronavirus disease after severe acute respiratory syndrome ( SARS ) and Middle Eastern respiratory syndrome ( MERS ). The diagnosis of SARS-CoV-2 recommended by the WHO , CDC is the collection of a sample from the upper respiratory tract ( nasal and oropharyngeal exudate ) or from the lower respiratory tractsuch as expectoration of endotracheal aspirate and bronchioloalveolar lavage and its analysis using the test of real-time polymerase chain reaction ( qRT-PCR ).In 2020, the first COVID‑19 vaccine was developed and made available to the public through emergency authorizations and conditional approvals.'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-val pipeline = new PretrainedPipeline("ner_covid_trials_pipeline", "en", "clinical/models")
-
-val text = "In December 2019 , a group of patients with the acute respiratory disease was detected in Wuhan , Hubei Province of China . A month later , a new beta-coronavirus was identified as the cause of the 2019 coronavirus infection . SARS-CoV-2 is a coronavirus that belongs to the group of β-coronaviruses of the subgenus Coronaviridae . The SARS-CoV-2 is the third known zoonotic coronavirus disease after severe acute respiratory syndrome ( SARS ) and Middle Eastern respiratory syndrome ( MERS ). The diagnosis of SARS-CoV-2 recommended by the WHO , CDC is the collection of a sample from the upper respiratory tract ( nasal and oropharyngeal exudate ) or from the lower respiratory tractsuch as expectoration of endotracheal aspirate and bronchioloalveolar lavage and its analysis using the test of real-time polymerase chain reaction ( qRT-PCR ).In 2020, the first COVID‑19 vaccine was developed and made available to the public through emergency authorizations and conditional approvals."
-
-val result = pipeline.fullAnnotate(text)
-```
-
-
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_covid_trials_pipeline", "en", "clinical/models")
-
-text = '''In December 2019 , a group of patients with the acute respiratory disease was detected in Wuhan , Hubei Province of China . A month later , a new beta-coronavirus was identified as the cause of the 2019 coronavirus infection . SARS-CoV-2 is a coronavirus that belongs to the group of β-coronaviruses of the subgenus Coronaviridae . The SARS-CoV-2 is the third known zoonotic coronavirus disease after severe acute respiratory syndrome ( SARS ) and Middle Eastern respiratory syndrome ( MERS ). The diagnosis of SARS-CoV-2 recommended by the WHO , CDC is the collection of a sample from the upper respiratory tract ( nasal and oropharyngeal exudate ) or from the lower respiratory tractsuch as expectoration of endotracheal aspirate and bronchioloalveolar lavage and its analysis using the test of real-time polymerase chain reaction ( qRT-PCR ).In 2020, the first COVID‑19 vaccine was developed and made available to the public through emergency authorizations and conditional approvals.'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("ner_covid_trials_pipeline", "en", "clinical/models")
-
-val text = "In December 2019 , a group of patients with the acute respiratory disease was detected in Wuhan , Hubei Province of China . A month later , a new beta-coronavirus was identified as the cause of the 2019 coronavirus infection . SARS-CoV-2 is a coronavirus that belongs to the group of β-coronaviruses of the subgenus Coronaviridae . The SARS-CoV-2 is the third known zoonotic coronavirus disease after severe acute respiratory syndrome ( SARS ) and Middle Eastern respiratory syndrome ( MERS ). The diagnosis of SARS-CoV-2 recommended by the WHO , CDC is the collection of a sample from the upper respiratory tract ( nasal and oropharyngeal exudate ) or from the lower respiratory tractsuch as expectoration of endotracheal aspirate and bronchioloalveolar lavage and its analysis using the test of real-time polymerase chain reaction ( qRT-PCR ).In 2020, the first COVID‑19 vaccine was developed and made available to the public through emergency authorizations and conditional approvals."
-
-val result = pipeline.fullAnnotate(text)
-```
-
-
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -112,12 +69,6 @@ result = pipeline.fullAnnotate(text)
## Results
```bash
-Results
-
-
-Results
-
-
| | ner_chunks | begin | end | ner_label | confidence |
|---:|:------------------------------------|--------:|------:|:--------------------------|-------------:|
| 0 | December 2019 | 3 | 15 | Date | 0.99655 |
@@ -140,12 +91,6 @@ Results
| 17 | CDC | 547 | 549 | Institution | 0.8296 |
| 18 | 2020 | 848 | 851 | Date | 0.9997 |
| 19 | COVID‑19 vaccine | 864 | 879 | Vaccine_Name | 0.87505 |
-
-
-{:.model-param}
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-17-ner_deid_augmented_pipeline_en.md b/docs/_posts/C-K-Loan/2023-06-17-ner_deid_augmented_pipeline_en.md
index 8c8ecf0033..7fa5392d29 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-ner_deid_augmented_pipeline_en.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-ner_deid_augmented_pipeline_en.md
@@ -34,6 +34,7 @@ This pretrained pipeline is built on the top of [ner_deid_augmented](https://nlp
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -62,40 +63,9 @@ nlu.load("en.deid.ner_augmented.pipeline").predict("""HISTORY OF PRESENT ILLNESS
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_deid_augmented_pipeline", "en", "clinical/models")
-
-text = '''HISTORY OF PRESENT ILLNESS: Mr. Smith is a 60-year-old white male veteran with multiple comorbidities, who has a history of bladder cancer diagnosed approximately two years ago by the VA Hospital. He underwent a resection there. He was to be admitted to the Day Hospital for cystectomy. He was seen in Urology Clinic and Radiology Clinic on 02/04/2003. HOSPITAL COURSE: Mr. Smith presented to the Day Hospital in anticipation for Urology surgery. On evaluation, EKG, echocardiogram was abnormal, a Cardiology consult was obtained. A cardiac adenosine stress MRI was then proceeded, same was positive for inducible ischemia, mild-to-moderate inferolateral subendocardial infarction with peri-infarct ischemia. In addition, inducible ischemia seen in the inferior lateral septum. Mr. Smith underwent a left heart catheterization, which revealed two vessel coronary artery disease. The RCA, proximal was 95% stenosed and the distal 80% stenosed. The mid LAD was 85% stenosed and the distal LAD was 85% stenosed. There was four Multi-Link Vision bare metal stents placed to decrease all four lesions to 0%. Following intervention, Mr. Smith was admitted to 7 Ardmore Tower under Cardiology Service under the direction of Dr. Hart. Mr. Smith had a noncomplicated post-intervention hospital course. He was stable for discharge home on 02/07/2003 with instructions to take Plavix daily for one month and Urology is aware of the same.'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("ner_deid_augmented_pipeline", "en", "clinical/models")
-
-val text = "HISTORY OF PRESENT ILLNESS: Mr. Smith is a 60-year-old white male veteran with multiple comorbidities, who has a history of bladder cancer diagnosed approximately two years ago by the VA Hospital. He underwent a resection there. He was to be admitted to the Day Hospital for cystectomy. He was seen in Urology Clinic and Radiology Clinic on 02/04/2003. HOSPITAL COURSE: Mr. Smith presented to the Day Hospital in anticipation for Urology surgery. On evaluation, EKG, echocardiogram was abnormal, a Cardiology consult was obtained. A cardiac adenosine stress MRI was then proceeded, same was positive for inducible ischemia, mild-to-moderate inferolateral subendocardial infarction with peri-infarct ischemia. In addition, inducible ischemia seen in the inferior lateral septum. Mr. Smith underwent a left heart catheterization, which revealed two vessel coronary artery disease. The RCA, proximal was 95% stenosed and the distal 80% stenosed. The mid LAD was 85% stenosed and the distal LAD was 85% stenosed. There was four Multi-Link Vision bare metal stents placed to decrease all four lesions to 0%. Following intervention, Mr. Smith was admitted to 7 Ardmore Tower under Cardiology Service under the direction of Dr. Hart. Mr. Smith had a noncomplicated post-intervention hospital course. He was stable for discharge home on 02/07/2003 with instructions to take Plavix daily for one month and Urology is aware of the same."
-
-val result = pipeline.fullAnnotate(text)
-```
-
-{:.nlu-block}
-```python
-import nlu
-nlu.load("en.deid.ner_augmented.pipeline").predict("""HISTORY OF PRESENT ILLNESS: Mr. Smith is a 60-year-old white male veteran with multiple comorbidities, who has a history of bladder cancer diagnosed approximately two years ago by the VA Hospital. He underwent a resection there. He was to be admitted to the Day Hospital for cystectomy. He was seen in Urology Clinic and Radiology Clinic on 02/04/2003. HOSPITAL COURSE: Mr. Smith presented to the Day Hospital in anticipation for Urology surgery. On evaluation, EKG, echocardiogram was abnormal, a Cardiology consult was obtained. A cardiac adenosine stress MRI was then proceeded, same was positive for inducible ischemia, mild-to-moderate inferolateral subendocardial infarction with peri-infarct ischemia. In addition, inducible ischemia seen in the inferior lateral septum. Mr. Smith underwent a left heart catheterization, which revealed two vessel coronary artery disease. The RCA, proximal was 95% stenosed and the distal 80% stenosed. The mid LAD was 85% stenosed and the distal LAD was 85% stenosed. There was four Multi-Link Vision bare metal stents placed to decrease all four lesions to 0%. Following intervention, Mr. Smith was admitted to 7 Ardmore Tower under Cardiology Service under the direction of Dr. Hart. Mr. Smith had a noncomplicated post-intervention hospital course. He was stable for discharge home on 02/07/2003 with instructions to take Plavix daily for one month and Urology is aware of the same.""")
-```
-
-
## Results
```bash
-Results
-
-
| | ner_chunks | begin | end | ner_label | confidence |
|---:|:----------------|--------:|------:|:------------|-------------:|
| 0 | Smith | 32 | 36 | NAME | 0.9998 |
@@ -110,9 +80,6 @@ Results
| 9 | Hart | 1221 | 1224 | NAME | 0.9996 |
| 10 | Smith | 1231 | 1235 | NAME | 0.9998 |
| 11 | 02/07/2003 | 1329 | 1338 | DATE | 0.9997 |
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-17-ner_deid_biobert_pipeline_en.md b/docs/_posts/C-K-Loan/2023-06-17-ner_deid_biobert_pipeline_en.md
index 11a917f697..7ac4ee3f61 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-ner_deid_biobert_pipeline_en.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-ner_deid_biobert_pipeline_en.md
@@ -34,6 +34,7 @@ This pretrained pipeline is built on the top of [ner_deid_biobert](https://nlp.j
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -62,40 +63,9 @@ nlu.load("en.deid.ner_biobert.pipeline").predict("""A. Record date : 2093-01-13,
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_deid_biobert_pipeline", "en", "clinical/models")
-
-text = '''A. Record date : 2093-01-13, David Hale, M.D. Name : Hendrickson, Ora MR. # 7194334. PCP : Oliveira, non-smoking. Cocke County Baptist Hospital. 0295 Keats Street. Phone +1 (302) 786-5227. Patient's complaints first surfaced when he started working for Brothers Coal-Mine.'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("ner_deid_biobert_pipeline", "en", "clinical/models")
-
-val text = "A. Record date : 2093-01-13, David Hale, M.D. Name : Hendrickson, Ora MR. # 7194334. PCP : Oliveira, non-smoking. Cocke County Baptist Hospital. 0295 Keats Street. Phone +1 (302) 786-5227. Patient's complaints first surfaced when he started working for Brothers Coal-Mine."
-
-val result = pipeline.fullAnnotate(text)
-```
-
-{:.nlu-block}
-```python
-import nlu
-nlu.load("en.deid.ner_biobert.pipeline").predict("""A. Record date : 2093-01-13, David Hale, M.D. Name : Hendrickson, Ora MR. # 7194334. PCP : Oliveira, non-smoking. Cocke County Baptist Hospital. 0295 Keats Street. Phone +1 (302) 786-5227. Patient's complaints first surfaced when he started working for Brothers Coal-Mine.""")
-```
-
-
## Results
```bash
-Results
-
-
| | ner_chunk | begin | end | ner_label | confidence |
|---:|:------------------------------|--------:|------:|:------------|-------------:|
| 0 | 2093-01-13 | 17 | 26 | DATE | 0.981 |
@@ -107,9 +77,6 @@ Results
| 6 | Keats Street | 150 | 161 | LOCATION | 0.77305 |
| 7 | Phone | 164 | 168 | LOCATION | 0.7083 |
| 8 | Brothers | 253 | 260 | LOCATION | 0.9447 |
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-17-ner_deid_enriched_biobert_pipeline_en.md b/docs/_posts/C-K-Loan/2023-06-17-ner_deid_enriched_biobert_pipeline_en.md
index a868eca786..0da14ec19e 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-ner_deid_enriched_biobert_pipeline_en.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-ner_deid_enriched_biobert_pipeline_en.md
@@ -34,6 +34,7 @@ This pretrained pipeline is built on the top of [ner_deid_enriched_biobert](http
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -62,40 +63,11 @@ nlu.load("en.deid.ner_enriched_biobert.pipeline").predict("""A. Record date : 20
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_deid_enriched_biobert_pipeline", "en", "clinical/models")
-
-text = '''A. Record date : 2093-01-13, David Hale, M.D. Name : Hendrickson, Ora MR. # 7194334. PCP : Oliveira, non-smoking. Cocke County Baptist Hospital. 0295 Keats Street. Phone +1 (302) 786-5227. Patient's complaints first surfaced when he started working for Brothers Coal-Mine.'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("ner_deid_enriched_biobert_pipeline", "en", "clinical/models")
-
-val text = "A. Record date : 2093-01-13, David Hale, M.D. Name : Hendrickson, Ora MR. # 7194334. PCP : Oliveira, non-smoking. Cocke County Baptist Hospital. 0295 Keats Street. Phone +1 (302) 786-5227. Patient's complaints first surfaced when he started working for Brothers Coal-Mine."
-
-val result = pipeline.fullAnnotate(text)
-```
-{:.nlu-block}
-```python
-import nlu
-nlu.load("en.deid.ner_enriched_biobert.pipeline").predict("""A. Record date : 2093-01-13, David Hale, M.D. Name : Hendrickson, Ora MR. # 7194334. PCP : Oliveira, non-smoking. Cocke County Baptist Hospital. 0295 Keats Street. Phone +1 (302) 786-5227. Patient's complaints first surfaced when he started working for Brothers Coal-Mine.""")
-```
-
## Results
```bash
-Results
-
-
| | ner_chunk | begin | end | ner_label | confidence |
|---:|:------------------------------|--------:|------:|:-------------|-------------:|
| 0 | 2093-01-13 | 17 | 26 | DATE | 0.9267 |
@@ -106,9 +78,6 @@ Results
| 5 | 0295 Keats Street | 145 | 161 | STREET | 0.592433 |
| 6 | 302) 786-5227 | 174 | 186 | PHONE | 0.846833 |
| 7 | Brothers Coal-Mine | 253 | 270 | ORGANIZATION | 0.45085 |
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-17-ner_deid_enriched_pipeline_en.md b/docs/_posts/C-K-Loan/2023-06-17-ner_deid_enriched_pipeline_en.md
index e6e7c5eabb..7ce473456d 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-ner_deid_enriched_pipeline_en.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-ner_deid_enriched_pipeline_en.md
@@ -34,6 +34,7 @@ This pretrained pipeline is built on the top of [ner_deid_enriched](https://nlp.
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -62,40 +63,11 @@ nlu.load("en.med_ner.deid_enriched.pipeline").predict("""HISTORY OF PRESENT ILLN
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_deid_enriched_pipeline", "en", "clinical/models")
-
-text = '''HISTORY OF PRESENT ILLNESS: Mr. Smith is a 60-year-old white male veteran with multiple comorbidities, who has a history of bladder cancer diagnosed approximately two years ago by the VA Hospital. He underwent a resection there. He was to be admitted to the Day Hospital for cystectomy. He was seen in Urology Clinic and Radiology Clinic on 02/04/2003. HOSPITAL COURSE: Mr. Smith presented to the Day Hospital in anticipation for Urology surgery. On evaluation, EKG, echocardiogram was abnormal, a Cardiology consult was obtained. A cardiac adenosine stress MRI was then proceeded, same was positive for inducible ischemia, mild-to-moderate inferolateral subendocardial infarction with peri-infarct ischemia. In addition, inducible ischemia seen in the inferior lateral septum. Mr. Smith underwent a left heart catheterization, which revealed two vessel coronary artery disease. The RCA, proximal was 95% stenosed and the distal 80% stenosed. The mid LAD was 85% stenosed and the distal LAD was 85% stenosed. There was four Multi-Link Vision bare metal stents placed to decrease all four lesions to 0%. Following intervention, Mr. Smith was admitted to 7 Ardmore Tower under Cardiology Service under the direction of Dr. Hart. Mr. Smith had a noncomplicated post-intervention hospital course. He was stable for discharge home on 02/07/2003 with instructions to take Plavix daily for one month and Urology is aware of the same.'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("ner_deid_enriched_pipeline", "en", "clinical/models")
-
-val text = "HISTORY OF PRESENT ILLNESS: Mr. Smith is a 60-year-old white male veteran with multiple comorbidities, who has a history of bladder cancer diagnosed approximately two years ago by the VA Hospital. He underwent a resection there. He was to be admitted to the Day Hospital for cystectomy. He was seen in Urology Clinic and Radiology Clinic on 02/04/2003. HOSPITAL COURSE: Mr. Smith presented to the Day Hospital in anticipation for Urology surgery. On evaluation, EKG, echocardiogram was abnormal, a Cardiology consult was obtained. A cardiac adenosine stress MRI was then proceeded, same was positive for inducible ischemia, mild-to-moderate inferolateral subendocardial infarction with peri-infarct ischemia. In addition, inducible ischemia seen in the inferior lateral septum. Mr. Smith underwent a left heart catheterization, which revealed two vessel coronary artery disease. The RCA, proximal was 95% stenosed and the distal 80% stenosed. The mid LAD was 85% stenosed and the distal LAD was 85% stenosed. There was four Multi-Link Vision bare metal stents placed to decrease all four lesions to 0%. Following intervention, Mr. Smith was admitted to 7 Ardmore Tower under Cardiology Service under the direction of Dr. Hart. Mr. Smith had a noncomplicated post-intervention hospital course. He was stable for discharge home on 02/07/2003 with instructions to take Plavix daily for one month and Urology is aware of the same."
-
-val result = pipeline.fullAnnotate(text)
-```
-{:.nlu-block}
-```python
-import nlu
-nlu.load("en.med_ner.deid_enriched.pipeline").predict("""HISTORY OF PRESENT ILLNESS: Mr. Smith is a 60-year-old white male veteran with multiple comorbidities, who has a history of bladder cancer diagnosed approximately two years ago by the VA Hospital. He underwent a resection there. He was to be admitted to the Day Hospital for cystectomy. He was seen in Urology Clinic and Radiology Clinic on 02/04/2003. HOSPITAL COURSE: Mr. Smith presented to the Day Hospital in anticipation for Urology surgery. On evaluation, EKG, echocardiogram was abnormal, a Cardiology consult was obtained. A cardiac adenosine stress MRI was then proceeded, same was positive for inducible ischemia, mild-to-moderate inferolateral subendocardial infarction with peri-infarct ischemia. In addition, inducible ischemia seen in the inferior lateral septum. Mr. Smith underwent a left heart catheterization, which revealed two vessel coronary artery disease. The RCA, proximal was 95% stenosed and the distal 80% stenosed. The mid LAD was 85% stenosed and the distal LAD was 85% stenosed. There was four Multi-Link Vision bare metal stents placed to decrease all four lesions to 0%. Following intervention, Mr. Smith was admitted to 7 Ardmore Tower under Cardiology Service under the direction of Dr. Hart. Mr. Smith had a noncomplicated post-intervention hospital course. He was stable for discharge home on 02/07/2003 with instructions to take Plavix daily for one month and Urology is aware of the same.""")
-```
-
## Results
```bash
-Results
-
-
| | ner_chunks | begin | end | ner_label | confidence |
|---:|:--------------|--------:|------:|:------------|-------------:|
| 0 | Smith | 32 | 36 | PATIENT | 0.9997 |
@@ -108,9 +80,6 @@ Results
| 7 | Hart | 1221 | 1224 | DOCTOR | 0.9985 |
| 8 | Smith | 1231 | 1235 | PATIENT | 0.9992 |
| 9 | 02/07/2003 | 1329 | 1338 | DATE | 1 |
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-17-ner_deid_generic_augmented_pipeline_en.md b/docs/_posts/C-K-Loan/2023-06-17-ner_deid_generic_augmented_pipeline_en.md
index 4bf9a6ce45..8e160ca310 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-ner_deid_generic_augmented_pipeline_en.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-ner_deid_generic_augmented_pipeline_en.md
@@ -34,6 +34,7 @@ This pretrained pipeline is built on the top of [ner_deid_generic_augmented](htt
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -56,60 +57,10 @@ nlu.load("en.med_ner.deid_generic_augmented.pipeline").predict("""A. Record date
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_deid_generic_augmented_pipeline", "en", "clinical/models")
-
-pipeline.annotate("A. Record date : 2093-01-13, David Hale, M.D., Name : Hendrickson, Ora MR. # 7194334 Date : 01/13/93 PCP : Oliveira, 25 -year-old, Record date : 1-11-2000. Cocke County Baptist Hospital. 0295 Keats Street. Phone +1 (302) 786-5227.")
-```
-```scala
-val pipeline = new PretrainedPipeline("ner_deid_generic_augmented_pipeline", "en", "clinical/models")
-
-pipeline.annotate("A. Record date : 2093-01-13, David Hale, M.D., Name : Hendrickson, Ora MR. # 7194334 Date : 01/13/93 PCP : Oliveira, 25 -year-old, Record date : 1-11-2000. Cocke County Baptist Hospital. 0295 Keats Street. Phone +1 (302) 786-5227.")
-```
-
-{:.nlu-block}
-```python
-import nlu
-nlu.load("en.med_ner.deid_generic_augmented.pipeline").predict("""A. Record date : 2093-01-13, David Hale, M.D., Name : Hendrickson, Ora MR. # 7194334 Date : 01/13/93 PCP : Oliveira, 25 -year-old, Record date : 1-11-2000. Cocke County Baptist Hospital. 0295 Keats Street. Phone +1 (302) 786-5227.""")
-```
-
-
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_deid_generic_augmented_pipeline", "en", "clinical/models")
-
-pipeline.annotate("A. Record date : 2093-01-13, David Hale, M.D., Name : Hendrickson, Ora MR. # 7194334 Date : 01/13/93 PCP : Oliveira, 25 -year-old, Record date : 1-11-2000. Cocke County Baptist Hospital. 0295 Keats Street. Phone +1 (302) 786-5227.")
-```
-```scala
-val pipeline = new PretrainedPipeline("ner_deid_generic_augmented_pipeline", "en", "clinical/models")
-
-pipeline.annotate("A. Record date : 2093-01-13, David Hale, M.D., Name : Hendrickson, Ora MR. # 7194334 Date : 01/13/93 PCP : Oliveira, 25 -year-old, Record date : 1-11-2000. Cocke County Baptist Hospital. 0295 Keats Street. Phone +1 (302) 786-5227.")
-```
-
-{:.nlu-block}
-```python
-import nlu
-nlu.load("en.med_ner.deid_generic_augmented.pipeline").predict("""A. Record date : 2093-01-13, David Hale, M.D., Name : Hendrickson, Ora MR. # 7194334 Date : 01/13/93 PCP : Oliveira, 25 -year-old, Record date : 1-11-2000. Cocke County Baptist Hospital. 0295 Keats Street. Phone +1 (302) 786-5227.""")
-```
-
## Results
```bash
-Results
-
-
-Results
-
-
-+-------------------------------------------------+---------+
|chunk |ner_label|
+-------------------------------------------------+---------+
|2093-01-13 |DATE |
@@ -123,13 +74,6 @@ Results
|1-11-2000 |DATE |
|Cocke County Baptist Hospital. 0295 Keats Street.|LOCATION |
|(302) 786-5227 |CONTACT |
-+-------------------------------------------------+---------+
-
-
-{:.model-param}
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-17-ner_deid_generic_bert_pipeline_ro.md b/docs/_posts/C-K-Loan/2023-06-17-ner_deid_generic_bert_pipeline_ro.md
index cae16c6ee6..cde01fad48 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-ner_deid_generic_bert_pipeline_ro.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-ner_deid_generic_bert_pipeline_ro.md
@@ -34,70 +34,7 @@ This pretrained pipeline is built on the top of [ner_deid_generic_bert](https://
{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-pipeline = PretrainedPipeline("ner_deid_generic_bert_pipeline", "ro", "clinical/models")
-
-text = '''Spitalul Pentru Ochi de Deal, Drumul Oprea Nr. 972 Vaslui, 737405 România
-Tel: +40(235)413773
-Data setului de analize: 25 May 2022 15:36:00
-Nume si Prenume : BUREAN MARIA, Varsta: 77
-Medic : Agota Evelyn Tımar
-C.N.P : 2450502264401'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("ner_deid_generic_bert_pipeline", "ro", "clinical/models")
-
-val text = "Spitalul Pentru Ochi de Deal, Drumul Oprea Nr. 972 Vaslui, 737405 România
-Tel: +40(235)413773
-Data setului de analize: 25 May 2022 15:36:00
-Nume si Prenume : BUREAN MARIA, Varsta: 77
-Medic : Agota Evelyn Tımar
-C.N.P : 2450502264401"
-
-val result = pipeline.fullAnnotate(text)
-```
-
-
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_deid_generic_bert_pipeline", "ro", "clinical/models")
-
-text = '''Spitalul Pentru Ochi de Deal, Drumul Oprea Nr. 972 Vaslui, 737405 România
-Tel: +40(235)413773
-Data setului de analize: 25 May 2022 15:36:00
-Nume si Prenume : BUREAN MARIA, Varsta: 77
-Medic : Agota Evelyn Tımar
-C.N.P : 2450502264401'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("ner_deid_generic_bert_pipeline", "ro", "clinical/models")
-
-val text = "Spitalul Pentru Ochi de Deal, Drumul Oprea Nr. 972 Vaslui, 737405 România
-Tel: +40(235)413773
-Data setului de analize: 25 May 2022 15:36:00
-Nume si Prenume : BUREAN MARIA, Varsta: 77
-Medic : Agota Evelyn Tımar
-C.N.P : 2450502264401"
-
-val result = pipeline.fullAnnotate(text)
-```
-
-
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -147,12 +84,6 @@ result = pipeline.fullAnnotate(text)
## Results
```bash
-Results
-
-
-Results
-
-
| | ner_chunks | begin | end | ner_label | confidence |
|---:|:-----------------------------|--------:|------:|:------------|-------------:|
| 0 | Spitalul Pentru Ochi de Deal | 0 | 27 | LOCATION | 0.99352 |
@@ -167,12 +98,6 @@ Results
| 9 | Agota Evelyn Tımar | 191 | 210 | NAME | 0.859975 |
| | C | | | | |
| 10 | 2450502264401 | 218 | 230 | ID | 1 |
-
-
-{:.model-param}
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-17-ner_deid_generic_glove_pipeline_en.md b/docs/_posts/C-K-Loan/2023-06-17-ner_deid_generic_glove_pipeline_en.md
index e47fb06889..b94283ff8e 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-ner_deid_generic_glove_pipeline_en.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-ner_deid_generic_glove_pipeline_en.md
@@ -34,50 +34,7 @@ This pretrained pipeline is built on the top of [ner_deid_generic_glove](https:/
{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_deid_generic_glove_pipeline", "en", "clinical/models")
-
-text = '''Record date : 2093-01-13 , David Hale , M.D . , Name : Hendrickson Ora , MR # 7194334 Date : 01/13/93 . PCP : Oliveira , 25 years old , Record date : 2079-11-09 . Cocke County Baptist Hospital , 0295 Keats Street , Phone 302-786-5227.'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-val pipeline = new PretrainedPipeline("ner_deid_generic_glove_pipeline", "en", "clinical/models")
-
-val text = "Record date : 2093-01-13 , David Hale , M.D . , Name : Hendrickson Ora , MR # 7194334 Date : 01/13/93 . PCP : Oliveira , 25 years old , Record date : 2079-11-09 . Cocke County Baptist Hospital , 0295 Keats Street , Phone 302-786-5227."
-
-val result = pipeline.fullAnnotate(text)
-```
-
-
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_deid_generic_glove_pipeline", "en", "clinical/models")
-
-text = '''Record date : 2093-01-13 , David Hale , M.D . , Name : Hendrickson Ora , MR # 7194334 Date : 01/13/93 . PCP : Oliveira , 25 years old , Record date : 2079-11-09 . Cocke County Baptist Hospital , 0295 Keats Street , Phone 302-786-5227.'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("ner_deid_generic_glove_pipeline", "en", "clinical/models")
-
-val text = "Record date : 2093-01-13 , David Hale , M.D . , Name : Hendrickson Ora , MR # 7194334 Date : 01/13/93 . PCP : Oliveira , 25 years old , Record date : 2079-11-09 . Cocke County Baptist Hospital , 0295 Keats Street , Phone 302-786-5227."
-
-val result = pipeline.fullAnnotate(text)
-```
-
-
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -112,12 +69,6 @@ result = pipeline.fullAnnotate(text)
## Results
```bash
-Results
-
-
-Results
-
-
| | ner_chunks | begin | end | ner_label | confidence |
|---:|:------------------------------|--------:|------:|:------------|-------------:|
| 0 | 2093-01-13 | 14 | 23 | DATE | 1 |
@@ -131,12 +82,6 @@ Results
| 8 | Cocke County Baptist Hospital | 163 | 191 | LOCATION | 0.8586 |
| 9 | 0295 Keats Street | 195 | 211 | LOCATION | 0.948667 |
| 10 | 302-786-5227 | 221 | 232 | CONTACT | 0.9972 |
-
-
-{:.model-param}
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-17-ner_deid_generic_pipeline_ar.md b/docs/_posts/C-K-Loan/2023-06-17-ner_deid_generic_pipeline_ar.md
index 91900322b2..c3600aca4a 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-ner_deid_generic_pipeline_ar.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-ner_deid_generic_pipeline_ar.md
@@ -34,24 +34,7 @@ This pretrained pipeline is built on the top of [ner_deid_generic](https://nlp.j
{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-pipeline = PretrainedPipeline("ner_deid_generic_pipeline", "ar", "clinical/models")
-text = '''ملاحظات سريرية - مريض الربو. التاريخ: 16 أبريل 2000. اسم المريضة: ليلى حسن. العنوان: شارع المعرفة، مبنى رقم 789، حي الأمانة، جدة. الرمز البريدي: 54321. البلد: المملكة العربية السعودية. اسم المستشفى: مستشفى النور. اسم الطبيب: د. أميرة أحمد. تفاصيل الحالة: المريضة ليلى حسن، البالغة من العمر 35 عامًا، تعاني من مرض الربو المزمن. تشكو من ضيق التنفس والسعال المتكرر والشهيق الشديد. تم تشخيصها بمرض الربو بناءً على تاريخها الطبي واختبارات وظائف الرئة. الخطة: تم وصف مضادات الالتهاب غير الستيرويدية والموسعات القصبية لتحسين التنفس وتقليل التهيج. يجب على المريضة حمل معها جهاز الاستنشاق في حالة حدوث نوبة ربو حادة. يتعين على المريضة تجنب التحسس من العوامل المسببة للربو، مثل الدخان والغبار والحيوانات الأليفة. يجب مراقبة وظائف الرئة بانتظام ومتابعة التعليمات الطبية المتعلقة بمرض الربو. تعليم المريضة بشأن كيفية استخدام جهاز الاستنشاق بشكل صحيح وتقنيات التنفس الصحيح.
-''
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-val pipeline = new PretrainedPipeline("ner_deid_generic_pipeline", "ar", "clinical/models")
-val text = "ملاحظات سريرية - مريض الربو. التاريخ: 16 أبريل 2000. اسم المريضة: ليلى حسن. العنوان: شارع المعرفة، مبنى رقم 789، حي الأمانة، جدة. الرمز البريدي: 54321. البلد: المملكة العربية السعودية. اسم المستشفى: مستشفى النور. اسم الطبيب: د. أميرة أحمد. تفاصيل الحالة: المريضة ليلى حسن، البالغة من العمر 35 عامًا، تعاني من مرض الربو المزمن. تشكو من ضيق التنفس والسعال المتكرر والشهيق الشديد. تم تشخيصها بمرض الربو بناءً على تاريخها الطبي واختبارات وظائف الرئة. الخطة: تم وصف مضادات الالتهاب غير الستيرويدية والموسعات القصبية لتحسين التنفس وتقليل التهيج. يجب على المريضة حمل معها جهاز الاستنشاق في حالة حدوث نوبة ربو حادة. يتعين على المريضة تجنب التحسس من العوامل المسببة للربو، مثل الدخان والغبار والحيوانات الأليفة. يجب مراقبة وظائف الرئة بانتظام ومتابعة التعليمات الطبية المتعلقة بمرض الربو. تعليم المريضة بشأن كيفية استخدام جهاز الاستنشاق بشكل صحيح وتقنيات التنفس الصحيح.
-"
-val result = pipeline.fullAnnotate(text)
-```
-
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
```python
from sparknlp.pretrained import PretrainedPipeline
pipeline = PretrainedPipeline("ner_deid_generic_pipeline", "ar", "clinical/models")
@@ -68,12 +51,11 @@ val result = pipeline.fullAnnotate(text)
```
-## Results
-```bash
-Results
+## Results
+```bash
+---------------+----------------------+
|chunks |entities |
+---------------+----------------------+
@@ -88,9 +70,6 @@ Results
|أميرة أحمد |NAME |
|ليلى |NAME |
+---------------+---------------------+
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-17-ner_deid_generic_pipeline_de.md b/docs/_posts/C-K-Loan/2023-06-17-ner_deid_generic_pipeline_de.md
index 89077b036a..9717285ef1 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-ner_deid_generic_pipeline_de.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-ner_deid_generic_pipeline_de.md
@@ -34,6 +34,7 @@ This pretrained pipeline is built on the top of [ner_deid_generic](https://nlp.j
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -62,40 +63,10 @@ nlu.load("de.med_ner.deid_generic.pipeline").predict("""Michael Berger wird am M
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_deid_generic_pipeline", "de", "clinical/models")
-
-text = '''Michael Berger wird am Morgen des 12 Dezember 2018 ins St. Elisabeth-Krankenhaus in Bad Kissingen eingeliefert. Herr Berger ist 76 Jahre alt und hat zu viel Wasser in den Beinen.'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("ner_deid_generic_pipeline", "de", "clinical/models")
-
-val text = "Michael Berger wird am Morgen des 12 Dezember 2018 ins St. Elisabeth-Krankenhaus in Bad Kissingen eingeliefert. Herr Berger ist 76 Jahre alt und hat zu viel Wasser in den Beinen."
-
-val result = pipeline.fullAnnotate(text)
-```
-
-{:.nlu-block}
-```python
-import nlu
-nlu.load("de.med_ner.deid_generic.pipeline").predict("""Michael Berger wird am Morgen des 12 Dezember 2018 ins St. Elisabeth-Krankenhaus in Bad Kissingen eingeliefert. Herr Berger ist 76 Jahre alt und hat zu viel Wasser in den Beinen.""")
-```
-
## Results
```bash
-Results
-
-
| | ner_chunks | begin | end | ner_label | confidence |
|---:|:--------------------------|--------:|------:|:------------|-------------:|
| 0 | Michael Berger | 0 | 13 | NAME | 0.99555 |
@@ -104,9 +75,6 @@ Results
| 3 | Bad Kissingen | 84 | 96 | LOCATION | 0.90785 |
| 4 | Berger | 117 | 122 | NAME | 0.935 |
| 5 | 76 | 128 | 129 | AGE | 1 |
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-17-ner_deid_generic_pipeline_it.md b/docs/_posts/C-K-Loan/2023-06-17-ner_deid_generic_pipeline_it.md
index d9615a692a..9a58cd9890 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-ner_deid_generic_pipeline_it.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-ner_deid_generic_pipeline_it.md
@@ -32,52 +32,10 @@ This pretrained pipeline is built on the top of [ner_deid_generic](https://nlp.j
## How to use
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_deid_generic_pipeline", "it", "clinical/models")
-
-text = '''Ho visto Gastone Montanariello (49 anni) riferito all' Ospedale San Camillo per diabete mal controllato con sintomi risalenti a marzo 2015.'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("ner_deid_generic_pipeline", "it", "clinical/models")
-
-val text = "Ho visto Gastone Montanariello (49 anni) riferito all' Ospedale San Camillo per diabete mal controllato con sintomi risalenti a marzo 2015."
-
-val result = pipeline.fullAnnotate(text)
-```
-
{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_deid_generic_pipeline", "it", "clinical/models")
-
-text = '''Ho visto Gastone Montanariello (49 anni) riferito all' Ospedale San Camillo per diabete mal controllato con sintomi risalenti a marzo 2015.'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("ner_deid_generic_pipeline", "it", "clinical/models")
-
-val text = "Ho visto Gastone Montanariello (49 anni) riferito all' Ospedale San Camillo per diabete mal controllato con sintomi risalenti a marzo 2015."
-
-val result = pipeline.fullAnnotate(text)
-```
-
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -112,24 +70,12 @@ result = pipeline.fullAnnotate(text)
## Results
```bash
-Results
-
-
-Results
-
-
| | ner_chunks | begin | end | ner_label | confidence |
|---:|:----------------------|--------:|------:|:------------|:-------------|
| 0 | Gastone Montanariello | 9 | 29 | NAME | |
| 1 | 49 | 32 | 33 | AGE | |
| 2 | Ospedale San Camillo | 55 | 74 | LOCATION | |
| 3 | marzo 2015 | 128 | 137 | DATE | |
-
-
-{:.model-param}
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-17-ner_deid_generic_pipeline_ro.md b/docs/_posts/C-K-Loan/2023-06-17-ner_deid_generic_pipeline_ro.md
index 42338228cc..f6ab43c845 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-ner_deid_generic_pipeline_ro.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-ner_deid_generic_pipeline_ro.md
@@ -32,72 +32,10 @@ This pretrained pipeline is built on the top of [ner_deid_generic](https://nlp.j
## How to use
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_deid_generic_pipeline", "ro", "clinical/models")
-
-text = '''Spitalul Pentru Ochi de Deal, Drumul Oprea Nr. 972 Vaslui,737405 România
-Tel: +40(235)413773
-Data setului de analize: 25 May 2022 15:36:00
-Nume si Prenume : BUREAN MARIA, Varsta: 77
-Medic : Agota Evelyn Tımar
-C.N.P : 2450502264401'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("ner_deid_generic_pipeline", "ro", "clinical/models")
-
-val text = "Spitalul Pentru Ochi de Deal, Drumul Oprea Nr. 972 Vaslui,737405 România
-Tel: +40(235)413773
-Data setului de analize: 25 May 2022 15:36:00
-Nume si Prenume : BUREAN MARIA, Varsta: 77
-Medic : Agota Evelyn Tımar
-C.N.P : 2450502264401"
-
-val result = pipeline.fullAnnotate(text)
-```
-
{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_deid_generic_pipeline", "ro", "clinical/models")
-
-text = '''Spitalul Pentru Ochi de Deal, Drumul Oprea Nr. 972 Vaslui,737405 România
-Tel: +40(235)413773
-Data setului de analize: 25 May 2022 15:36:00
-Nume si Prenume : BUREAN MARIA, Varsta: 77
-Medic : Agota Evelyn Tımar
-C.N.P : 2450502264401'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("ner_deid_generic_pipeline", "ro", "clinical/models")
-
-val text = "Spitalul Pentru Ochi de Deal, Drumul Oprea Nr. 972 Vaslui,737405 România
-Tel: +40(235)413773
-Data setului de analize: 25 May 2022 15:36:00
-Nume si Prenume : BUREAN MARIA, Varsta: 77
-Medic : Agota Evelyn Tımar
-C.N.P : 2450502264401"
-val result = pipeline.fullAnnotate(text)
-```
-
-
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -147,12 +85,6 @@ result = pipeline.fullAnnotate(text)
## Results
```bash
-Results
-
-
-Results
-
-
| | ner_chunks | begin | end | ner_label | confidence |
|---:|:-----------------------------|--------:|------:|:------------|-------------:|
| 0 | Spitalul Pentru Ochi de Deal | 0 | 27 | LOCATION | 0.88326 |
@@ -164,12 +96,6 @@ Results
| 6 | 77 | 179 | 180 | AGE | 1 |
| 7 | Agota Evelyn Tımar | 190 | 207 | NAME | 0.832933 |
| 8 | 2450502264401 | 217 | 229 | ID | 1 |
-
-
-{:.model-param}
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-17-ner_deid_large_pipeline_en.md b/docs/_posts/C-K-Loan/2023-06-17-ner_deid_large_pipeline_en.md
index 4b73dbdc11..5fc3f167a8 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-ner_deid_large_pipeline_en.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-ner_deid_large_pipeline_en.md
@@ -34,6 +34,7 @@ This pretrained pipeline is built on the top of [ner_deid_large](https://nlp.joh
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -62,40 +63,11 @@ nlu.load("en.med_ner.deid_large.pipeline").predict("""HISTORY OF PRESENT ILLNESS
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_deid_large_pipeline", "en", "clinical/models")
-
-text = '''HISTORY OF PRESENT ILLNESS: Mr. Smith is a 60-year-old white male veteran with multiple comorbidities, who has a history of bladder cancer diagnosed approximately two years ago by the VA Hospital. He underwent a resection there. He was to be admitted to the Day Hospital for cystectomy. He was seen in Urology Clinic and Radiology Clinic on 02/04/2003. HOSPITAL COURSE: Mr. Smith presented to the Day Hospital in anticipation for Urology surgery. On evaluation, EKG, echocardiogram was abnormal, a Cardiology consult was obtained. A cardiac adenosine stress MRI was then proceeded, same was positive for inducible ischemia, mild-to-moderate inferolateral subendocardial infarction with peri-infarct ischemia. In addition, inducible ischemia seen in the inferior lateral septum. Mr. Smith underwent a left heart catheterization, which revealed two vessel coronary artery disease. The RCA, proximal was 95% stenosed and the distal 80% stenosed. The mid LAD was 85% stenosed and the distal LAD was 85% stenosed. There was four Multi-Link Vision bare metal stents placed to decrease all four lesions to 0%. Following intervention, Mr. Smith was admitted to 7 Ardmore Tower under Cardiology Service under the direction of Dr. Hart. Mr. Smith had a noncomplicated post-intervention hospital course. He was stable for discharge home on 02/07/2003 with instructions to take Plavix daily for one month and Urology is aware of the same.'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("ner_deid_large_pipeline", "en", "clinical/models")
-
-val text = "HISTORY OF PRESENT ILLNESS: Mr. Smith is a 60-year-old white male veteran with multiple comorbidities, who has a history of bladder cancer diagnosed approximately two years ago by the VA Hospital. He underwent a resection there. He was to be admitted to the Day Hospital for cystectomy. He was seen in Urology Clinic and Radiology Clinic on 02/04/2003. HOSPITAL COURSE: Mr. Smith presented to the Day Hospital in anticipation for Urology surgery. On evaluation, EKG, echocardiogram was abnormal, a Cardiology consult was obtained. A cardiac adenosine stress MRI was then proceeded, same was positive for inducible ischemia, mild-to-moderate inferolateral subendocardial infarction with peri-infarct ischemia. In addition, inducible ischemia seen in the inferior lateral septum. Mr. Smith underwent a left heart catheterization, which revealed two vessel coronary artery disease. The RCA, proximal was 95% stenosed and the distal 80% stenosed. The mid LAD was 85% stenosed and the distal LAD was 85% stenosed. There was four Multi-Link Vision bare metal stents placed to decrease all four lesions to 0%. Following intervention, Mr. Smith was admitted to 7 Ardmore Tower under Cardiology Service under the direction of Dr. Hart. Mr. Smith had a noncomplicated post-intervention hospital course. He was stable for discharge home on 02/07/2003 with instructions to take Plavix daily for one month and Urology is aware of the same."
-
-val result = pipeline.fullAnnotate(text)
-```
-{:.nlu-block}
-```python
-import nlu
-nlu.load("en.med_ner.deid_large.pipeline").predict("""HISTORY OF PRESENT ILLNESS: Mr. Smith is a 60-year-old white male veteran with multiple comorbidities, who has a history of bladder cancer diagnosed approximately two years ago by the VA Hospital. He underwent a resection there. He was to be admitted to the Day Hospital for cystectomy. He was seen in Urology Clinic and Radiology Clinic on 02/04/2003. HOSPITAL COURSE: Mr. Smith presented to the Day Hospital in anticipation for Urology surgery. On evaluation, EKG, echocardiogram was abnormal, a Cardiology consult was obtained. A cardiac adenosine stress MRI was then proceeded, same was positive for inducible ischemia, mild-to-moderate inferolateral subendocardial infarction with peri-infarct ischemia. In addition, inducible ischemia seen in the inferior lateral septum. Mr. Smith underwent a left heart catheterization, which revealed two vessel coronary artery disease. The RCA, proximal was 95% stenosed and the distal 80% stenosed. The mid LAD was 85% stenosed and the distal LAD was 85% stenosed. There was four Multi-Link Vision bare metal stents placed to decrease all four lesions to 0%. Following intervention, Mr. Smith was admitted to 7 Ardmore Tower under Cardiology Service under the direction of Dr. Hart. Mr. Smith had a noncomplicated post-intervention hospital course. He was stable for discharge home on 02/07/2003 with instructions to take Plavix daily for one month and Urology is aware of the same.""")
-```
-
## Results
```bash
-Results
-
-
| | ner_chunks | begin | end | ner_label | confidence |
|---:|:----------------|--------:|------:|:------------|-------------:|
| 0 | Smith | 32 | 36 | NAME | 0.9998 |
@@ -110,9 +82,6 @@ Results
| 9 | Hart | 1221 | 1224 | NAME | 0.9995 |
| 10 | Smith | 1231 | 1235 | NAME | 0.9998 |
| 11 | 02/07/2003 | 1329 | 1338 | DATE | 1 |
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-17-ner_deid_sd_large_pipeline_en.md b/docs/_posts/C-K-Loan/2023-06-17-ner_deid_sd_large_pipeline_en.md
index 5207737c36..f13a071a30 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-ner_deid_sd_large_pipeline_en.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-ner_deid_sd_large_pipeline_en.md
@@ -34,6 +34,7 @@ This pretrained pipeline is built on the top of [ner_deid_sd_large](https://nlp.
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -62,40 +63,11 @@ nlu.load("en.deid.med_ner_large.pipeline").predict("""Record date : 2093-01-13 ,
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_deid_sd_large_pipeline", "en", "clinical/models")
-
-text = '''Record date : 2093-01-13 , David Hale , M.D . , Name : Hendrickson Ora , MR # 7194334 Date : 01/13/93 . PCP : Oliveira , 25 years old , Record date : 2079-11-09 . Cocke County Baptist Hospital , 0295 Keats Street , Phone 302-786-5227.'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("ner_deid_sd_large_pipeline", "en", "clinical/models")
-
-val text = "Record date : 2093-01-13 , David Hale , M.D . , Name : Hendrickson Ora , MR # 7194334 Date : 01/13/93 . PCP : Oliveira , 25 years old , Record date : 2079-11-09 . Cocke County Baptist Hospital , 0295 Keats Street , Phone 302-786-5227."
-
-val result = pipeline.fullAnnotate(text)
-```
-{:.nlu-block}
-```python
-import nlu
-nlu.load("en.deid.med_ner_large.pipeline").predict("""Record date : 2093-01-13 , David Hale , M.D . , Name : Hendrickson Ora , MR # 7194334 Date : 01/13/93 . PCP : Oliveira , 25 years old , Record date : 2079-11-09 . Cocke County Baptist Hospital , 0295 Keats Street , Phone 302-786-5227.""")
-```
-
## Results
```bash
-Results
-
-
| | ner_chunks | begin | end | ner_label | confidence |
|---:|:------------------------------|--------:|------:|:------------|-------------:|
| 0 | 2093-01-13 | 14 | 23 | DATE | 0.9999 |
@@ -109,9 +81,6 @@ Results
| 8 | Cocke County Baptist Hospital | 163 | 191 | LOCATION | 0.795975 |
| 9 | 0295 Keats Street | 195 | 211 | LOCATION | 0.741567 |
| 10 | 302-786-5227 | 221 | 232 | CONTACT | 0.984 |
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-17-ner_deid_sd_pipeline_en.md b/docs/_posts/C-K-Loan/2023-06-17-ner_deid_sd_pipeline_en.md
index aed5b7d5c0..0594178cc0 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-ner_deid_sd_pipeline_en.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-ner_deid_sd_pipeline_en.md
@@ -34,6 +34,7 @@ This pretrained pipeline is built on the top of [ner_deid_sd](https://nlp.johnsn
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -62,40 +63,11 @@ nlu.load("en.deid.sd.pipeline").predict("""Record date : 2093-01-13 , David Hale
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_deid_sd_pipeline", "en", "clinical/models")
-
-text = '''Record date : 2093-01-13 , David Hale , M.D . , Name : Hendrickson Ora , MR # 7194334 Date : 01/13/93 . PCP : Oliveira , 25 years old , Record date : 2079-11-09 . Cocke County Baptist Hospital , 0295 Keats Street , Phone 302-786-5227.'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("ner_deid_sd_pipeline", "en", "clinical/models")
-
-val text = "Record date : 2093-01-13 , David Hale , M.D . , Name : Hendrickson Ora , MR # 7194334 Date : 01/13/93 . PCP : Oliveira , 25 years old , Record date : 2079-11-09 . Cocke County Baptist Hospital , 0295 Keats Street , Phone 302-786-5227."
-
-val result = pipeline.fullAnnotate(text)
-```
-{:.nlu-block}
-```python
-import nlu
-nlu.load("en.deid.sd.pipeline").predict("""Record date : 2093-01-13 , David Hale , M.D . , Name : Hendrickson Ora , MR # 7194334 Date : 01/13/93 . PCP : Oliveira , 25 years old , Record date : 2079-11-09 . Cocke County Baptist Hospital , 0295 Keats Street , Phone 302-786-5227.""")
-```
-
## Results
```bash
-Results
-
-
| | ner_chunks | begin | end | ner_label | confidence |
|---:|:------------------------------|--------:|------:|:------------|-------------:|
| 0 | 2093-01-13 | 14 | 23 | DATE | 0.9952 |
@@ -109,9 +81,6 @@ Results
| 8 | Cocke County Baptist Hospital | 163 | 191 | LOCATION | 0.84345 |
| 9 | 0295 Keats Street | 195 | 211 | LOCATION | 0.775333 |
| 10 | 302-786-5227 | 221 | 232 | CONTACT | 0.9492 |
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-17-ner_deid_subentity_augmented_i2b2_pipeline_en.md b/docs/_posts/C-K-Loan/2023-06-17-ner_deid_subentity_augmented_i2b2_pipeline_en.md
index d30f3c0500..aac10dd632 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-ner_deid_subentity_augmented_i2b2_pipeline_en.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-ner_deid_subentity_augmented_i2b2_pipeline_en.md
@@ -34,6 +34,7 @@ This pretrained pipeline is built on the top of [ner_deid_subentity_augmented_i2
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -62,40 +63,11 @@ nlu.load("en.deid.subentity_ner_augmented_i2b2.pipeline").predict("""Record date
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_deid_subentity_augmented_i2b2_pipeline", "en", "clinical/models")
-
-text = '''Record date : 2093-01-13 , David Hale , M.D . , Name : Hendrickson Ora , MR # 7194334 Date : 01/13/93 . PCP : Oliveira , 25 years old , Record date : 2079-11-09 . Cocke County Baptist Hospital , 0295 Keats Street , Phone 302-786-5227.'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("ner_deid_subentity_augmented_i2b2_pipeline", "en", "clinical/models")
-
-val text = "Record date : 2093-01-13 , David Hale , M.D . , Name : Hendrickson Ora , MR # 7194334 Date : 01/13/93 . PCP : Oliveira , 25 years old , Record date : 2079-11-09 . Cocke County Baptist Hospital , 0295 Keats Street , Phone 302-786-5227."
-
-val result = pipeline.fullAnnotate(text)
-```
-{:.nlu-block}
-```python
-import nlu
-nlu.load("en.deid.subentity_ner_augmented_i2b2.pipeline").predict("""Record date : 2093-01-13 , David Hale , M.D . , Name : Hendrickson Ora , MR # 7194334 Date : 01/13/93 . PCP : Oliveira , 25 years old , Record date : 2079-11-09 . Cocke County Baptist Hospital , 0295 Keats Street , Phone 302-786-5227.""")
-```
-
## Results
```bash
-Results
-
-
| | ner_chunks | begin | end | ner_label | confidence |
|---:|:------------------------------|--------:|------:|:--------------|-------------:|
| 0 | 2093-01-13 | 14 | 23 | DATE | 0.9997 |
@@ -109,9 +81,6 @@ Results
| 8 | Cocke County Baptist Hospital | 163 | 191 | HOSPITAL | 0.863775 |
| 9 | 0295 Keats Street | 195 | 211 | STREET | 0.754533 |
| 10 | 302-786-5227 | 221 | 232 | PHONE | 0.9697 |
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-17-ner_deid_subentity_augmented_pipeline_en.md b/docs/_posts/C-K-Loan/2023-06-17-ner_deid_subentity_augmented_pipeline_en.md
index e380ee898e..b15dc06464 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-ner_deid_subentity_augmented_pipeline_en.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-ner_deid_subentity_augmented_pipeline_en.md
@@ -34,6 +34,7 @@ This pretrained pipeline is built on the top of [ner_deid_subentity_augmented](h
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -62,40 +63,11 @@ nlu.load("en.deid.subentity_ner_augmented.pipeline").predict("""Record date : 20
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_deid_subentity_augmented_pipeline", "en", "clinical/models")
-
-text = '''Record date : 2093-01-13 , David Hale , M.D . , Name : Hendrickson Ora , MR # 7194334 Date : 01/13/93 . PCP : Oliveira , 25 years old , Record date : 2079-11-09 . Cocke County Baptist Hospital , 0295 Keats Street , Phone 302-786-5227.'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("ner_deid_subentity_augmented_pipeline", "en", "clinical/models")
-
-val text = "Record date : 2093-01-13 , David Hale , M.D . , Name : Hendrickson Ora , MR # 7194334 Date : 01/13/93 . PCP : Oliveira , 25 years old , Record date : 2079-11-09 . Cocke County Baptist Hospital , 0295 Keats Street , Phone 302-786-5227."
-
-val result = pipeline.fullAnnotate(text)
-```
-{:.nlu-block}
-```python
-import nlu
-nlu.load("en.deid.subentity_ner_augmented.pipeline").predict("""Record date : 2093-01-13 , David Hale , M.D . , Name : Hendrickson Ora , MR # 7194334 Date : 01/13/93 . PCP : Oliveira , 25 years old , Record date : 2079-11-09 . Cocke County Baptist Hospital , 0295 Keats Street , Phone 302-786-5227.""")
-```
-
## Results
```bash
-Results
-
-
| | ner_chunks | begin | end | ner_label | confidence |
|---:|:------------------------------|--------:|------:|:--------------|-------------:|
| 0 | 2093-01-13 | 14 | 23 | DATE | 1 |
@@ -109,9 +81,6 @@ Results
| 8 | Cocke County Baptist Hospital | 163 | 191 | HOSPITAL | 0.97485 |
| 9 | 0295 Keats Street | 195 | 211 | STREET | 0.8209 |
| 10 | 302-786-5227 | 221 | 232 | PHONE | 0.9541 |
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-17-ner_deid_subentity_bert_pipeline_ro.md b/docs/_posts/C-K-Loan/2023-06-17-ner_deid_subentity_bert_pipeline_ro.md
index ec5508e787..d6b9c1798b 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-ner_deid_subentity_bert_pipeline_ro.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-ner_deid_subentity_bert_pipeline_ro.md
@@ -34,70 +34,7 @@ This pretrained pipeline is built on the top of [ner_deid_subentity_bert](https:
{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-pipeline = PretrainedPipeline("ner_deid_subentity_bert_pipeline", "ro", "clinical/models")
-
-text = '''Spitalul Pentru Ochi de Deal, Drumul Oprea Nr. 972 Vaslui, 737405 România
-Tel: +40(235)413773
-Data setului de analize: 25 May 2022 15:36:00
-Nume si Prenume : BUREAN MARIA, Varsta: 77
-Medic : Agota Evelyn Tımar
-C.N.P : 2450502264401'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("ner_deid_subentity_bert_pipeline", "ro", "clinical/models")
-
-val text = "Spitalul Pentru Ochi de Deal, Drumul Oprea Nr. 972 Vaslui, 737405 România
-Tel: +40(235)413773
-Data setului de analize: 25 May 2022 15:36:00
-Nume si Prenume : BUREAN MARIA, Varsta: 77
-Medic : Agota Evelyn Tımar
-C.N.P : 2450502264401"
-
-val result = pipeline.fullAnnotate(text)
-```
-
-
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_deid_subentity_bert_pipeline", "ro", "clinical/models")
-
-text = '''Spitalul Pentru Ochi de Deal, Drumul Oprea Nr. 972 Vaslui, 737405 România
-Tel: +40(235)413773
-Data setului de analize: 25 May 2022 15:36:00
-Nume si Prenume : BUREAN MARIA, Varsta: 77
-Medic : Agota Evelyn Tımar
-C.N.P : 2450502264401'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("ner_deid_subentity_bert_pipeline", "ro", "clinical/models")
-
-val text = "Spitalul Pentru Ochi de Deal, Drumul Oprea Nr. 972 Vaslui, 737405 România
-Tel: +40(235)413773
-Data setului de analize: 25 May 2022 15:36:00
-Nume si Prenume : BUREAN MARIA, Varsta: 77
-Medic : Agota Evelyn Tımar
-C.N.P : 2450502264401"
-
-val result = pipeline.fullAnnotate(text)
-```
-
-
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -147,12 +84,6 @@ result = pipeline.fullAnnotate(text)
## Results
```bash
-Results
-
-
-Results
-
-
| | ner_chunks | begin | end | ner_label | confidence |
|---:|:-----------------------------|--------:|------:|:------------|-------------:|
| 0 | Spitalul Pentru Ochi de Deal | 0 | 27 | HOSPITAL | 0.84306 |
@@ -165,12 +96,6 @@ Results
| 7 | 77 | 180 | 181 | AGE | 1 |
| 8 | Agota Evelyn Tımar | 191 | 208 | DOCTOR | 0.803667 |
| 9 | 2450502264401 | 218 | 230 | IDNUM | 0.9995 |
-
-
-{:.model-param}
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-17-ner_deid_subentity_glove_pipeline_en.md b/docs/_posts/C-K-Loan/2023-06-17-ner_deid_subentity_glove_pipeline_en.md
index af3713de55..0a40758eaa 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-ner_deid_subentity_glove_pipeline_en.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-ner_deid_subentity_glove_pipeline_en.md
@@ -34,50 +34,7 @@ This pretrained pipeline is built on the top of [ner_deid_subentity_glove](https
{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_deid_subentity_glove_pipeline", "en", "clinical/models")
-
-text = '''Record date : 2093-01-13 , David Hale , M.D . , Name : Hendrickson Ora , MR # 7194334 Date : 01/13/93 . PCP : Oliveira , 25 years old , Record date : 2079-11-09 . Cocke County Baptist Hospital , 0295 Keats Street , Phone 302-786-5227.'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-val pipeline = new PretrainedPipeline("ner_deid_subentity_glove_pipeline", "en", "clinical/models")
-
-val text = "Record date : 2093-01-13 , David Hale , M.D . , Name : Hendrickson Ora , MR # 7194334 Date : 01/13/93 . PCP : Oliveira , 25 years old , Record date : 2079-11-09 . Cocke County Baptist Hospital , 0295 Keats Street , Phone 302-786-5227."
-
-val result = pipeline.fullAnnotate(text)
-```
-
-
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_deid_subentity_glove_pipeline", "en", "clinical/models")
-
-text = '''Record date : 2093-01-13 , David Hale , M.D . , Name : Hendrickson Ora , MR # 7194334 Date : 01/13/93 . PCP : Oliveira , 25 years old , Record date : 2079-11-09 . Cocke County Baptist Hospital , 0295 Keats Street , Phone 302-786-5227.'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("ner_deid_subentity_glove_pipeline", "en", "clinical/models")
-
-val text = "Record date : 2093-01-13 , David Hale , M.D . , Name : Hendrickson Ora , MR # 7194334 Date : 01/13/93 . PCP : Oliveira , 25 years old , Record date : 2079-11-09 . Cocke County Baptist Hospital , 0295 Keats Street , Phone 302-786-5227."
-
-val result = pipeline.fullAnnotate(text)
-```
-
-
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -112,12 +69,6 @@ result = pipeline.fullAnnotate(text)
## Results
```bash
-Results
-
-
-Results
-
-
| | ner_chunks | begin | end | ner_label | confidence |
|---:|:------------------------------|--------:|------:|:--------------|-------------:|
| 0 | 2093-01-13 | 14 | 23 | DATE | 1 |
@@ -131,12 +82,6 @@ Results
| 8 | Cocke County Baptist Hospital | 163 | 191 | HOSPITAL | 0.731325 |
| 9 | 0295 Keats Street | 195 | 211 | STREET | 0.737067 |
| 10 | 302-786-5227 | 221 | 232 | PHONE | 0.9882 |
-
-
-{:.model-param}
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-17-ner_deid_subentity_pipeline_ar.md b/docs/_posts/C-K-Loan/2023-06-17-ner_deid_subentity_pipeline_ar.md
index 18bb94f55f..189a119db7 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-ner_deid_subentity_pipeline_ar.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-ner_deid_subentity_pipeline_ar.md
@@ -34,56 +34,7 @@ This pretrained pipeline is built on the top of [ner_deid_subentity](https://nlp
{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_deid_subentity_pipeline", "ar", "clinical/models")
-
-text= '''
-ملاحظات سريرية - مريض الربو. التاريخ: 16 أبريل 2000. اسم المريضة: ليلى حسن. العنوان: شارع المعرفة، مبنى رقم 789، حي الأمانة، جدة. الرمز البريدي: 54321. البلد: المملكة العربية السعودية. اسم المستشفى: مستشفى النور. اسم الطبيب: د. أميرة أحمد. تفاصيل الحالة: المريضة ليلى حسن، البالغة من العمر 35 عامًا، تعاني من مرض الربو المزمن. تشكو من ضيق التنفس والسعال المتكرر والشهيق الشديد. تم تشخيصها بمرض الربو بناءً على تاريخها الطبي واختبارات وظائف الرئة. الخطة: تم وصف مضادات الالتهاب غير الستيرويدية والموسعات القصبية لتحسين التنفس وتقليل التهيج. يجب على المريضة حمل معها جهاز الاستنشاق في حالة حدوث نوبة ربو حادة. يتعين على المريضة تجنب التحسس من العوامل المسببة للربو، مثل الدخان والغبار والحيوانات الأليفة. يجب مراقبة وظائف الرئة بانتظام ومتابعة التعليمات الطبية المتعلقة بمرض الربو. تعليم المريضة بشأن كيفية استخدام جهاز الاستنشاق بشكل صحيح وتقنيات التنفس الصحيح.
-'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("ner_deid_subentity_pipeline", "ar", "clinical/models")
-
-val text = "ملاحظات سريرية - مريض الربو. التاريخ: 16 أبريل 2000. اسم المريضة: ليلى حسن. العنوان: شارع المعرفة، مبنى رقم 789، حي الأمانة، جدة. الرمز البريدي: 54321. البلد: المملكة العربية السعودية. اسم المستشفى: مستشفى النور. اسم الطبيب: د. أميرة أحمد. تفاصيل الحالة: المريضة ليلى حسن، البالغة من العمر 35 عامًا، تعاني من مرض الربو المزمن. تشكو من ضيق التنفس والسعال المتكرر والشهيق الشديد. تم تشخيصها بمرض الربو بناءً على تاريخها الطبي واختبارات وظائف الرئة. الخطة: تم وصف مضادات الالتهاب غير الستيرويدية والموسعات القصبية لتحسين التنفس وتقليل التهيج. يجب على المريضة حمل معها جهاز الاستنشاق في حالة حدوث نوبة ربو حادة. يتعين على المريضة تجنب التحسس من العوامل المسببة للربو، مثل الدخان والغبار والحيوانات الأليفة. يجب مراقبة وظائف الرئة بانتظام ومتابعة التعليمات الطبية المتعلقة بمرض الربو. تعليم المريضة بشأن كيفية استخدام جهاز الاستنشاق بشكل صحيح وتقنيات التنفس الصحيح."
-
-val result = pipeline.fullAnnotate(text)
-```
-
-
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_deid_subentity_pipeline", "ar", "clinical/models")
-
-text= '''
-ملاحظات سريرية - مريض الربو. التاريخ: 16 أبريل 2000. اسم المريضة: ليلى حسن. العنوان: شارع المعرفة، مبنى رقم 789، حي الأمانة، جدة. الرمز البريدي: 54321. البلد: المملكة العربية السعودية. اسم المستشفى: مستشفى النور. اسم الطبيب: د. أميرة أحمد. تفاصيل الحالة: المريضة ليلى حسن، البالغة من العمر 35 عامًا، تعاني من مرض الربو المزمن. تشكو من ضيق التنفس والسعال المتكرر والشهيق الشديد. تم تشخيصها بمرض الربو بناءً على تاريخها الطبي واختبارات وظائف الرئة. الخطة: تم وصف مضادات الالتهاب غير الستيرويدية والموسعات القصبية لتحسين التنفس وتقليل التهيج. يجب على المريضة حمل معها جهاز الاستنشاق في حالة حدوث نوبة ربو حادة. يتعين على المريضة تجنب التحسس من العوامل المسببة للربو، مثل الدخان والغبار والحيوانات الأليفة. يجب مراقبة وظائف الرئة بانتظام ومتابعة التعليمات الطبية المتعلقة بمرض الربو. تعليم المريضة بشأن كيفية استخدام جهاز الاستنشاق بشكل صحيح وتقنيات التنفس الصحيح.
-'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("ner_deid_subentity_pipeline", "ar", "clinical/models")
-
-
-val text = "ملاحظات سريرية - مريض الربو. التاريخ: 16 أبريل 2000. اسم المريضة: ليلى حسن. العنوان: شارع المعرفة، مبنى رقم 789، حي الأمانة، جدة. الرمز البريدي: 54321. البلد: المملكة العربية السعودية. اسم المستشفى: مستشفى النور. اسم الطبيب: د. أميرة أحمد. تفاصيل الحالة: المريضة ليلى حسن، البالغة من العمر 35 عامًا، تعاني من مرض الربو المزمن. تشكو من ضيق التنفس والسعال المتكرر والشهيق الشديد. تم تشخيصها بمرض الربو بناءً على تاريخها الطبي واختبارات وظائف الرئة. الخطة: تم وصف مضادات الالتهاب غير الستيرويدية والموسعات القصبية لتحسين التنفس وتقليل التهيج. يجب على المريضة حمل معها جهاز الاستنشاق في حالة حدوث نوبة ربو حادة. يتعين على المريضة تجنب التحسس من العوامل المسببة للربو، مثل الدخان والغبار والحيوانات الأليفة. يجب مراقبة وظائف الرئة بانتظام ومتابعة التعليمات الطبية المتعلقة بمرض الربو. تعليم المريضة بشأن كيفية استخدام جهاز الاستنشاق بشكل صحيح وتقنيات التنفس الصحيح."
-
-val result = pipeline.fullAnnotate(text)
-```
-
-
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -123,13 +74,6 @@ result = pipeline.fullAnnotate(text)
## Results
```bash
-Results
-
-
-Results
-
-
-
+---------------+--------+
|chunks |entities|
+---------------+--------+
@@ -145,13 +89,6 @@ Results
|ليلى |PATIENT |
|35 |AGE |
+---------------+--------+
-
-
-
-{:.model-param}
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-17-ner_deid_subentity_pipeline_de.md b/docs/_posts/C-K-Loan/2023-06-17-ner_deid_subentity_pipeline_de.md
index e5063937d5..8e0372f37d 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-ner_deid_subentity_pipeline_de.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-ner_deid_subentity_pipeline_de.md
@@ -34,6 +34,7 @@ This pretrained pipeline is built on the top of [ner_deid_subentity](https://nlp
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -62,40 +63,10 @@ nlu.load("de.deid.ner_subentity.pipeline").predict("""Michael Berger wird am Mor
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_deid_subentity_pipeline", "de", "clinical/models")
-
-text = '''Michael Berger wird am Morgen des 12 Dezember 2018 ins St. Elisabeth-Krankenhaus in Bad Kissingen eingeliefert. Herr Berger ist 76 Jahre alt und hat zu viel Wasser in den Beinen.'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("ner_deid_subentity_pipeline", "de", "clinical/models")
-
-val text = "Michael Berger wird am Morgen des 12 Dezember 2018 ins St. Elisabeth-Krankenhaus in Bad Kissingen eingeliefert. Herr Berger ist 76 Jahre alt und hat zu viel Wasser in den Beinen."
-
-val result = pipeline.fullAnnotate(text)
-```
-
-{:.nlu-block}
-```python
-import nlu
-nlu.load("de.deid.ner_subentity.pipeline").predict("""Michael Berger wird am Morgen des 12 Dezember 2018 ins St. Elisabeth-Krankenhaus in Bad Kissingen eingeliefert. Herr Berger ist 76 Jahre alt und hat zu viel Wasser in den Beinen.""")
-```
-
## Results
```bash
-Results
-
-
| | ner_chunks | begin | end | ner_label | confidence |
|---:|:----------------------|--------:|------:|:------------|-------------:|
| 0 | Michael Berger | 0 | 13 | PATIENT | 0.99685 |
@@ -104,9 +75,6 @@ Results
| 3 | Bad Kissingen | 84 | 96 | CITY | 0.69685 |
| 4 | Berger | 117 | 122 | PATIENT | 0.5764 |
| 5 | 76 | 128 | 129 | AGE | 1 |
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-17-ner_deid_subentity_pipeline_it.md b/docs/_posts/C-K-Loan/2023-06-17-ner_deid_subentity_pipeline_it.md
index 53453fc64a..ccf6fea7e5 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-ner_deid_subentity_pipeline_it.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-ner_deid_subentity_pipeline_it.md
@@ -34,50 +34,7 @@ This pretrained pipeline is built on the top of [ner_deid_subentity](https://nlp
{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_deid_subentity_pipeline", "it", "clinical/models")
-
-text = '''Ho visto Gastone Montanariello (49 anni) riferito all' Ospedale San Camillo per diabete mal controllato con sintomi risalenti a marzo 2015.'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-val pipeline = new PretrainedPipeline("ner_deid_subentity_pipeline", "it", "clinical/models")
-
-val text = "Ho visto Gastone Montanariello (49 anni) riferito all' Ospedale San Camillo per diabete mal controllato con sintomi risalenti a marzo 2015."
-
-val result = pipeline.fullAnnotate(text)
-```
-
-
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_deid_subentity_pipeline", "it", "clinical/models")
-
-text = '''Ho visto Gastone Montanariello (49 anni) riferito all' Ospedale San Camillo per diabete mal controllato con sintomi risalenti a marzo 2015.'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("ner_deid_subentity_pipeline", "it", "clinical/models")
-
-val text = "Ho visto Gastone Montanariello (49 anni) riferito all' Ospedale San Camillo per diabete mal controllato con sintomi risalenti a marzo 2015."
-
-val result = pipeline.fullAnnotate(text)
-```
-
-
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -112,24 +69,12 @@ result = pipeline.fullAnnotate(text)
## Results
```bash
-Results
-
-
-Results
-
-
| | ner_chunks | begin | end | ner_label | confidence |
|---:|:----------------------|--------:|------:|:------------|:-------------|
| 0 | Gastone Montanariello | 9 | 29 | PATIENT | |
| 1 | 49 | 32 | 33 | AGE | |
| 2 | Ospedale San Camillo | 55 | 74 | HOSPITAL | |
| 3 | marzo 2015 | 128 | 137 | DATE | |
-
-
-{:.model-param}
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-17-ner_deid_subentity_pipeline_ro.md b/docs/_posts/C-K-Loan/2023-06-17-ner_deid_subentity_pipeline_ro.md
index a2c59f3f0d..b5caa4896d 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-ner_deid_subentity_pipeline_ro.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-ner_deid_subentity_pipeline_ro.md
@@ -34,70 +34,7 @@ This pretrained pipeline is built on the top of [ner_deid_subentity](https://nlp
{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-pipeline = PretrainedPipeline("ner_deid_subentity_pipeline", "ro", "clinical/models")
-
-text = '''Spitalul Pentru Ochi de Deal, Drumul Oprea Nr. 972 Vaslui, 737405 România
-Tel: +40(235)413773
-Data setului de analize: 25 May 2022 15:36:00
-Nume si Prenume : BUREAN MARIA, Varsta: 77
-Medic : Agota Evelyn Tımar
-C.N.P : 2450502264401'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("ner_deid_subentity_pipeline", "ro", "clinical/models")
-
-val text = "Spitalul Pentru Ochi de Deal, Drumul Oprea Nr. 972 Vaslui, 737405 România
-Tel: +40(235)413773
-Data setului de analize: 25 May 2022 15:36:00
-Nume si Prenume : BUREAN MARIA, Varsta: 77
-Medic : Agota Evelyn Tımar
-C.N.P : 2450502264401"
-
-val result = pipeline.fullAnnotate(text)
-```
-
-
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_deid_subentity_pipeline", "ro", "clinical/models")
-
-text = '''Spitalul Pentru Ochi de Deal, Drumul Oprea Nr. 972 Vaslui, 737405 România
-Tel: +40(235)413773
-Data setului de analize: 25 May 2022 15:36:00
-Nume si Prenume : BUREAN MARIA, Varsta: 77
-Medic : Agota Evelyn Tımar
-C.N.P : 2450502264401'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("ner_deid_subentity_pipeline", "ro", "clinical/models")
-
-val text = "Spitalul Pentru Ochi de Deal, Drumul Oprea Nr. 972 Vaslui, 737405 România
-Tel: +40(235)413773
-Data setului de analize: 25 May 2022 15:36:00
-Nume si Prenume : BUREAN MARIA, Varsta: 77
-Medic : Agota Evelyn Tımar
-C.N.P : 2450502264401"
-
-val result = pipeline.fullAnnotate(text)
-```
-
-
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -147,12 +84,6 @@ result = pipeline.fullAnnotate(text)
## Results
```bash
-Results
-
-
-Results
-
-
| | ner_chunks | begin | end | ner_label | confidence |
|---:|:-----------------------------|--------:|------:|:------------|-------------:|
| 0 | Spitalul Pentru Ochi de Deal | 0 | 27 | HOSPITAL | 0.5594 |
@@ -165,12 +96,6 @@ Results
| 7 | 77 | 180 | 181 | AGE | 1 |
| 8 | Agota Evelyn Tımar | 191 | 208 | DOCTOR | 0.8149 |
| 9 | 2450502264401 | 218 | 230 | IDNUM | 1 |
-
-
-{:.model-param}
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-17-ner_deid_synthetic_pipeline_en.md b/docs/_posts/C-K-Loan/2023-06-17-ner_deid_synthetic_pipeline_en.md
index 2bb06ce2f7..a79218fc23 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-ner_deid_synthetic_pipeline_en.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-ner_deid_synthetic_pipeline_en.md
@@ -34,50 +34,7 @@ This pretrained pipeline is built on the top of [ner_deid_synthetic](https://nlp
{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_deid_synthetic_pipeline", "en", "clinical/models")
-
-text = '''Record date : 2093-01-13 , David Hale , M.D . , Name : Hendrickson Ora , MR # 7194334 Date : 01/13/93 . PCP : Oliveira , 25 years old , Record date : 2079-11-09 . Cocke County Baptist Hospital , 0295 Keats Street , Phone 302-786-5227.'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-val pipeline = new PretrainedPipeline("ner_deid_synthetic_pipeline", "en", "clinical/models")
-
-val text = "Record date : 2093-01-13 , David Hale , M.D . , Name : Hendrickson Ora , MR # 7194334 Date : 01/13/93 . PCP : Oliveira , 25 years old , Record date : 2079-11-09 . Cocke County Baptist Hospital , 0295 Keats Street , Phone 302-786-5227."
-
-val result = pipeline.fullAnnotate(text)
-```
-
-
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_deid_synthetic_pipeline", "en", "clinical/models")
-
-text = '''Record date : 2093-01-13 , David Hale , M.D . , Name : Hendrickson Ora , MR # 7194334 Date : 01/13/93 . PCP : Oliveira , 25 years old , Record date : 2079-11-09 . Cocke County Baptist Hospital , 0295 Keats Street , Phone 302-786-5227.'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("ner_deid_synthetic_pipeline", "en", "clinical/models")
-
-val text = "Record date : 2093-01-13 , David Hale , M.D . , Name : Hendrickson Ora , MR # 7194334 Date : 01/13/93 . PCP : Oliveira , 25 years old , Record date : 2079-11-09 . Cocke County Baptist Hospital , 0295 Keats Street , Phone 302-786-5227."
-
-val result = pipeline.fullAnnotate(text)
-```
-
-
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -112,12 +69,6 @@ result = pipeline.fullAnnotate(text)
## Results
```bash
-Results
-
-
-Results
-
-
| | ner_chunks | begin | end | ner_label | confidence |
|---:|:------------------------------|--------:|------:|:------------|-------------:|
| 0 | 2093-01-13 | 14 | 23 | DATE | 1 |
@@ -131,12 +82,6 @@ Results
| 8 | Cocke County Baptist Hospital | 163 | 191 | LOCATION | 0.968825 |
| 9 | 0295 Keats Street | 195 | 211 | LOCATION | 0.7831 |
| 10 | 302-786-5227 | 221 | 232 | CONTACT | 0.9985 |
-
-
-{:.model-param}
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-17-ner_deidentify_dl_pipeline_en.md b/docs/_posts/C-K-Loan/2023-06-17-ner_deidentify_dl_pipeline_en.md
index 0af6f645d2..d0b89fc368 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-ner_deidentify_dl_pipeline_en.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-ner_deidentify_dl_pipeline_en.md
@@ -34,6 +34,7 @@ This pretrained pipeline is built on the top of [ner_deidentify_dl](https://nlp.
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -62,40 +63,10 @@ nlu.load("en.med_ner.deidentify.pipeline").predict("""Record date : 2093-01-13 ,
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_deidentify_dl_pipeline", "en", "clinical/models")
-
-text = '''Record date : 2093-01-13 , David Hale , M.D . , Name : Hendrickson Ora , MR # 7194334 Date : 01/13/93 . PCP : Oliveira , 25 years old , Record date : 2079-11-09 . Cocke County Baptist Hospital , 0295 Keats Street , Phone 302-786-5227.'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("ner_deidentify_dl_pipeline", "en", "clinical/models")
-
-val text = "Record date : 2093-01-13 , David Hale , M.D . , Name : Hendrickson Ora , MR # 7194334 Date : 01/13/93 . PCP : Oliveira , 25 years old , Record date : 2079-11-09 . Cocke County Baptist Hospital , 0295 Keats Street , Phone 302-786-5227."
-
-val result = pipeline.fullAnnotate(text)
-```
-
-{:.nlu-block}
-```python
-import nlu
-nlu.load("en.med_ner.deidentify.pipeline").predict("""Record date : 2093-01-13 , David Hale , M.D . , Name : Hendrickson Ora , MR # 7194334 Date : 01/13/93 . PCP : Oliveira , 25 years old , Record date : 2079-11-09 . Cocke County Baptist Hospital , 0295 Keats Street , Phone 302-786-5227.""")
-```
-
## Results
```bash
-Results
-
-
| | ner_chunks | begin | end | ner_label | confidence |
|---:|:------------------------------|--------:|------:|:--------------|-------------:|
| 0 | 2093-01-13 | 14 | 23 | DATE | 0.9999 |
@@ -109,9 +80,6 @@ Results
| 8 | Cocke County Baptist Hospital | 163 | 191 | HOSPITAL | 0.9466 |
| 9 | Keats Street | 200 | 211 | STREET | 0.91485 |
| 10 | 302-786-5227 | 221 | 232 | PHONE | 0.7415 |
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-17-ner_diag_proc_pipeline_es.md b/docs/_posts/C-K-Loan/2023-06-17-ner_diag_proc_pipeline_es.md
index f919a03edb..83bfbb0af7 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-ner_diag_proc_pipeline_es.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-ner_diag_proc_pipeline_es.md
@@ -34,50 +34,7 @@ This pretrained pipeline is built on the top of [ner_diag_proc](https://nlp.john
{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_diag_proc_pipeline", "es", "clinical/models")
-
-text = '''HISTORIA DE ENFERMEDAD ACTUAL: El Sr. Smith es un hombre blanco veterano de 60 años con múltiples comorbilidades, que tiene antecedentes de cáncer de vejiga diagnosticado hace aproximadamente dos años por el Hospital VA. Allí se sometió a una resección. Debía ser ingresado en el Hospital de Día para una cistectomía. Fue visto en la Clínica de Urología y Clínica de Radiología el 02/04/2003. CURSO DE HOSPITAL: El Sr. Smith se presentó en el Hospital de Día antes de la cirugía de Urología. En evaluación, EKG, ecocardiograma fue anormal, se obtuvo una consulta de Cardiología. Luego se procedió a una resonancia magnética de estrés con adenosina cardíaca, la misma fue positiva para isquemia inducible, infarto subendocárdico inferolateral leve a moderado con isquemia peri-infarto. Además, se observa isquemia inducible en el tabique lateral inferior. El Sr. Smith se sometió a un cateterismo del corazón izquierdo, que reveló una enfermedad de las arterias coronarias de dos vasos. La RCA, proximal estaba estenosada en un 95% y la distal en un 80% estenosada. La LAD media estaba estenosada en un 85% y la LAD distal estaba estenosada en un 85%. Se colocaron cuatro stents de metal desnudo Multi-Link Vision para disminuir las cuatro lesiones al 0%. Después de la intervención, el Sr. Smith fue admitido en 7 Ardmore Tower bajo el Servicio de Cardiología bajo la dirección del Dr. Hart. El Sr. Smith tuvo un curso hospitalario post-intervención sin complicaciones. Se mantuvo estable para el alta hospitalaria el 07/02/2003 con instrucciones de tomar Plavix diariamente durante un mes y Urología está al tanto de lo mismo.'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-val pipeline = new PretrainedPipeline("ner_diag_proc_pipeline", "es", "clinical/models")
-
-val text = "HISTORIA DE ENFERMEDAD ACTUAL: El Sr. Smith es un hombre blanco veterano de 60 años con múltiples comorbilidades, que tiene antecedentes de cáncer de vejiga diagnosticado hace aproximadamente dos años por el Hospital VA. Allí se sometió a una resección. Debía ser ingresado en el Hospital de Día para una cistectomía. Fue visto en la Clínica de Urología y Clínica de Radiología el 02/04/2003. CURSO DE HOSPITAL: El Sr. Smith se presentó en el Hospital de Día antes de la cirugía de Urología. En evaluación, EKG, ecocardiograma fue anormal, se obtuvo una consulta de Cardiología. Luego se procedió a una resonancia magnética de estrés con adenosina cardíaca, la misma fue positiva para isquemia inducible, infarto subendocárdico inferolateral leve a moderado con isquemia peri-infarto. Además, se observa isquemia inducible en el tabique lateral inferior. El Sr. Smith se sometió a un cateterismo del corazón izquierdo, que reveló una enfermedad de las arterias coronarias de dos vasos. La RCA, proximal estaba estenosada en un 95% y la distal en un 80% estenosada. La LAD media estaba estenosada en un 85% y la LAD distal estaba estenosada en un 85%. Se colocaron cuatro stents de metal desnudo Multi-Link Vision para disminuir las cuatro lesiones al 0%. Después de la intervención, el Sr. Smith fue admitido en 7 Ardmore Tower bajo el Servicio de Cardiología bajo la dirección del Dr. Hart. El Sr. Smith tuvo un curso hospitalario post-intervención sin complicaciones. Se mantuvo estable para el alta hospitalaria el 07/02/2003 con instrucciones de tomar Plavix diariamente durante un mes y Urología está al tanto de lo mismo."
-
-val result = pipeline.fullAnnotate(text)
-```
-
-
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_diag_proc_pipeline", "es", "clinical/models")
-
-text = '''HISTORIA DE ENFERMEDAD ACTUAL: El Sr. Smith es un hombre blanco veterano de 60 años con múltiples comorbilidades, que tiene antecedentes de cáncer de vejiga diagnosticado hace aproximadamente dos años por el Hospital VA. Allí se sometió a una resección. Debía ser ingresado en el Hospital de Día para una cistectomía. Fue visto en la Clínica de Urología y Clínica de Radiología el 02/04/2003. CURSO DE HOSPITAL: El Sr. Smith se presentó en el Hospital de Día antes de la cirugía de Urología. En evaluación, EKG, ecocardiograma fue anormal, se obtuvo una consulta de Cardiología. Luego se procedió a una resonancia magnética de estrés con adenosina cardíaca, la misma fue positiva para isquemia inducible, infarto subendocárdico inferolateral leve a moderado con isquemia peri-infarto. Además, se observa isquemia inducible en el tabique lateral inferior. El Sr. Smith se sometió a un cateterismo del corazón izquierdo, que reveló una enfermedad de las arterias coronarias de dos vasos. La RCA, proximal estaba estenosada en un 95% y la distal en un 80% estenosada. La LAD media estaba estenosada en un 85% y la LAD distal estaba estenosada en un 85%. Se colocaron cuatro stents de metal desnudo Multi-Link Vision para disminuir las cuatro lesiones al 0%. Después de la intervención, el Sr. Smith fue admitido en 7 Ardmore Tower bajo el Servicio de Cardiología bajo la dirección del Dr. Hart. El Sr. Smith tuvo un curso hospitalario post-intervención sin complicaciones. Se mantuvo estable para el alta hospitalaria el 07/02/2003 con instrucciones de tomar Plavix diariamente durante un mes y Urología está al tanto de lo mismo.'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("ner_diag_proc_pipeline", "es", "clinical/models")
-
-val text = "HISTORIA DE ENFERMEDAD ACTUAL: El Sr. Smith es un hombre blanco veterano de 60 años con múltiples comorbilidades, que tiene antecedentes de cáncer de vejiga diagnosticado hace aproximadamente dos años por el Hospital VA. Allí se sometió a una resección. Debía ser ingresado en el Hospital de Día para una cistectomía. Fue visto en la Clínica de Urología y Clínica de Radiología el 02/04/2003. CURSO DE HOSPITAL: El Sr. Smith se presentó en el Hospital de Día antes de la cirugía de Urología. En evaluación, EKG, ecocardiograma fue anormal, se obtuvo una consulta de Cardiología. Luego se procedió a una resonancia magnética de estrés con adenosina cardíaca, la misma fue positiva para isquemia inducible, infarto subendocárdico inferolateral leve a moderado con isquemia peri-infarto. Además, se observa isquemia inducible en el tabique lateral inferior. El Sr. Smith se sometió a un cateterismo del corazón izquierdo, que reveló una enfermedad de las arterias coronarias de dos vasos. La RCA, proximal estaba estenosada en un 95% y la distal en un 80% estenosada. La LAD media estaba estenosada en un 85% y la LAD distal estaba estenosada en un 85%. Se colocaron cuatro stents de metal desnudo Multi-Link Vision para disminuir las cuatro lesiones al 0%. Después de la intervención, el Sr. Smith fue admitido en 7 Ardmore Tower bajo el Servicio de Cardiología bajo la dirección del Dr. Hart. El Sr. Smith tuvo un curso hospitalario post-intervención sin complicaciones. Se mantuvo estable para el alta hospitalaria el 07/02/2003 con instrucciones de tomar Plavix diariamente durante un mes y Urología está al tanto de lo mismo."
-
-val result = pipeline.fullAnnotate(text)
-```
-
-
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -112,12 +69,6 @@ result = pipeline.fullAnnotate(text)
## Results
```bash
-Results
-
-
-Results
-
-
| | ner_chunk | begin | end | ner_label | confidence |
|---:|:--------------------------------------|--------:|------:|:--------------|-------------:|
| 0 | ENFERMEDAD | 12 | 21 | DIAGNOSTICO | 0.9989 |
@@ -131,12 +82,6 @@ Results
| 8 | enfermedad de las arterias coronarias | 934 | 970 | DIAGNOSTICO | 0.75594 |
| 9 | estenosada | 1010 | 1019 | DIAGNOSTICO | 0.9288 |
| 10 | LAD | 1068 | 1070 | DIAGNOSTICO | 0.9365 |
-
-
-{:.model-param}
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-17-ner_diseases_biobert_pipeline_en.md b/docs/_posts/C-K-Loan/2023-06-17-ner_diseases_biobert_pipeline_en.md
index 17d7911887..6bd1a343c8 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-ner_diseases_biobert_pipeline_en.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-ner_diseases_biobert_pipeline_en.md
@@ -34,6 +34,7 @@ This pretrained pipeline is built on the top of [ner_diseases_biobert](https://n
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -62,49 +63,16 @@ nlu.load("en.med_ner.diseases_biobert.pipeline").predict("""Indomethacin resulte
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_diseases_biobert_pipeline", "en", "clinical/models")
-
-text = '''Indomethacin resulted in histopathologic findings typical of interstitial cystitis, such as leaky bladder epithelium and mucosal mastocytosis. The true incidence of nonsteroidal anti-inflammatory drug-induced cystitis in humans must be clarified by prospective clinical trials. An open-label phase II study of low-dose thalidomide in androgen-independent prostate cancer.'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("ner_diseases_biobert_pipeline", "en", "clinical/models")
-
-val text = "Indomethacin resulted in histopathologic findings typical of interstitial cystitis, such as leaky bladder epithelium and mucosal mastocytosis. The true incidence of nonsteroidal anti-inflammatory drug-induced cystitis in humans must be clarified by prospective clinical trials. An open-label phase II study of low-dose thalidomide in androgen-independent prostate cancer."
-
-val result = pipeline.fullAnnotate(text)
-```
-
-{:.nlu-block}
-```python
-import nlu
-nlu.load("en.med_ner.diseases_biobert.pipeline").predict("""Indomethacin resulted in histopathologic findings typical of interstitial cystitis, such as leaky bladder epithelium and mucosal mastocytosis. The true incidence of nonsteroidal anti-inflammatory drug-induced cystitis in humans must be clarified by prospective clinical trials. An open-label phase II study of low-dose thalidomide in androgen-independent prostate cancer.""")
-```
-
## Results
```bash
-Results
-
-
| | ner_chunk | begin | end | ner_label | confidence |
|---:|:----------------------|--------:|------:|:------------|-------------:|
| 0 | interstitial cystitis | 61 | 81 | Disease | 0.99655 |
| 1 | mastocytosis | 129 | 140 | Disease | 0.8569 |
| 2 | cystitis | 209 | 216 | Disease | 0.9717 |
| 3 | prostate cancer | 355 | 369 | Disease | 0.85965 |
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-17-ner_diseases_large_pipeline_en.md b/docs/_posts/C-K-Loan/2023-06-17-ner_diseases_large_pipeline_en.md
index 1ee327c5c3..3371503917 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-ner_diseases_large_pipeline_en.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-ner_diseases_large_pipeline_en.md
@@ -34,6 +34,7 @@ This pretrained pipeline is built on the top of [ner_diseases_large](https://nlp
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -62,47 +63,13 @@ nlu.load("en.med_ner.diseases_large.pipeline").predict("""Detection of various o
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_diseases_large_pipeline", "en", "clinical/models")
-
-text = '''Detection of various other intracellular signaling proteins is also described. Genetic characterization of transactivation of the human T-cell leukemia virus type 1 promoter: Binding of Tax to Tax-responsive element 1 is mediated by the cyclic AMP-responsive members of the CREB/ATF family of transcription factors. To achieve a better understanding of the mechanism of transactivation by Tax of human T-cell leukemia virus type 1 Tax-responsive element 1 (TRE-1), we developed a genetic approach with Saccharomyces cerevisiae. We constructed a yeast reporter strain containing the lacZ gene under the control of the CYC1 promoter associated with three copies of TRE-1. Expression of either the cyclic AMP response element-binding protein (CREB) or CREB fused to the GAL4 activation domain (GAD) in this strain did not modify the expression of the reporter gene. Tax alone was also inactive.'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("ner_diseases_large_pipeline", "en", "clinical/models")
-
-val text = "Detection of various other intracellular signaling proteins is also described. Genetic characterization of transactivation of the human T-cell leukemia virus type 1 promoter: Binding of Tax to Tax-responsive element 1 is mediated by the cyclic AMP-responsive members of the CREB/ATF family of transcription factors. To achieve a better understanding of the mechanism of transactivation by Tax of human T-cell leukemia virus type 1 Tax-responsive element 1 (TRE-1), we developed a genetic approach with Saccharomyces cerevisiae. We constructed a yeast reporter strain containing the lacZ gene under the control of the CYC1 promoter associated with three copies of TRE-1. Expression of either the cyclic AMP response element-binding protein (CREB) or CREB fused to the GAL4 activation domain (GAD) in this strain did not modify the expression of the reporter gene. Tax alone was also inactive."
-
-val result = pipeline.fullAnnotate(text)
-```
-
-{:.nlu-block}
-```python
-import nlu
-nlu.load("en.med_ner.diseases_large.pipeline").predict("""Detection of various other intracellular signaling proteins is also described. Genetic characterization of transactivation of the human T-cell leukemia virus type 1 promoter: Binding of Tax to Tax-responsive element 1 is mediated by the cyclic AMP-responsive members of the CREB/ATF family of transcription factors. To achieve a better understanding of the mechanism of transactivation by Tax of human T-cell leukemia virus type 1 Tax-responsive element 1 (TRE-1), we developed a genetic approach with Saccharomyces cerevisiae. We constructed a yeast reporter strain containing the lacZ gene under the control of the CYC1 promoter associated with three copies of TRE-1. Expression of either the cyclic AMP response element-binding protein (CREB) or CREB fused to the GAL4 activation domain (GAD) in this strain did not modify the expression of the reporter gene. Tax alone was also inactive.""")
-```
-
-
## Results
```bash
-Results
-
-
| | ner_chunks | begin | end | ner_label | confidence |
|---:|:----------------|--------:|------:|:------------|-------------:|
| 0 | T-cell leukemia | 136 | 150 | Disease | 0.93585 |
| 1 | T-cell leukemia | 402 | 416 | Disease | 0.9567 |
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-17-ner_diseases_pipeline_en.md b/docs/_posts/C-K-Loan/2023-06-17-ner_diseases_pipeline_en.md
index bb1d95de3a..a382e4d0d4 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-ner_diseases_pipeline_en.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-ner_diseases_pipeline_en.md
@@ -34,6 +34,7 @@ This pretrained pipeline is built on the top of [ner_diseases](https://nlp.johns
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -62,47 +63,14 @@ nlu.load("en.med_ner.diseases.pipeline").predict("""Detection of various other i
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_diseases_pipeline", "en", "clinical/models")
-
-text = '''Detection of various other intracellular signaling proteins is also described. Genetic characterization of transactivation of the human T-cell leukemia virus type 1 promoter: Binding of Tax to Tax-responsive element 1 is mediated by the cyclic AMP-responsive members of the CREB/ATF family of transcription factors. To achieve a better understanding of the mechanism of transactivation by Tax of human T-cell leukemia virus type 1 Tax-responsive element 1 (TRE-1), we developed a genetic approach with Saccharomyces cerevisiae. We constructed a yeast reporter strain containing the lacZ gene under the control of the CYC1 promoter associated with three copies of TRE-1. Expression of either the cyclic AMP response element-binding protein (CREB) or CREB fused to the GAL4 activation domain (GAD) in this strain did not modify the expression of the reporter gene. Tax alone was also inactive.'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("ner_diseases_pipeline", "en", "clinical/models")
-
-val text = "Detection of various other intracellular signaling proteins is also described. Genetic characterization of transactivation of the human T-cell leukemia virus type 1 promoter: Binding of Tax to Tax-responsive element 1 is mediated by the cyclic AMP-responsive members of the CREB/ATF family of transcription factors. To achieve a better understanding of the mechanism of transactivation by Tax of human T-cell leukemia virus type 1 Tax-responsive element 1 (TRE-1), we developed a genetic approach with Saccharomyces cerevisiae. We constructed a yeast reporter strain containing the lacZ gene under the control of the CYC1 promoter associated with three copies of TRE-1. Expression of either the cyclic AMP response element-binding protein (CREB) or CREB fused to the GAL4 activation domain (GAD) in this strain did not modify the expression of the reporter gene. Tax alone was also inactive."
-
-val result = pipeline.fullAnnotate(text)
-```
-
-{:.nlu-block}
-```python
-import nlu
-nlu.load("en.med_ner.diseases.pipeline").predict("""Detection of various other intracellular signaling proteins is also described. Genetic characterization of transactivation of the human T-cell leukemia virus type 1 promoter: Binding of Tax to Tax-responsive element 1 is mediated by the cyclic AMP-responsive members of the CREB/ATF family of transcription factors. To achieve a better understanding of the mechanism of transactivation by Tax of human T-cell leukemia virus type 1 Tax-responsive element 1 (TRE-1), we developed a genetic approach with Saccharomyces cerevisiae. We constructed a yeast reporter strain containing the lacZ gene under the control of the CYC1 promoter associated with three copies of TRE-1. Expression of either the cyclic AMP response element-binding protein (CREB) or CREB fused to the GAL4 activation domain (GAD) in this strain did not modify the expression of the reporter gene. Tax alone was also inactive.""")
-```
-
## Results
```bash
-Results
-
-
| | ner_chunk | begin | end | ner_label | confidence |
|---:|:----------------|--------:|------:|:------------|-------------:|
| 0 | T-cell leukemia | 136 | 150 | Disease | 0.92015 |
| 1 | T-cell leukemia | 402 | 416 | Disease | 0.94145 |
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-17-ner_drugprot_clinical_pipeline_en.md b/docs/_posts/C-K-Loan/2023-06-17-ner_drugprot_clinical_pipeline_en.md
index f885985acd..defa3e2d17 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-ner_drugprot_clinical_pipeline_en.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-ner_drugprot_clinical_pipeline_en.md
@@ -34,6 +34,7 @@ This pretrained pipeline is built on the top of [ner_drugprot_clinical](https://
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -62,47 +63,15 @@ nlu.load("en.med_ner.clinical_drugprot.pipeline").predict("""Anabolic effects of
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_drugprot_clinical_pipeline", "en", "clinical/models")
-
-text = '''Anabolic effects of clenbuterol on skeletal muscle are mediated by beta 2-adrenoceptor activation.'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("ner_drugprot_clinical_pipeline", "en", "clinical/models")
-
-val text = "Anabolic effects of clenbuterol on skeletal muscle are mediated by beta 2-adrenoceptor activation."
-
-val result = pipeline.fullAnnotate(text)
-```
-{:.nlu-block}
-```python
-import nlu
-nlu.load("en.med_ner.clinical_drugprot.pipeline").predict("""Anabolic effects of clenbuterol on skeletal muscle are mediated by beta 2-adrenoceptor activation.""")
-```
-
## Results
```bash
-Results
-
-
| | ner_chunks | begin | end | ner_label | confidence |
|---:|:--------------------|--------:|------:|:------------|-------------:|
| 0 | clenbuterol | 20 | 30 | CHEMICAL | 0.9691 |
| 1 | beta 2-adrenoceptor | 67 | 85 | GENE | 0.89855 |
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-17-ner_drugs_greedy_pipeline_en.md b/docs/_posts/C-K-Loan/2023-06-17-ner_drugs_greedy_pipeline_en.md
index 93c934e0e2..36c3f6f1dd 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-ner_drugs_greedy_pipeline_en.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-ner_drugs_greedy_pipeline_en.md
@@ -34,6 +34,7 @@ This pretrained pipeline is built on the top of [ner_drugs_greedy](https://nlp.j
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -62,47 +63,14 @@ nlu.load("en.med_ner.drugs_greedy.pipeline").predict("""DOSAGE AND ADMINISTRATIO
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_drugs_greedy_pipeline", "en", "clinical/models")
-
-text = '''DOSAGE AND ADMINISTRATION The initial dosage of hydrocortisone tablets may vary from 20 mg to 240 mg of hydrocortisone per day depending on the specific disease entity being treated.'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("ner_drugs_greedy_pipeline", "en", "clinical/models")
-
-val text = "DOSAGE AND ADMINISTRATION The initial dosage of hydrocortisone tablets may vary from 20 mg to 240 mg of hydrocortisone per day depending on the specific disease entity being treated."
-
-val result = pipeline.fullAnnotate(text)
-```
-
-{:.nlu-block}
-```python
-import nlu
-nlu.load("en.med_ner.drugs_greedy.pipeline").predict("""DOSAGE AND ADMINISTRATION The initial dosage of hydrocortisone tablets may vary from 20 mg to 240 mg of hydrocortisone per day depending on the specific disease entity being treated.""")
-```
-
## Results
```bash
-Results
-
-
| | ner_chunk | begin | end | ner_label | confidence |
|---:|:----------------------------------|--------:|------:|:------------|-------------:|
| 0 | hydrocortisone tablets | 48 | 69 | DRUG | 0.9923 |
| 1 | 20 mg to 240 mg of hydrocortisone | 85 | 117 | DRUG | 0.7361 |
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-17-ner_drugs_large_pipeline_en.md b/docs/_posts/C-K-Loan/2023-06-17-ner_drugs_large_pipeline_en.md
index fde5f979f9..10ee6d55d1 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-ner_drugs_large_pipeline_en.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-ner_drugs_large_pipeline_en.md
@@ -34,6 +34,7 @@ This pretrained pipeline is built on the top of [ner_drugs_large](https://nlp.jo
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -62,40 +63,9 @@ nlu.load("en.med_ner.drugs_large.pipeline").predict("""The patient is a 40-year-
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_drugs_large_pipeline", "en", "clinical/models")
-
-text = '''The patient is a 40-year-old white male who presents with a chief complaint of 'chest pain'. The patient is diabetic and has a prior history of coronary artery disease. The patient presents today stating that his chest pain started yesterday evening and has been somewhat intermittent. He has been advised Aspirin 81 milligrams QDay. Humulin N. insulin 50 units in a.m. HCTZ 50 mg QDay. Nitroglycerin 1/150 sublingually PRN chest pain..'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("ner_drugs_large_pipeline", "en", "clinical/models")
-
-val text = "The patient is a 40-year-old white male who presents with a chief complaint of 'chest pain'. The patient is diabetic and has a prior history of coronary artery disease. The patient presents today stating that his chest pain started yesterday evening and has been somewhat intermittent. He has been advised Aspirin 81 milligrams QDay. Humulin N. insulin 50 units in a.m. HCTZ 50 mg QDay. Nitroglycerin 1/150 sublingually PRN chest pain.."
-
-val result = pipeline.fullAnnotate(text)
-```
-
-{:.nlu-block}
-```python
-import nlu
-nlu.load("en.med_ner.drugs_large.pipeline").predict("""The patient is a 40-year-old white male who presents with a chief complaint of 'chest pain'. The patient is diabetic and has a prior history of coronary artery disease. The patient presents today stating that his chest pain started yesterday evening and has been somewhat intermittent. He has been advised Aspirin 81 milligrams QDay. Humulin N. insulin 50 units in a.m. HCTZ 50 mg QDay. Nitroglycerin 1/150 sublingually PRN chest pain..""")
-```
-
-
## Results
```bash
-Results
-
-
| | ner_chunk | begin | end | ner_label | confidence |
|---:|:---------------------------------|--------:|------:|:------------|-------------:|
| 0 | Aspirin 81 milligrams | 306 | 326 | DRUG | 0.8401 |
@@ -103,9 +73,6 @@ Results
| 2 | insulin 50 units | 345 | 360 | DRUG | 0.847067 |
| 3 | HCTZ 50 mg | 370 | 379 | DRUG | 0.875567 |
| 4 | Nitroglycerin 1/150 sublingually | 387 | 418 | DRUG | 0.845967 |
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-17-ner_drugs_pipeline_en.md b/docs/_posts/C-K-Loan/2023-06-17-ner_drugs_pipeline_en.md
index e34663f4bc..a0862c2719 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-ner_drugs_pipeline_en.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-ner_drugs_pipeline_en.md
@@ -34,6 +34,7 @@ This pretrained pipeline is built on the top of [ner_drugs](https://nlp.johnsnow
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -62,40 +63,11 @@ nlu.load("en.med_ner.drugs.pipeline").predict("""The human KCNJ9 (Kir 3.3, GIRK3
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_drugs_pipeline", "en", "clinical/models")
-
-text = '''The human KCNJ9 (Kir 3.3, GIRK3) is a member of the G-protein-activated inwardly rectifying potassium (GIRK) channel family. Here we describe the genomicorganization of the KCNJ9 locus on chromosome 1q21-23 as a candidate gene forType II diabetes mellitus in the Pima Indian population. The gene spansapproximately 7.6 kb and contains one noncoding and two coding exons separated byapproximately 2.2 and approximately 2.6 kb introns, respectively. We identified14 single nucleotide polymorphisms (SNPs), including one that predicts aVal366Ala substitution, and an 8 base-pair (bp) insertion/deletion. Ourexpression studies revealed the presence of the transcript in various humantissues including pancreas, and two major insulin-responsive tissues: fat andskeletal muscle. The characterization of the KCNJ9 gene should facilitate furtherstudies on the function of the KCNJ9 protein and allow evaluation of thepotential role of the locus in Type II diabetes.BACKGROUND: At present, it is one of the most important issues for the treatment of breast cancer to develop the standard therapy for patients previously treated with anthracyclines and taxanes. With the objective of determining the usefulnessof vinorelbine monotherapy in patients with advanced or recurrent breast cancerafter standard therapy, we evaluated the efficacy and safety of vinorelbine inpatients previously treated with anthracyclines and taxanes.'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("ner_drugs_pipeline", "en", "clinical/models")
-
-val text = "The human KCNJ9 (Kir 3.3, GIRK3) is a member of the G-protein-activated inwardly rectifying potassium (GIRK) channel family. Here we describe the genomicorganization of the KCNJ9 locus on chromosome 1q21-23 as a candidate gene forType II diabetes mellitus in the Pima Indian population. The gene spansapproximately 7.6 kb and contains one noncoding and two coding exons separated byapproximately 2.2 and approximately 2.6 kb introns, respectively. We identified14 single nucleotide polymorphisms (SNPs), including one that predicts aVal366Ala substitution, and an 8 base-pair (bp) insertion/deletion. Ourexpression studies revealed the presence of the transcript in various humantissues including pancreas, and two major insulin-responsive tissues: fat andskeletal muscle. The characterization of the KCNJ9 gene should facilitate furtherstudies on the function of the KCNJ9 protein and allow evaluation of thepotential role of the locus in Type II diabetes.BACKGROUND: At present, it is one of the most important issues for the treatment of breast cancer to develop the standard therapy for patients previously treated with anthracyclines and taxanes. With the objective of determining the usefulnessof vinorelbine monotherapy in patients with advanced or recurrent breast cancerafter standard therapy, we evaluated the efficacy and safety of vinorelbine inpatients previously treated with anthracyclines and taxanes."
-
-val result = pipeline.fullAnnotate(text)
-```
-{:.nlu-block}
-```python
-import nlu
-nlu.load("en.med_ner.drugs.pipeline").predict("""The human KCNJ9 (Kir 3.3, GIRK3) is a member of the G-protein-activated inwardly rectifying potassium (GIRK) channel family. Here we describe the genomicorganization of the KCNJ9 locus on chromosome 1q21-23 as a candidate gene forType II diabetes mellitus in the Pima Indian population. The gene spansapproximately 7.6 kb and contains one noncoding and two coding exons separated byapproximately 2.2 and approximately 2.6 kb introns, respectively. We identified14 single nucleotide polymorphisms (SNPs), including one that predicts aVal366Ala substitution, and an 8 base-pair (bp) insertion/deletion. Ourexpression studies revealed the presence of the transcript in various humantissues including pancreas, and two major insulin-responsive tissues: fat andskeletal muscle. The characterization of the KCNJ9 gene should facilitate furtherstudies on the function of the KCNJ9 protein and allow evaluation of thepotential role of the locus in Type II diabetes.BACKGROUND: At present, it is one of the most important issues for the treatment of breast cancer to develop the standard therapy for patients previously treated with anthracyclines and taxanes. With the objective of determining the usefulnessof vinorelbine monotherapy in patients with advanced or recurrent breast cancerafter standard therapy, we evaluated the efficacy and safety of vinorelbine inpatients previously treated with anthracyclines and taxanes.""")
-```
-
## Results
```bash
-Results
-
-
| | ner_chunk | begin | end | ner_label | confidence |
|---:|:---------------|--------:|------:|:------------|-------------:|
| 0 | potassium | 92 | 100 | DrugChem | 0.5346 |
@@ -105,9 +77,6 @@ Results
| 4 | vinorelbine | 1343 | 1353 | DrugChem | 0.9815 |
| 5 | anthracyclines | 1390 | 1403 | DrugChem | 0.9447 |
| 6 | taxanes | 1409 | 1415 | DrugChem | 0.6213 |
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-17-ner_eu_clinical_case_pipeline_en.md b/docs/_posts/C-K-Loan/2023-06-17-ner_eu_clinical_case_pipeline_en.md
index c0a38fed63..a1c50df0b7 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-ner_eu_clinical_case_pipeline_en.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-ner_eu_clinical_case_pipeline_en.md
@@ -34,58 +34,7 @@ This pretrained pipeline is built on the top of [ner_eu_clinical_case](https://n
{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_eu_clinical_case_pipeline", "en", "clinical/models")
-
-text = "
-A 3-year-old boy with autistic disorder on hospital of pediatric ward A at university hospital. He has no family history of illness or autistic spectrum disorder. The child was diagnosed with a severe communication disorder, with social interaction difficulties and sensory processing delay. Blood work was normal (thyroid-stimulating hormone (TSH), hemoglobin, mean corpuscular volume (MCV), and ferritin). Upper endoscopy also showed a submucosal tumor causing subtotal obstruction of the gastric outlet. Because a gastrointestinal stromal tumor was suspected, distal gastrectomy was performed. Histopathological examination revealed spindle cell proliferation in the submucosal layer.
-"
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("ner_eu_clinical_case_pipeline", "en", "clinical/models")
-
-val text = "
-A 3-year-old boy with autistic disorder on hospital of pediatric ward A at university hospital. He has no family history of illness or autistic spectrum disorder. The child was diagnosed with a severe communication disorder, with social interaction difficulties and sensory processing delay. Blood work was normal (thyroid-stimulating hormone (TSH), hemoglobin, mean corpuscular volume (MCV), and ferritin). Upper endoscopy also showed a submucosal tumor causing subtotal obstruction of the gastric outlet. Because a gastrointestinal stromal tumor was suspected, distal gastrectomy was performed. Histopathological examination revealed spindle cell proliferation in the submucosal layer.
-"
-
-val result = pipeline.fullAnnotate(text)
-```
-
-
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_eu_clinical_case_pipeline", "en", "clinical/models")
-
-text = "
-A 3-year-old boy with autistic disorder on hospital of pediatric ward A at university hospital. He has no family history of illness or autistic spectrum disorder. The child was diagnosed with a severe communication disorder, with social interaction difficulties and sensory processing delay. Blood work was normal (thyroid-stimulating hormone (TSH), hemoglobin, mean corpuscular volume (MCV), and ferritin). Upper endoscopy also showed a submucosal tumor causing subtotal obstruction of the gastric outlet. Because a gastrointestinal stromal tumor was suspected, distal gastrectomy was performed. Histopathological examination revealed spindle cell proliferation in the submucosal layer.
-"
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("ner_eu_clinical_case_pipeline", "en", "clinical/models")
-
-val text = "
-A 3-year-old boy with autistic disorder on hospital of pediatric ward A at university hospital. He has no family history of illness or autistic spectrum disorder. The child was diagnosed with a severe communication disorder, with social interaction difficulties and sensory processing delay. Blood work was normal (thyroid-stimulating hormone (TSH), hemoglobin, mean corpuscular volume (MCV), and ferritin). Upper endoscopy also showed a submucosal tumor causing subtotal obstruction of the gastric outlet. Because a gastrointestinal stromal tumor was suspected, distal gastrectomy was performed. Histopathological examination revealed spindle cell proliferation in the submucosal layer.
-"
-
-val result = pipeline.fullAnnotate(text)
-```
-
-
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -126,12 +75,6 @@ result = pipeline.fullAnnotate(text)
## Results
```bash
-Results
-
-
-Results
-
-
| | chunks | begin | end | entities | confidence |
|---:|:-------------------------------|--------:|------:|:-------------------|-------------:|
| 0 | A 3-year-old boy | 1 | 16 | patient | 0.733133 |
@@ -162,12 +105,6 @@ Results
| 25 | revealed | 628 | 635 | clinical_event | 0.9989 |
| 26 | spindle cell proliferation | 637 | 662 | clinical_condition | 0.4487 |
| 27 | the submucosal layer | 667 | 686 | bodypart | 0.523 |
-
-
-{:.model-param}
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-17-ner_eu_clinical_case_pipeline_es.md b/docs/_posts/C-K-Loan/2023-06-17-ner_eu_clinical_case_pipeline_es.md
index b7a950305f..408cd83b2c 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-ner_eu_clinical_case_pipeline_es.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-ner_eu_clinical_case_pipeline_es.md
@@ -34,58 +34,7 @@ This pretrained pipeline is built on the top of [ner_eu_clinical_case](https://n
{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_eu_clinical_case_pipeline", "es", "clinical/models")
-
-text = "
-Un niño de 3 años con trastorno autista en el hospital de la sala pediátrica A del hospital universitario. No tiene antecedentes familiares de enfermedad o trastorno del espectro autista. El niño fue diagnosticado con un trastorno de comunicación severo, con dificultades de interacción social y retraso en el procesamiento sensorial. Los análisis de sangre fueron normales (hormona estimulante de la tiroides (TSH), hemoglobina, volumen corpuscular medio (MCV) y ferritina). La endoscopia alta también mostró un tumor submucoso que causaba una obstrucción subtotal de la salida gástrica. Ante la sospecha de tumor del estroma gastrointestinal, se realizó gastrectomía distal. El examen histopatológico reveló proliferación de células fusiformes en la capa submucosa.
-"
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("ner_eu_clinical_case_pipeline", "es", "clinical/models")
-
-val text = "
-Un niño de 3 años con trastorno autista en el hospital de la sala pediátrica A del hospital universitario. No tiene antecedentes familiares de enfermedad o trastorno del espectro autista. El niño fue diagnosticado con un trastorno de comunicación severo, con dificultades de interacción social y retraso en el procesamiento sensorial. Los análisis de sangre fueron normales (hormona estimulante de la tiroides (TSH), hemoglobina, volumen corpuscular medio (MCV) y ferritina). La endoscopia alta también mostró un tumor submucoso que causaba una obstrucción subtotal de la salida gástrica. Ante la sospecha de tumor del estroma gastrointestinal, se realizó gastrectomía distal. El examen histopatológico reveló proliferación de células fusiformes en la capa submucosa.
-"
-
-val result = pipeline.fullAnnotate(text)
-```
-
-
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_eu_clinical_case_pipeline", "es", "clinical/models")
-
-text = "
-Un niño de 3 años con trastorno autista en el hospital de la sala pediátrica A del hospital universitario. No tiene antecedentes familiares de enfermedad o trastorno del espectro autista. El niño fue diagnosticado con un trastorno de comunicación severo, con dificultades de interacción social y retraso en el procesamiento sensorial. Los análisis de sangre fueron normales (hormona estimulante de la tiroides (TSH), hemoglobina, volumen corpuscular medio (MCV) y ferritina). La endoscopia alta también mostró un tumor submucoso que causaba una obstrucción subtotal de la salida gástrica. Ante la sospecha de tumor del estroma gastrointestinal, se realizó gastrectomía distal. El examen histopatológico reveló proliferación de células fusiformes en la capa submucosa.
-"
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("ner_eu_clinical_case_pipeline", "es", "clinical/models")
-
-val text = "
-Un niño de 3 años con trastorno autista en el hospital de la sala pediátrica A del hospital universitario. No tiene antecedentes familiares de enfermedad o trastorno del espectro autista. El niño fue diagnosticado con un trastorno de comunicación severo, con dificultades de interacción social y retraso en el procesamiento sensorial. Los análisis de sangre fueron normales (hormona estimulante de la tiroides (TSH), hemoglobina, volumen corpuscular medio (MCV) y ferritina). La endoscopia alta también mostró un tumor submucoso que causaba una obstrucción subtotal de la salida gástrica. Ante la sospecha de tumor del estroma gastrointestinal, se realizó gastrectomía distal. El examen histopatológico reveló proliferación de células fusiformes en la capa submucosa.
-"
-
-val result = pipeline.fullAnnotate(text)
-```
-
-
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -126,12 +75,6 @@ result = pipeline.fullAnnotate(text)
## Results
```bash
-Results
-
-
-Results
-
-
| | chunks | begin | end | entities | confidence |
|---:|:-----------------------------|--------:|------:|:-------------------|-------------:|
| 0 | Un niño de 3 años | 1 | 17 | patient | 0.68856 |
@@ -170,12 +113,6 @@ Results
| 33 | proliferación | 711 | 723 | clinical_event | 0.9996 |
| 34 | células fusiformes | 728 | 745 | bodypart | 0.7001 |
| 35 | la capa submucosa | 750 | 766 | bodypart | 0.641267 |
-
-
-{:.model-param}
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-17-ner_eu_clinical_case_pipeline_eu.md b/docs/_posts/C-K-Loan/2023-06-17-ner_eu_clinical_case_pipeline_eu.md
index 72fa750731..efaaa5907e 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-ner_eu_clinical_case_pipeline_eu.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-ner_eu_clinical_case_pipeline_eu.md
@@ -34,58 +34,7 @@ This pretrained pipeline is built on the top of [ner_eu_clinical_case](https://n
{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_eu_clinical_case_pipeline", "eu", "clinical/models")
-
-text = "
-3 urteko mutiko bat nahasmendu autistarekin unibertsitateko ospitaleko A pediatriako ospitalean. Ez du autismoaren espektroaren nahaste edo gaixotasun familiaren aurrekaririk. Mutilari komunikazio-nahaste larria diagnostikatu zioten, elkarrekintza sozialeko zailtasunak eta prozesamendu sentsorial atzeratua. Odol-analisiak normalak izan ziren (tiroidearen hormona estimulatzailea (TSH), hemoglobina, batez besteko bolumen corpuskularra (MCV) eta ferritina). Goiko endoskopiak mukosaren azpiko tumore bat ere erakutsi zuen, urdail-irteeren guztizko oztopoa eragiten zuena. Estroma gastrointestinalaren tumore baten susmoa ikusita, distaleko gastrektomia egin zen. Azterketa histopatologikoak agerian utzi zuen mukosaren azpiko zelulen ugaltzea.
-"
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("ner_eu_clinical_case_pipeline", "eu", "clinical/models")
-
-val text = "
-3 urteko mutiko bat nahasmendu autistarekin unibertsitateko ospitaleko A pediatriako ospitalean. Ez du autismoaren espektroaren nahaste edo gaixotasun familiaren aurrekaririk. Mutilari komunikazio-nahaste larria diagnostikatu zioten, elkarrekintza sozialeko zailtasunak eta prozesamendu sentsorial atzeratua. Odol-analisiak normalak izan ziren (tiroidearen hormona estimulatzailea (TSH), hemoglobina, batez besteko bolumen corpuskularra (MCV) eta ferritina). Goiko endoskopiak mukosaren azpiko tumore bat ere erakutsi zuen, urdail-irteeren guztizko oztopoa eragiten zuena. Estroma gastrointestinalaren tumore baten susmoa ikusita, distaleko gastrektomia egin zen. Azterketa histopatologikoak agerian utzi zuen mukosaren azpiko zelulen ugaltzea.
-"
-
-val result = pipeline.fullAnnotate(text)
-```
-
-
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_eu_clinical_case_pipeline", "eu", "clinical/models")
-
-text = "
-3 urteko mutiko bat nahasmendu autistarekin unibertsitateko ospitaleko A pediatriako ospitalean. Ez du autismoaren espektroaren nahaste edo gaixotasun familiaren aurrekaririk. Mutilari komunikazio-nahaste larria diagnostikatu zioten, elkarrekintza sozialeko zailtasunak eta prozesamendu sentsorial atzeratua. Odol-analisiak normalak izan ziren (tiroidearen hormona estimulatzailea (TSH), hemoglobina, batez besteko bolumen corpuskularra (MCV) eta ferritina). Goiko endoskopiak mukosaren azpiko tumore bat ere erakutsi zuen, urdail-irteeren guztizko oztopoa eragiten zuena. Estroma gastrointestinalaren tumore baten susmoa ikusita, distaleko gastrektomia egin zen. Azterketa histopatologikoak agerian utzi zuen mukosaren azpiko zelulen ugaltzea.
-"
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("ner_eu_clinical_case_pipeline", "eu", "clinical/models")
-
-val text = "
-3 urteko mutiko bat nahasmendu autistarekin unibertsitateko ospitaleko A pediatriako ospitalean. Ez du autismoaren espektroaren nahaste edo gaixotasun familiaren aurrekaririk. Mutilari komunikazio-nahaste larria diagnostikatu zioten, elkarrekintza sozialeko zailtasunak eta prozesamendu sentsorial atzeratua. Odol-analisiak normalak izan ziren (tiroidearen hormona estimulatzailea (TSH), hemoglobina, batez besteko bolumen corpuskularra (MCV) eta ferritina). Goiko endoskopiak mukosaren azpiko tumore bat ere erakutsi zuen, urdail-irteeren guztizko oztopoa eragiten zuena. Estroma gastrointestinalaren tumore baten susmoa ikusita, distaleko gastrektomia egin zen. Azterketa histopatologikoak agerian utzi zuen mukosaren azpiko zelulen ugaltzea.
-"
-
-val result = pipeline.fullAnnotate(text)
-```
-
-
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -126,12 +75,6 @@ result = pipeline.fullAnnotate(text)
## Results
```bash
-Results
-
-
-Results
-
-
| | chunks | begin | end | entities | confidence |
|---:|:-------------------------|--------:|------:|:-------------------|-------------:|
| 0 | 3 urteko mutiko bat | 1 | 19 | patient | 0.813975 |
@@ -175,12 +118,6 @@ Results
| 38 | utzi | 701 | 704 | clinical_event | 0.925 |
| 39 | mukosaren azpiko zelulen | 711 | 734 | bodypart | 0.754933 |
| 40 | ugaltzea | 736 | 743 | clinical_event | 0.9989 |
-
-
-{:.model-param}
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-17-ner_eu_clinical_case_pipeline_fr.md b/docs/_posts/C-K-Loan/2023-06-17-ner_eu_clinical_case_pipeline_fr.md
index d716e32757..8e747bfd99 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-ner_eu_clinical_case_pipeline_fr.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-ner_eu_clinical_case_pipeline_fr.md
@@ -34,58 +34,7 @@ This pretrained pipeline is built on the top of [ner_eu_clinical_case](https://n
{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_eu_clinical_case_pipeline", "fr", "clinical/models")
-
-text = "
-Un garçon de 3 ans atteint d'un trouble autistique à l'hôpital du service pédiatrique A de l'hôpital universitaire. Il n'a pas d'antécédents familiaux de troubles ou de maladies du spectre autistique. Le garçon a été diagnostiqué avec un trouble de communication sévère, avec des difficultés d'interaction sociale et un traitement sensoriel retardé. Les tests sanguins étaient normaux (thyréostimuline (TSH), hémoglobine, volume globulaire moyen (MCV) et ferritine). L'endoscopie haute a également montré une tumeur sous-muqueuse provoquant une obstruction subtotale de la sortie gastrique. Devant la suspicion d'une tumeur stromale gastro-intestinale, une gastrectomie distale a été réalisée. L'examen histopathologique a révélé une prolifération de cellules fusiformes dans la couche sous-muqueuse.
-"
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("ner_eu_clinical_case_pipeline", "fr", "clinical/models")
-
-val text = "
-Un garçon de 3 ans atteint d'un trouble autistique à l'hôpital du service pédiatrique A de l'hôpital universitaire. Il n'a pas d'antécédents familiaux de troubles ou de maladies du spectre autistique. Le garçon a été diagnostiqué avec un trouble de communication sévère, avec des difficultés d'interaction sociale et un traitement sensoriel retardé. Les tests sanguins étaient normaux (thyréostimuline (TSH), hémoglobine, volume globulaire moyen (MCV) et ferritine). L'endoscopie haute a également montré une tumeur sous-muqueuse provoquant une obstruction subtotale de la sortie gastrique. Devant la suspicion d'une tumeur stromale gastro-intestinale, une gastrectomie distale a été réalisée. L'examen histopathologique a révélé une prolifération de cellules fusiformes dans la couche sous-muqueuse.
-"
-
-val result = pipeline.fullAnnotate(text)
-```
-
-
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_eu_clinical_case_pipeline", "fr", "clinical/models")
-
-text = "
-Un garçon de 3 ans atteint d'un trouble autistique à l'hôpital du service pédiatrique A de l'hôpital universitaire. Il n'a pas d'antécédents familiaux de troubles ou de maladies du spectre autistique. Le garçon a été diagnostiqué avec un trouble de communication sévère, avec des difficultés d'interaction sociale et un traitement sensoriel retardé. Les tests sanguins étaient normaux (thyréostimuline (TSH), hémoglobine, volume globulaire moyen (MCV) et ferritine). L'endoscopie haute a également montré une tumeur sous-muqueuse provoquant une obstruction subtotale de la sortie gastrique. Devant la suspicion d'une tumeur stromale gastro-intestinale, une gastrectomie distale a été réalisée. L'examen histopathologique a révélé une prolifération de cellules fusiformes dans la couche sous-muqueuse.
-"
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("ner_eu_clinical_case_pipeline", "fr", "clinical/models")
-
-val text = "
-Un garçon de 3 ans atteint d'un trouble autistique à l'hôpital du service pédiatrique A de l'hôpital universitaire. Il n'a pas d'antécédents familiaux de troubles ou de maladies du spectre autistique. Le garçon a été diagnostiqué avec un trouble de communication sévère, avec des difficultés d'interaction sociale et un traitement sensoriel retardé. Les tests sanguins étaient normaux (thyréostimuline (TSH), hémoglobine, volume globulaire moyen (MCV) et ferritine). L'endoscopie haute a également montré une tumeur sous-muqueuse provoquant une obstruction subtotale de la sortie gastrique. Devant la suspicion d'une tumeur stromale gastro-intestinale, une gastrectomie distale a été réalisée. L'examen histopathologique a révélé une prolifération de cellules fusiformes dans la couche sous-muqueuse.
-"
-
-val result = pipeline.fullAnnotate(text)
-```
-
-
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -126,12 +75,6 @@ result = pipeline.fullAnnotate(text)
## Results
```bash
-Results
-
-
-Results
-
-
| | chunks | begin | end | entities | confidence |
|---:|:------------------------------------------------------|--------:|------:|:-------------------|-------------:|
| 0 | Un garçon de 3 ans | 1 | 18 | patient | 0.58786 |
@@ -166,12 +109,6 @@ Results
| 29 | prolifération | 735 | 747 | clinical_event | 0.6767 |
| 30 | cellules fusiformes | 752 | 770 | bodypart | 0.5233 |
| 31 | la couche sous-muqueuse | 777 | 799 | bodypart | 0.6755 |
-
-
-{:.model-param}
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-17-ner_eu_clinical_condition_pipeline_en.md b/docs/_posts/C-K-Loan/2023-06-17-ner_eu_clinical_condition_pipeline_en.md
index 0893542ef9..4ac7a3fa36 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-ner_eu_clinical_condition_pipeline_en.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-ner_eu_clinical_condition_pipeline_en.md
@@ -34,32 +34,7 @@ This pretrained pipeline is built on the top of [ner_eu_clinical_condition](http
{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_eu_clinical_condition_pipeline", "en", "clinical/models")
-
-text = "
-Hyperparathyroidism was considered upon the fourth occasion. The history of weakness and generalized joint pains were present. He also had history of epigastric pain diagnosed informally as gastritis. He had previously had open reduction and internal fixation for the initial two fractures under general anesthesia. He sustained mandibular fracture.
-"
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("ner_eu_clinical_condition_pipeline", "en", "clinical/models")
-val text = "
-Hyperparathyroidism was considered upon the fourth occasion. The history of weakness and generalized joint pains were present. He also had history of epigastric pain diagnosed informally as gastritis. He had previously had open reduction and internal fixation for the initial two fractures under general anesthesia. He sustained mandibular fracture.
-"
-
-val result = pipeline.fullAnnotate(text)
-```
-
-
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -87,9 +62,6 @@ val result = pipeline.fullAnnotate(text)
## Results
```bash
-Results
-
-
| | chunks | begin | end | entities | confidence |
|---:|:------------------------|--------:|------:|:-------------------|-------------:|
| 0 | Hyperparathyroidism | 1 | 19 | clinical_condition | 0.9375 |
@@ -100,9 +72,6 @@ Results
| 5 | fractures | 281 | 289 | clinical_condition | 0.9726 |
| 6 | anesthesia | 305 | 314 | clinical_condition | 0.991 |
| 7 | mandibular fracture | 330 | 348 | clinical_condition | 0.54925 |
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-17-ner_eu_clinical_condition_pipeline_es.md b/docs/_posts/C-K-Loan/2023-06-17-ner_eu_clinical_condition_pipeline_es.md
index c286fc9481..569095a533 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-ner_eu_clinical_condition_pipeline_es.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-ner_eu_clinical_condition_pipeline_es.md
@@ -34,58 +34,7 @@ This pretrained pipeline is built on the top of [ner_eu_clinical_condition](http
{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_eu_clinical_condition_pipeline", "es", "clinical/models")
-
-text = "
-La exploración abdominal revela una cicatriz de laparotomía media infraumbilical, la presencia de ruidos disminuidos, y dolor a la palpación de manera difusa sin claros signos de irritación peritoneal. No existen hernias inguinales o crurales.
-"
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("ner_eu_clinical_condition_pipeline", "es", "clinical/models")
-
-val text = "
-La exploración abdominal revela una cicatriz de laparotomía media infraumbilical, la presencia de ruidos disminuidos, y dolor a la palpación de manera difusa sin claros signos de irritación peritoneal. No existen hernias inguinales o crurales.
-"
-
-val result = pipeline.fullAnnotate(text)
-```
-
-
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_eu_clinical_condition_pipeline", "es", "clinical/models")
-
-text = "
-La exploración abdominal revela una cicatriz de laparotomía media infraumbilical, la presencia de ruidos disminuidos, y dolor a la palpación de manera difusa sin claros signos de irritación peritoneal. No existen hernias inguinales o crurales.
-"
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("ner_eu_clinical_condition_pipeline", "es", "clinical/models")
-
-val text = "
-La exploración abdominal revela una cicatriz de laparotomía media infraumbilical, la presencia de ruidos disminuidos, y dolor a la palpación de manera difusa sin claros signos de irritación peritoneal. No existen hernias inguinales o crurales.
-"
-
-val result = pipeline.fullAnnotate(text)
-```
-
-
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -126,12 +75,6 @@ result = pipeline.fullAnnotate(text)
## Results
```bash
-Results
-
-
-Results
-
-
| | chunks | begin | end | entities | confidence |
|---:|:---------------------|--------:|------:|:-------------------|-------------:|
| 0 | cicatriz | 37 | 44 | clinical_condition | 0.9883 |
@@ -139,12 +82,6 @@ Results
| 2 | signos | 170 | 175 | clinical_condition | 0.9862 |
| 3 | irritación | 180 | 189 | clinical_condition | 0.9975 |
| 4 | hernias inguinales | 214 | 231 | clinical_condition | 0.7543 |
-
-
-{:.model-param}
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-17-ner_eu_clinical_condition_pipeline_eu.md b/docs/_posts/C-K-Loan/2023-06-17-ner_eu_clinical_condition_pipeline_eu.md
index a2e1fbc0ce..6b4fa505b1 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-ner_eu_clinical_condition_pipeline_eu.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-ner_eu_clinical_condition_pipeline_eu.md
@@ -34,58 +34,7 @@ This pretrained pipeline is built on the top of [ner_eu_clinical_condition](http
{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_eu_clinical_condition_pipeline", "eu", "clinical/models")
-
-text = "
-Gertaera honetatik bi hilabetetara, umea Larrialdietako Zerbitzura dator 4 egunetan zehar buruko mina eta bekokiko hantura azaltzeagatik, sukarrik izan gabe. Miaketan, haztapen mingarria duen bekokiko hantura bigunaz gain, ez da beste zeinurik azaltzen. Polakiuria eta tenesmo arina ere izan zuen egun horretan hematuriarekin batera. Geroztik sintomarik gabe dago.
-"
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("ner_eu_clinical_condition_pipeline", "eu", "clinical/models")
-
-val text = "
-Gertaera honetatik bi hilabetetara, umea Larrialdietako Zerbitzura dator 4 egunetan zehar buruko mina eta bekokiko hantura azaltzeagatik, sukarrik izan gabe. Miaketan, haztapen mingarria duen bekokiko hantura bigunaz gain, ez da beste zeinurik azaltzen. Polakiuria eta tenesmo arina ere izan zuen egun horretan hematuriarekin batera. Geroztik sintomarik gabe dago.
-"
-
-val result = pipeline.fullAnnotate(text)
-```
-
-
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_eu_clinical_condition_pipeline", "eu", "clinical/models")
-
-text = "
-Gertaera honetatik bi hilabetetara, umea Larrialdietako Zerbitzura dator 4 egunetan zehar buruko mina eta bekokiko hantura azaltzeagatik, sukarrik izan gabe. Miaketan, haztapen mingarria duen bekokiko hantura bigunaz gain, ez da beste zeinurik azaltzen. Polakiuria eta tenesmo arina ere izan zuen egun horretan hematuriarekin batera. Geroztik sintomarik gabe dago.
-"
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("ner_eu_clinical_condition_pipeline", "eu", "clinical/models")
-
-val text = "
-Gertaera honetatik bi hilabetetara, umea Larrialdietako Zerbitzura dator 4 egunetan zehar buruko mina eta bekokiko hantura azaltzeagatik, sukarrik izan gabe. Miaketan, haztapen mingarria duen bekokiko hantura bigunaz gain, ez da beste zeinurik azaltzen. Polakiuria eta tenesmo arina ere izan zuen egun horretan hematuriarekin batera. Geroztik sintomarik gabe dago.
-"
-
-val result = pipeline.fullAnnotate(text)
-```
-
-
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -126,12 +75,6 @@ result = pipeline.fullAnnotate(text)
## Results
```bash
-Results
-
-
-Results
-
-
| | chunks | begin | end | entities | confidence |
|---:|:-----------|--------:|------:|:-------------------|-------------:|
| 0 | mina | 98 | 101 | clinical_condition | 0.8754 |
@@ -141,12 +84,6 @@ Results
| 4 | hantura | 203 | 209 | clinical_condition | 0.8805 |
| 5 | Polakiuria | 256 | 265 | clinical_condition | 0.6683 |
| 6 | sintomarik | 345 | 354 | clinical_condition | 0.9632 |
-
-
-{:.model-param}
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-17-ner_eu_clinical_condition_pipeline_fr.md b/docs/_posts/C-K-Loan/2023-06-17-ner_eu_clinical_condition_pipeline_fr.md
index 496ef4a521..7bd07a6aa9 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-ner_eu_clinical_condition_pipeline_fr.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-ner_eu_clinical_condition_pipeline_fr.md
@@ -34,62 +34,7 @@ This pretrained pipeline is built on the top of [ner_eu_clinical_condition](http
{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_eu_clinical_condition_pipeline", "fr", "clinical/models")
-
-text = "
-Il aurait présenté il y’ a environ 30 ans des ulcérations génitales non traitées spontanément guéries. L’interrogatoire retrouvait une toux sèche depuis trois mois, des douleurs rétro-sternales constrictives, une dyspnée stade III de la NYHA et un contexte d’ apyrexie. Sur ce tableau s’ est greffé des œdèmes des membres inférieurs puis un tableau d’ anasarque d’ où son hospitalisation en cardiologie pour décompensation cardiaque globale.
-
-"
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("ner_eu_clinical_condition_pipeline", "fr", "clinical/models")
-
-val text = "
-Il aurait présenté il y’ a environ 30 ans des ulcérations génitales non traitées spontanément guéries. L’interrogatoire retrouvait une toux sèche depuis trois mois, des douleurs rétro-sternales constrictives, une dyspnée stade III de la NYHA et un contexte d’ apyrexie. Sur ce tableau s’ est greffé des œdèmes des membres inférieurs puis un tableau d’ anasarque d’ où son hospitalisation en cardiologie pour décompensation cardiaque globale.
-
-"
-
-val result = pipeline.fullAnnotate(text)
-```
-
-
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_eu_clinical_condition_pipeline", "fr", "clinical/models")
-
-text = "
-Il aurait présenté il y’ a environ 30 ans des ulcérations génitales non traitées spontanément guéries. L’interrogatoire retrouvait une toux sèche depuis trois mois, des douleurs rétro-sternales constrictives, une dyspnée stade III de la NYHA et un contexte d’ apyrexie. Sur ce tableau s’ est greffé des œdèmes des membres inférieurs puis un tableau d’ anasarque d’ où son hospitalisation en cardiologie pour décompensation cardiaque globale.
-
-"
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("ner_eu_clinical_condition_pipeline", "fr", "clinical/models")
-
-val text = "
-Il aurait présenté il y’ a environ 30 ans des ulcérations génitales non traitées spontanément guéries. L’interrogatoire retrouvait une toux sèche depuis trois mois, des douleurs rétro-sternales constrictives, une dyspnée stade III de la NYHA et un contexte d’ apyrexie. Sur ce tableau s’ est greffé des œdèmes des membres inférieurs puis un tableau d’ anasarque d’ où son hospitalisation en cardiologie pour décompensation cardiaque globale.
-
-"
-
-val result = pipeline.fullAnnotate(text)
-```
-
-
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -133,12 +78,6 @@ result = pipeline.fullAnnotate(text)
## Results
```bash
-Results
-
-
-Results
-
-
| | chunks | begin | end | entities | confidence |
|---:|:-------------------------|--------:|------:|:-------------------|-------------:|
| 0 | ulcérations | 47 | 57 | clinical_condition | 0.9995 |
@@ -148,12 +87,6 @@ Results
| 4 | apyrexie | 261 | 268 | clinical_condition | 0.9963 |
| 5 | anasarque | 353 | 361 | clinical_condition | 0.9973 |
| 6 | décompensation cardiaque | 409 | 432 | clinical_condition | 0.8948 |
-
-
-{:.model-param}
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-17-ner_eu_clinical_condition_pipeline_it.md b/docs/_posts/C-K-Loan/2023-06-17-ner_eu_clinical_condition_pipeline_it.md
index c29b398aef..d8860a5f75 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-ner_eu_clinical_condition_pipeline_it.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-ner_eu_clinical_condition_pipeline_it.md
@@ -32,64 +32,10 @@ This pretrained pipeline is built on the top of [ner_eu_clinical_condition](http
## How to use
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_eu_clinical_condition_pipeline", "it", "clinical/models")
-
-text = "
-Donna, 64 anni, ricovero per dolore epigastrico persistente, irradiato a barra e posteriormente, associato a dispesia e anoressia. Poche settimane dopo compaiono, però, iperemia, intenso edema vulvare ed una esione ulcerativa sul lato sinistro della parete rettale che la RM mostra essere una fistola transfinterica. Questi trattamenti determinano un miglioramento dell’ infiammazione ed una riduzione dell’ ulcera, ma i condilomi permangono inalterati.
-
-"
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("ner_eu_clinical_condition_pipeline", "it", "clinical/models")
-
-val text = "
-Donna, 64 anni, ricovero per dolore epigastrico persistente, irradiato a barra e posteriormente, associato a dispesia e anoressia. Poche settimane dopo compaiono, però, iperemia, intenso edema vulvare ed una esione ulcerativa sul lato sinistro della parete rettale che la RM mostra essere una fistola transfinterica. Questi trattamenti determinano un miglioramento dell’ infiammazione ed una riduzione dell’ ulcera, ma i condilomi permangono inalterati.
-
-"
-
-val result = pipeline.fullAnnotate(text)
-```
-
{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_eu_clinical_condition_pipeline", "it", "clinical/models")
-
-text = "
-Donna, 64 anni, ricovero per dolore epigastrico persistente, irradiato a barra e posteriormente, associato a dispesia e anoressia. Poche settimane dopo compaiono, però, iperemia, intenso edema vulvare ed una esione ulcerativa sul lato sinistro della parete rettale che la RM mostra essere una fistola transfinterica. Questi trattamenti determinano un miglioramento dell’ infiammazione ed una riduzione dell’ ulcera, ma i condilomi permangono inalterati.
-
-"
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("ner_eu_clinical_condition_pipeline", "it", "clinical/models")
-
-val text = "
-Donna, 64 anni, ricovero per dolore epigastrico persistente, irradiato a barra e posteriormente, associato a dispesia e anoressia. Poche settimane dopo compaiono, però, iperemia, intenso edema vulvare ed una esione ulcerativa sul lato sinistro della parete rettale che la RM mostra essere una fistola transfinterica. Questi trattamenti determinano un miglioramento dell’ infiammazione ed una riduzione dell’ ulcera, ma i condilomi permangono inalterati.
-
-"
-val result = pipeline.fullAnnotate(text)
-```
-
-
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -133,12 +79,6 @@ result = pipeline.fullAnnotate(text)
## Results
```bash
-Results
-
-
-Results
-
-
| | chunks | begin | end | entities | confidence |
|---:|:-----------------------|--------:|------:|:-------------------|-------------:|
| 0 | dolore epigastrico | 30 | 47 | clinical_condition | 0.90845 |
@@ -147,12 +87,6 @@ Results
| 3 | edema | 188 | 192 | clinical_condition | 1 |
| 4 | fistola transfinterica | 294 | 315 | clinical_condition | 0.97785 |
| 5 | infiammazione | 372 | 384 | clinical_condition | 0.9996 |
-
-
-{:.model-param}
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-17-ner_events_admission_clinical_pipeline_en.md b/docs/_posts/C-K-Loan/2023-06-17-ner_events_admission_clinical_pipeline_en.md
index b4b6bcffc2..30407af905 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-ner_events_admission_clinical_pipeline_en.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-ner_events_admission_clinical_pipeline_en.md
@@ -34,6 +34,7 @@ This pretrained pipeline is built on the top of [ner_events_admission_clinical](
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -62,48 +63,16 @@ nlu.load("en.med_ner.events_admission_clinical.pipeline").predict("""The patient
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_events_admission_clinical_pipeline", "en", "clinical/models")
-
-text = '''The patient presented to the emergency room last evening.'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("ner_events_admission_clinical_pipeline", "en", "clinical/models")
-
-val text = "The patient presented to the emergency room last evening."
-
-val result = pipeline.fullAnnotate(text)
-```
-{:.nlu-block}
-```python
-import nlu
-nlu.load("en.med_ner.events_admission_clinical.pipeline").predict("""The patient presented to the emergency room last evening.""")
-```
-
## Results
```bash
-Results
-
-
| | ner_chunk | begin | end | ner_label | confidence |
|---:|:-------------------|--------:|------:|:--------------|-------------:|
| 0 | presented | 12 | 20 | OCCURRENCE | 0.6219 |
| 1 | the emergency room | 25 | 42 | CLINICAL_DEPT | 0.812 |
| 2 | last evening | 44 | 55 | TIME | 0.9534 |
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-17-ner_events_biobert_pipeline_en.md b/docs/_posts/C-K-Loan/2023-06-17-ner_events_biobert_pipeline_en.md
index ca59757883..5b738c6482 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-ner_events_biobert_pipeline_en.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-ner_events_biobert_pipeline_en.md
@@ -34,6 +34,7 @@ This pretrained pipeline is built on the top of [ner_events_biobert](https://nlp
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -62,48 +63,16 @@ nlu.load("en.med_ner.biobert_events.pipeline").predict("""The patient presented
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_events_biobert_pipeline", "en", "clinical/models")
-
-text = '''The patient presented to the emergency room last evening.'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("ner_events_biobert_pipeline", "en", "clinical/models")
-
-val text = "The patient presented to the emergency room last evening."
-
-val result = pipeline.fullAnnotate(text)
-```
-{:.nlu-block}
-```python
-import nlu
-nlu.load("en.med_ner.biobert_events.pipeline").predict("""The patient presented to the emergency room last evening.""")
-```
-
## Results
```bash
-Results
-
-
| | ner_chunk | begin | end | ner_label | confidence |
|---:|:-------------------|--------:|------:|:--------------|-------------:|
| 0 | presented | 12 | 20 | OCCURRENCE | 0.5019 |
| 1 | the emergency room | 25 | 42 | CLINICAL_DEPT | 0.695333 |
| 2 | last evening | 44 | 55 | DATE | 0.7621 |
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-17-ner_events_clinical_pipeline_en.md b/docs/_posts/C-K-Loan/2023-06-17-ner_events_clinical_pipeline_en.md
index 599156f632..050548b1b1 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-ner_events_clinical_pipeline_en.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-ner_events_clinical_pipeline_en.md
@@ -34,6 +34,7 @@ This pretrained pipeline is built on the top of [ner_events_clinical](https://nl
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -62,48 +63,15 @@ nlu.load("en.med_ner.events_clinical.pipeline").predict("""The patient presented
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_events_clinical_pipeline", "en", "clinical/models")
-
-text = '''The patient presented to the emergency room last evening.'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("ner_events_clinical_pipeline", "en", "clinical/models")
-
-val text = "The patient presented to the emergency room last evening."
-
-val result = pipeline.fullAnnotate(text)
-```
-
-{:.nlu-block}
-```python
-import nlu
-nlu.load("en.med_ner.events_clinical.pipeline").predict("""The patient presented to the emergency room last evening.""")
-```
-
## Results
```bash
-Results
-
-
| | ner_chunk | begin | end | ner_label | confidence |
|---:|:-------------------|--------:|------:|:--------------|-------------:|
| 0 | presented | 12 | 20 | OCCURRENCE | 0.7132 |
| 1 | the emergency room | 25 | 42 | CLINICAL_DEPT | 0.723267 |
| 2 | last evening | 44 | 55 | DATE | 0.90555 |
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-17-ner_events_healthcare_pipeline_en.md b/docs/_posts/C-K-Loan/2023-06-17-ner_events_healthcare_pipeline_en.md
index e55e85e481..6f62b92cbc 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-ner_events_healthcare_pipeline_en.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-ner_events_healthcare_pipeline_en.md
@@ -34,6 +34,7 @@ This pretrained pipeline is built on the top of [ner_events_healthcare](https://
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -62,48 +63,16 @@ nlu.load("en.med_ner.healthcare_events.pipeline").predict("""The patient present
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_events_healthcare_pipeline", "en", "clinical/models")
-
-text = '''The patient presented to the emergency room last evening.'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("ner_events_healthcare_pipeline", "en", "clinical/models")
-
-val text = "The patient presented to the emergency room last evening."
-
-val result = pipeline.fullAnnotate(text)
-```
-{:.nlu-block}
-```python
-import nlu
-nlu.load("en.med_ner.healthcare_events.pipeline").predict("""The patient presented to the emergency room last evening.""")
-```
-
## Results
```bash
-Results
-
-
| | ner_chunks | begin | end | ner_label | confidence |
|---:|:-------------------|--------:|------:|:--------------|-------------:|
| 0 | presented | 12 | 20 | EVIDENTIAL | 0.6769 |
| 1 | the emergency room | 25 | 42 | CLINICAL_DEPT | 0.835967 |
| 2 | last evening | 44 | 55 | DATE | 0.59135 |
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-17-ner_genetic_variants_pipeline_en.md b/docs/_posts/C-K-Loan/2023-06-17-ner_genetic_variants_pipeline_en.md
index c1f65ed381..3efb19b160 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-ner_genetic_variants_pipeline_en.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-ner_genetic_variants_pipeline_en.md
@@ -34,6 +34,7 @@ This pretrained pipeline is built on the top of [ner_genetic_variants](https://n
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -62,40 +63,11 @@ nlu.load("en.med_ner.genetic_variants.pipeline").predict("""The mutation pattern
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_genetic_variants_pipeline", "en", "clinical/models")
-
-text = '''The mutation pattern of mitochondrial DNA (mtDNA) in mainland Chinese patients with mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes (MELAS) has been rarely reported, though previous data suggested that the mutation pattern of MELAS could be different among geographically localized populations. We presented the results of comprehensive mtDNA mutation analysis in 92 unrelated Chinese patients with MELAS (85 with classic MELAS and 7 with MELAS/Leigh syndrome (LS) overlap syndrome). The mtDNA A3243G mutation was the most common causal genotype in this patient group (79/92 and 85.9%). The second common gene mutation was G13513A (7/92 and 7.6%). Additionally, we identified T10191C (p.S45P) in ND3, A11470C (p. K237N) in ND4, T13046C (p.M237T) in ND5 and a large-scale deletion (13025-13033:14417-14425) involving partial ND5 and ND6 subunits of complex I in one patient each. Among them, A11470C, T13046C and the single deletion were novel mutations. In summary, patients with mutations affecting mitochondrially encoded complex I (MTND) reached 12.0% (11/92) in this group. It is noteworthy that all seven patients with MELAS/LS overlap syndrome were associated with MTND mutations. Our data emphasize the important role of MTND mutations in the pathogenicity of MELAS, especially MELAS/LS overlap syndrome.PURPOSE: Genes in the complement pathway, including complement factor H (CFH), C2/BF, and C3, have been reported to be associated with age-related macular degeneration (AMD). Genetic variants, single-nucleotide polymorphisms (SNPs), in these genes were geno-typed for a case-control association study in a mainland Han Chinese population. METHODS: One hundred and fifty-eight patients with wet AMD, 80 patients with soft drusen, and 220 matched control subjects were recruited among Han Chinese in mainland China. Seven SNPs in CFH and two SNPs in C2, CFB', and C3 were genotyped using the ABI SNaPshot method. A deletion of 84,682 base pairs covering the CFHR1 and CFHR3 genes was detected by direct polymerase chain reaction and gel electrophoresis. RESULTS: Four SNPs, including rs3753394 (P = 0.0276), rs800292 (P = 0.0266), rs1061170 (P = 0.00514), and rs1329428 (P = 0.0089), in CFH showed a significant association with wet AMD in the cohort of this study. A haplotype containing these four SNPs (CATA) significantly increased protection of wet AMD with a P value of 0.0005 and an odds ratio of 0.29 (95% confidence interval: 0.15-0.60). Unlike in other populations, rs2274700 and rs1410996 did not show a significant association with AMD in the Chinese population of this study. None of the SNPs in CFH showed a significant association with drusen, and none of the SNPs in CFH, C2, CFB, and C3 showed a significant association with either wet AMD or drusen in the cohort of this study. The CFHR1 and CFHR3 deletion was not polymorphic in the Chinese population and was not associated with wet AMD or drusen. CONCLUSION: This study showed that SNPs rs3753394 (P = 0.0276), rs800292 (P = 0.0266), rs1061170 (P = 0.00514), and rs1329428 (P = 0.0089), but not rs7535263, rs1410996, or rs2274700, in CFH were significantly associated with wet AMD in a mainland Han Chinese population. This study showed that CFH was more likely to be AMD susceptibility gene at Chr.1q31 based on the finding that the CFHR1 and CFHR3 deletion was not polymorphic in the cohort of this study, and none of the SNPs that were significantly associated with AMD in a white population in C2, CFB, and C3 genes showed a significant association with AMD.'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("ner_genetic_variants_pipeline", "en", "clinical/models")
-
-val text = "The mutation pattern of mitochondrial DNA (mtDNA) in mainland Chinese patients with mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes (MELAS) has been rarely reported, though previous data suggested that the mutation pattern of MELAS could be different among geographically localized populations. We presented the results of comprehensive mtDNA mutation analysis in 92 unrelated Chinese patients with MELAS (85 with classic MELAS and 7 with MELAS/Leigh syndrome (LS) overlap syndrome). The mtDNA A3243G mutation was the most common causal genotype in this patient group (79/92 and 85.9%). The second common gene mutation was G13513A (7/92 and 7.6%). Additionally, we identified T10191C (p.S45P) in ND3, A11470C (p. K237N) in ND4, T13046C (p.M237T) in ND5 and a large-scale deletion (13025-13033:14417-14425) involving partial ND5 and ND6 subunits of complex I in one patient each. Among them, A11470C, T13046C and the single deletion were novel mutations. In summary, patients with mutations affecting mitochondrially encoded complex I (MTND) reached 12.0% (11/92) in this group. It is noteworthy that all seven patients with MELAS/LS overlap syndrome were associated with MTND mutations. Our data emphasize the important role of MTND mutations in the pathogenicity of MELAS, especially MELAS/LS overlap syndrome.PURPOSE: Genes in the complement pathway, including complement factor H (CFH), C2/BF, and C3, have been reported to be associated with age-related macular degeneration (AMD). Genetic variants, single-nucleotide polymorphisms (SNPs), in these genes were geno-typed for a case-control association study in a mainland Han Chinese population. METHODS: One hundred and fifty-eight patients with wet AMD, 80 patients with soft drusen, and 220 matched control subjects were recruited among Han Chinese in mainland China. Seven SNPs in CFH and two SNPs in C2, CFB', and C3 were genotyped using the ABI SNaPshot method. A deletion of 84,682 base pairs covering the CFHR1 and CFHR3 genes was detected by direct polymerase chain reaction and gel electrophoresis. RESULTS: Four SNPs, including rs3753394 (P = 0.0276), rs800292 (P = 0.0266), rs1061170 (P = 0.00514), and rs1329428 (P = 0.0089), in CFH showed a significant association with wet AMD in the cohort of this study. A haplotype containing these four SNPs (CATA) significantly increased protection of wet AMD with a P value of 0.0005 and an odds ratio of 0.29 (95% confidence interval: 0.15-0.60). Unlike in other populations, rs2274700 and rs1410996 did not show a significant association with AMD in the Chinese population of this study. None of the SNPs in CFH showed a significant association with drusen, and none of the SNPs in CFH, C2, CFB, and C3 showed a significant association with either wet AMD or drusen in the cohort of this study. The CFHR1 and CFHR3 deletion was not polymorphic in the Chinese population and was not associated with wet AMD or drusen. CONCLUSION: This study showed that SNPs rs3753394 (P = 0.0276), rs800292 (P = 0.0266), rs1061170 (P = 0.00514), and rs1329428 (P = 0.0089), but not rs7535263, rs1410996, or rs2274700, in CFH were significantly associated with wet AMD in a mainland Han Chinese population. This study showed that CFH was more likely to be AMD susceptibility gene at Chr.1q31 based on the finding that the CFHR1 and CFHR3 deletion was not polymorphic in the cohort of this study, and none of the SNPs that were significantly associated with AMD in a white population in C2, CFB, and C3 genes showed a significant association with AMD."
-
-val result = pipeline.fullAnnotate(text)
-```
-{:.nlu-block}
-```python
-import nlu
-nlu.load("en.med_ner.genetic_variants.pipeline").predict("""The mutation pattern of mitochondrial DNA (mtDNA) in mainland Chinese patients with mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes (MELAS) has been rarely reported, though previous data suggested that the mutation pattern of MELAS could be different among geographically localized populations. We presented the results of comprehensive mtDNA mutation analysis in 92 unrelated Chinese patients with MELAS (85 with classic MELAS and 7 with MELAS/Leigh syndrome (LS) overlap syndrome). The mtDNA A3243G mutation was the most common causal genotype in this patient group (79/92 and 85.9%). The second common gene mutation was G13513A (7/92 and 7.6%). Additionally, we identified T10191C (p.S45P) in ND3, A11470C (p. K237N) in ND4, T13046C (p.M237T) in ND5 and a large-scale deletion (13025-13033:14417-14425) involving partial ND5 and ND6 subunits of complex I in one patient each. Among them, A11470C, T13046C and the single deletion were novel mutations. In summary, patients with mutations affecting mitochondrially encoded complex I (MTND) reached 12.0% (11/92) in this group. It is noteworthy that all seven patients with MELAS/LS overlap syndrome were associated with MTND mutations. Our data emphasize the important role of MTND mutations in the pathogenicity of MELAS, especially MELAS/LS overlap syndrome.PURPOSE: Genes in the complement pathway, including complement factor H (CFH), C2/BF, and C3, have been reported to be associated with age-related macular degeneration (AMD). Genetic variants, single-nucleotide polymorphisms (SNPs), in these genes were geno-typed for a case-control association study in a mainland Han Chinese population. METHODS: One hundred and fifty-eight patients with wet AMD, 80 patients with soft drusen, and 220 matched control subjects were recruited among Han Chinese in mainland China. Seven SNPs in CFH and two SNPs in C2, CFB', and C3 were genotyped using the ABI SNaPshot method. A deletion of 84,682 base pairs covering the CFHR1 and CFHR3 genes was detected by direct polymerase chain reaction and gel electrophoresis. RESULTS: Four SNPs, including rs3753394 (P = 0.0276), rs800292 (P = 0.0266), rs1061170 (P = 0.00514), and rs1329428 (P = 0.0089), in CFH showed a significant association with wet AMD in the cohort of this study. A haplotype containing these four SNPs (CATA) significantly increased protection of wet AMD with a P value of 0.0005 and an odds ratio of 0.29 (95% confidence interval: 0.15-0.60). Unlike in other populations, rs2274700 and rs1410996 did not show a significant association with AMD in the Chinese population of this study. None of the SNPs in CFH showed a significant association with drusen, and none of the SNPs in CFH, C2, CFB, and C3 showed a significant association with either wet AMD or drusen in the cohort of this study. The CFHR1 and CFHR3 deletion was not polymorphic in the Chinese population and was not associated with wet AMD or drusen. CONCLUSION: This study showed that SNPs rs3753394 (P = 0.0276), rs800292 (P = 0.0266), rs1061170 (P = 0.00514), and rs1329428 (P = 0.0089), but not rs7535263, rs1410996, or rs2274700, in CFH were significantly associated with wet AMD in a mainland Han Chinese population. This study showed that CFH was more likely to be AMD susceptibility gene at Chr.1q31 based on the finding that the CFHR1 and CFHR3 deletion was not polymorphic in the cohort of this study, and none of the SNPs that were significantly associated with AMD in a white population in C2, CFB, and C3 genes showed a significant association with AMD.""")
-```
-
## Results
```bash
-Results
-
-
| | ner_chunks | begin | end | ner_label | confidence |
|---:|:-------------|--------:|------:|:----------------|-------------:|
| 0 | A3243G | 527 | 532 | DNAMutation | 1 |
@@ -121,9 +93,6 @@ Results
| 20 | rs7535263 | 3108 | 3116 | SNP | 1 |
| 21 | rs1410996 | 3119 | 3127 | SNP | 1 |
| 22 | rs2274700 | 3133 | 3141 | SNP | 1 |
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-17-ner_healthcare_pipeline_de.md b/docs/_posts/C-K-Loan/2023-06-17-ner_healthcare_pipeline_de.md
index 3c4a720c08..6ba2723dd5 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-ner_healthcare_pipeline_de.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-ner_healthcare_pipeline_de.md
@@ -34,50 +34,7 @@ This pretrained pipeline is built on the top of [ner_healthcare](https://nlp.joh
{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_healthcare_pipeline", "de", "clinical/models")
-
-text = '''Das Kleinzellige Bronchialkarzinom (Kleinzelliger Lungenkrebs, SCLC) ist Hernia femoralis, Akne, einseitig, ein hochmalignes bronchogenes Karzinom, das überwiegend im Zentrum der Lunge, in einem Hauptbronchus entsteht. Die mittlere Prävalenz wird auf 1/20.000 geschätzt.'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-val pipeline = new PretrainedPipeline("ner_healthcare_pipeline", "de", "clinical/models")
-
-val text = "Das Kleinzellige Bronchialkarzinom (Kleinzelliger Lungenkrebs, SCLC) ist Hernia femoralis, Akne, einseitig, ein hochmalignes bronchogenes Karzinom, das überwiegend im Zentrum der Lunge, in einem Hauptbronchus entsteht. Die mittlere Prävalenz wird auf 1/20.000 geschätzt."
-
-val result = pipeline.fullAnnotate(text)
-```
-
-
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_healthcare_pipeline", "de", "clinical/models")
-
-text = '''Das Kleinzellige Bronchialkarzinom (Kleinzelliger Lungenkrebs, SCLC) ist Hernia femoralis, Akne, einseitig, ein hochmalignes bronchogenes Karzinom, das überwiegend im Zentrum der Lunge, in einem Hauptbronchus entsteht. Die mittlere Prävalenz wird auf 1/20.000 geschätzt.'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("ner_healthcare_pipeline", "de", "clinical/models")
-
-val text = "Das Kleinzellige Bronchialkarzinom (Kleinzelliger Lungenkrebs, SCLC) ist Hernia femoralis, Akne, einseitig, ein hochmalignes bronchogenes Karzinom, das überwiegend im Zentrum der Lunge, in einem Hauptbronchus entsteht. Die mittlere Prävalenz wird auf 1/20.000 geschätzt."
-
-val result = pipeline.fullAnnotate(text)
-```
-
-
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -112,12 +69,6 @@ result = pipeline.fullAnnotate(text)
## Results
```bash
-Results
-
-
-Results
-
-
| | ner_chunk | begin | end | ner_label | confidence |
|---:|:------------------|--------:|------:|:----------------------|-------------:|
| 0 | Kleinzellige | 4 | 15 | MEASUREMENT | 0.6897 |
@@ -136,12 +87,6 @@ Results
| 13 | Hauptbronchus | 195 | 207 | BODY_PART | 0.9864 |
| 14 | mittlere | 223 | 230 | MEASUREMENT | 0.9651 |
| 15 | Prävalenz | 232 | 240 | MEDICAL_CONDITION | 0.9833 |
-
-
-{:.model-param}
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-17-ner_healthcare_pipeline_en.md b/docs/_posts/C-K-Loan/2023-06-17-ner_healthcare_pipeline_en.md
index 6762e181fe..346b7734bc 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-ner_healthcare_pipeline_en.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-ner_healthcare_pipeline_en.md
@@ -34,6 +34,7 @@ This pretrained pipeline is built on the top of [ner_healthcare](https://nlp.joh
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -62,40 +63,10 @@ nlu.load("en.med_ner.healthcare_pipeline").predict("""A 28-year-old female with
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_healthcare_pipeline", "en", "clinical/models")
-
-text = '''A 28-year-old female with a history of gestational diabetes mellitus diagnosed eight years prior to presentation and subsequent type two diabetes mellitus ( T2DM ), one prior episode of HTG-induced pancreatitis three years prior to presentation , associated with an acute hepatitis , and obesity with a body mass index ( BMI ) of 33.5 kg/m2 , presented with a one-week history of polyuria , polydipsia , poor appetite , and vomiting . Two weeks prior to presentation , she was treated with a five-day course of amoxicillin for a respiratory tract infection . She was on metformin , glipizide , and dapagliflozin for T2DM and atorvastatin and gemfibrozil for HTG .'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("ner_healthcare_pipeline", "en", "clinical/models")
-
-val text = "A 28-year-old female with a history of gestational diabetes mellitus diagnosed eight years prior to presentation and subsequent type two diabetes mellitus ( T2DM ), one prior episode of HTG-induced pancreatitis three years prior to presentation , associated with an acute hepatitis , and obesity with a body mass index ( BMI ) of 33.5 kg/m2 , presented with a one-week history of polyuria , polydipsia , poor appetite , and vomiting . Two weeks prior to presentation , she was treated with a five-day course of amoxicillin for a respiratory tract infection . She was on metformin , glipizide , and dapagliflozin for T2DM and atorvastatin and gemfibrozil for HTG ."
-
-val result = pipeline.fullAnnotate(text)
-```
-
-{:.nlu-block}
-```python
-import nlu
-nlu.load("en.med_ner.healthcare_pipeline").predict("""A 28-year-old female with a history of gestational diabetes mellitus diagnosed eight years prior to presentation and subsequent type two diabetes mellitus ( T2DM ), one prior episode of HTG-induced pancreatitis three years prior to presentation , associated with an acute hepatitis , and obesity with a body mass index ( BMI ) of 33.5 kg/m2 , presented with a one-week history of polyuria , polydipsia , poor appetite , and vomiting . Two weeks prior to presentation , she was treated with a five-day course of amoxicillin for a respiratory tract infection . She was on metformin , glipizide , and dapagliflozin for T2DM and atorvastatin and gemfibrozil for HTG .""")
-```
-
## Results
```bash
-Results
-
-
| | ner_chunks | begin | end | ner_label | confidence |
|---:|:------------------------------|--------:|------:|:------------|-------------:|
| 0 | gestational diabetes mellitus | 39 | 67 | PROBLEM | 0.938233 |
@@ -118,9 +89,6 @@ Results
| 17 | atorvastatin | 625 | 636 | TREATMENT | 0.9993 |
| 18 | gemfibrozil | 642 | 652 | TREATMENT | 0.9997 |
| 19 | HTG | 658 | 660 | PROBLEM | 0.9927 |
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-17-ner_healthcare_slim_pipeline_de.md b/docs/_posts/C-K-Loan/2023-06-17-ner_healthcare_slim_pipeline_de.md
index ec010aa1b8..b1216a720c 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-ner_healthcare_slim_pipeline_de.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-ner_healthcare_slim_pipeline_de.md
@@ -34,50 +34,7 @@ This pretrained pipeline is built on the top of [ner_healthcare_slim](https://nl
{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_healthcare_slim_pipeline", "de", "clinical/models")
-
-text = '''Das Kleinzellige Bronchialkarzinom (Kleinzelliger Lungenkrebs, SCLC) ist Hernia femoralis, Akne, einseitig, ein hochmalignes bronchogenes Karzinom, das überwiegend im Zentrum der Lunge, in einem Hauptbronchus entsteht. Die mittlere Prävalenz wird auf 1/20.000 geschätzt.'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-val pipeline = new PretrainedPipeline("ner_healthcare_slim_pipeline", "de", "clinical/models")
-
-val text = "Das Kleinzellige Bronchialkarzinom (Kleinzelliger Lungenkrebs, SCLC) ist Hernia femoralis, Akne, einseitig, ein hochmalignes bronchogenes Karzinom, das überwiegend im Zentrum der Lunge, in einem Hauptbronchus entsteht. Die mittlere Prävalenz wird auf 1/20.000 geschätzt."
-
-val result = pipeline.fullAnnotate(text)
-```
-
-
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_healthcare_slim_pipeline", "de", "clinical/models")
-
-text = '''Das Kleinzellige Bronchialkarzinom (Kleinzelliger Lungenkrebs, SCLC) ist Hernia femoralis, Akne, einseitig, ein hochmalignes bronchogenes Karzinom, das überwiegend im Zentrum der Lunge, in einem Hauptbronchus entsteht. Die mittlere Prävalenz wird auf 1/20.000 geschätzt.'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("ner_healthcare_slim_pipeline", "de", "clinical/models")
-
-val text = "Das Kleinzellige Bronchialkarzinom (Kleinzelliger Lungenkrebs, SCLC) ist Hernia femoralis, Akne, einseitig, ein hochmalignes bronchogenes Karzinom, das überwiegend im Zentrum der Lunge, in einem Hauptbronchus entsteht. Die mittlere Prävalenz wird auf 1/20.000 geschätzt."
-
-val result = pipeline.fullAnnotate(text)
-```
-
-
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -112,12 +69,6 @@ result = pipeline.fullAnnotate(text)
## Results
```bash
-Results
-
-
-Results
-
-
| | ner_chunk | begin | end | ner_label | confidence |
|---:|:-----------------------------------|--------:|------:|:------------------|-------------:|
| 0 | Bronchialkarzinom | 17 | 33 | MEDICAL_CONDITION | 0.9988 |
@@ -130,12 +81,6 @@ Results
| 7 | Lunge | 179 | 183 | BODY_PART | 0.9729 |
| 8 | Hauptbronchus | 195 | 207 | BODY_PART | 0.9987 |
| 9 | Prävalenz | 232 | 240 | MEDICAL_CONDITION | 0.9986 |
-
-
-{:.model-param}
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-17-ner_human_phenotype_gene_biobert_pipeline_en.md b/docs/_posts/C-K-Loan/2023-06-17-ner_human_phenotype_gene_biobert_pipeline_en.md
index ecf2e1a023..3de9801b92 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-ner_human_phenotype_gene_biobert_pipeline_en.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-ner_human_phenotype_gene_biobert_pipeline_en.md
@@ -34,6 +34,7 @@ This pretrained pipeline is built on the top of [ner_human_phenotype_gene_biober
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -62,40 +63,9 @@ nlu.load("en.med_ner.human_phenotype_gene_biobert.pipeline").predict("""Here we
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_human_phenotype_gene_biobert_pipeline", "en", "clinical/models")
-
-text = '''Here we presented a case (BS type) of a 17 years old female presented with polyhydramnios, polyuria, nephrocalcinosis and hypokalemia, which was alleviated after treatment with celecoxib and vitamin D(3).'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("ner_human_phenotype_gene_biobert_pipeline", "en", "clinical/models")
-
-val text = "Here we presented a case (BS type) of a 17 years old female presented with polyhydramnios, polyuria, nephrocalcinosis and hypokalemia, which was alleviated after treatment with celecoxib and vitamin D(3)."
-
-val result = pipeline.fullAnnotate(text)
-```
-
-{:.nlu-block}
-```python
-import nlu
-nlu.load("en.med_ner.human_phenotype_gene_biobert.pipeline").predict("""Here we presented a case (BS type) of a 17 years old female presented with polyhydramnios, polyuria, nephrocalcinosis and hypokalemia, which was alleviated after treatment with celecoxib and vitamin D(3).""")
-```
-
-
## Results
```bash
-Results
-
-
| | ner_chunk | begin | end | ner_label | confidence |
|---:|:-----------------|--------:|------:|:------------|-------------:|
| 0 | type | 29 | 32 | GENE | 0.9977 |
@@ -103,9 +73,6 @@ Results
| 2 | polyuria | 91 | 98 | HP | 0.9955 |
| 3 | nephrocalcinosis | 101 | 116 | HP | 0.995 |
| 4 | hypokalemia | 122 | 132 | HP | 0.9986 |
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-17-ner_human_phenotype_gene_clinical_pipeline_en.md b/docs/_posts/C-K-Loan/2023-06-17-ner_human_phenotype_gene_clinical_pipeline_en.md
index dd0cec1a67..fc4426ac12 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-ner_human_phenotype_gene_clinical_pipeline_en.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-ner_human_phenotype_gene_clinical_pipeline_en.md
@@ -34,6 +34,7 @@ This pretrained pipeline is built on the top of [ner_human_phenotype_gene_clinic
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -62,40 +63,11 @@ nlu.load("en.med_ner.human_phnotype_gene_clinical.pipeline").predict("""Here we
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_human_phenotype_gene_clinical_pipeline", "en", "clinical/models")
-
-text = '''Here we presented a case (BS type) of a 17 years old female presented with polyhydramnios, polyuria, nephrocalcinosis and hypokalemia, which was alleviated after treatment with celecoxib and vitamin D(3).'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("ner_human_phenotype_gene_clinical_pipeline", "en", "clinical/models")
-
-val text = "Here we presented a case (BS type) of a 17 years old female presented with polyhydramnios, polyuria, nephrocalcinosis and hypokalemia, which was alleviated after treatment with celecoxib and vitamin D(3)."
-
-val result = pipeline.fullAnnotate(text)
-```
-{:.nlu-block}
-```python
-import nlu
-nlu.load("en.med_ner.human_phnotype_gene_clinical.pipeline").predict("""Here we presented a case (BS type) of a 17 years old female presented with polyhydramnios, polyuria, nephrocalcinosis and hypokalemia, which was alleviated after treatment with celecoxib and vitamin D(3).""")
-```
-
## Results
```bash
-Results
-
-
| | ner_chunk | begin | end | ner_label | confidence |
|---:|:-----------------|--------:|------:|:------------|-------------:|
| 0 | type | 29 | 32 | GENE | 0.9837 |
@@ -103,9 +75,6 @@ Results
| 2 | polyuria | 91 | 98 | HP | 0.9964 |
| 3 | nephrocalcinosis | 101 | 116 | HP | 0.9979 |
| 4 | hypokalemia | 122 | 132 | HP | 0.9952 |
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-17-ner_human_phenotype_go_biobert_pipeline_en.md b/docs/_posts/C-K-Loan/2023-06-17-ner_human_phenotype_go_biobert_pipeline_en.md
index 91ea0ad352..b067fd172e 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-ner_human_phenotype_go_biobert_pipeline_en.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-ner_human_phenotype_go_biobert_pipeline_en.md
@@ -34,6 +34,7 @@ This pretrained pipeline is built on the top of [ner_human_phenotype_go_biobert]
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -62,47 +63,15 @@ nlu.load("en.med_ner.phenotype_go_biobert.pipeline").predict("""Another disease
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_human_phenotype_go_biobert_pipeline", "en", "clinical/models")
-
-text = '''Another disease that shares two of the tumor components of CT, namely GIST and tricarboxylic acid cycle is the Carney-Stratakis syndrome (CSS) or dyad.'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("ner_human_phenotype_go_biobert_pipeline", "en", "clinical/models")
-
-val text = "Another disease that shares two of the tumor components of CT, namely GIST and tricarboxylic acid cycle is the Carney-Stratakis syndrome (CSS) or dyad."
-
-val result = pipeline.fullAnnotate(text)
-```
-{:.nlu-block}
-```python
-import nlu
-nlu.load("en.med_ner.phenotype_go_biobert.pipeline").predict("""Another disease that shares two of the tumor components of CT, namely GIST and tricarboxylic acid cycle is the Carney-Stratakis syndrome (CSS) or dyad.""")
-```
-
## Results
```bash
-Results
-
-
| | ner_chunk | begin | end | ner_label | confidence |
|---:|:-------------------------|--------:|------:|:------------|-------------:|
| 0 | tumor | 39 | 43 | HP | 1 |
| 1 | tricarboxylic acid cycle | 79 | 102 | GO | 0.999867 |
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-17-ner_human_phenotype_go_clinical_pipeline_en.md b/docs/_posts/C-K-Loan/2023-06-17-ner_human_phenotype_go_clinical_pipeline_en.md
index bebc12534f..03aefc5d44 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-ner_human_phenotype_go_clinical_pipeline_en.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-ner_human_phenotype_go_clinical_pipeline_en.md
@@ -34,6 +34,7 @@ This pretrained pipeline is built on the top of [ner_human_phenotype_go_clinical
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -62,47 +63,14 @@ nlu.load("en.med_ner.human_phenotype_clinical.pipeline").predict("""Another dise
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_human_phenotype_go_clinical_pipeline", "en", "clinical/models")
-
-text = '''Another disease that shares two of the tumor components of CT, namely GIST and tricarboxylic acid cycle is the Carney-Stratakis syndrome (CSS) or dyad.'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("ner_human_phenotype_go_clinical_pipeline", "en", "clinical/models")
-
-val text = "Another disease that shares two of the tumor components of CT, namely GIST and tricarboxylic acid cycle is the Carney-Stratakis syndrome (CSS) or dyad."
-
-val result = pipeline.fullAnnotate(text)
-```
-
-{:.nlu-block}
-```python
-import nlu
-nlu.load("en.med_ner.human_phenotype_clinical.pipeline").predict("""Another disease that shares two of the tumor components of CT, namely GIST and tricarboxylic acid cycle is the Carney-Stratakis syndrome (CSS) or dyad.""")
-```
-
## Results
```bash
-Results
-
-
| | ner_chunk | begin | end | ner_label | confidence |
|---:|:-------------------------|--------:|------:|:------------|-------------:|
| 0 | tumor | 39 | 43 | HP | 0.9996 |
| 1 | tricarboxylic acid cycle | 79 | 102 | GO | 0.994633 |
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-17-ner_jsl_biobert_pipeline_en.md b/docs/_posts/C-K-Loan/2023-06-17-ner_jsl_biobert_pipeline_en.md
index a5e17f89f3..3ff4f94bad 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-ner_jsl_biobert_pipeline_en.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-ner_jsl_biobert_pipeline_en.md
@@ -34,6 +34,7 @@ This pretrained pipeline is built on the top of [ner_jsl_biobert](https://nlp.jo
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -62,40 +63,11 @@ nlu.load("en.med_ner.jsl_biobert.pipeline").predict("""The patient is a 21-day-o
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_jsl_biobert_pipeline", "en", "clinical/models")
-
-text = '''The patient is a 21-day-old Caucasian male here for 2 days of congestion - mom has been suctioning yellow discharge from the patient's nares, plus she has noticed some mild problems with his breathing while feeding (but negative for any perioral cyanosis or retractions). One day ago, mom also noticed a tactile temperature and gave the patient Tylenol. Baby also has had some decreased p.o. intake. His normal breast-feeding is down from 20 minutes q.2h. to 5 to 10 minutes secondary to his respiratory congestion. He sleeps well, but has been more tired and has been fussy over the past 2 days. The parents noticed no improvement with albuterol treatments given in the ER. His urine output has also decreased; normally he has 8 to 10 wet and 5 dirty diapers per 24 hours, now he has down to 4 wet diapers per 24 hours. Mom denies any diarrhea. His bowel movements are yellow colored and soft in nature.'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("ner_jsl_biobert_pipeline", "en", "clinical/models")
-
-val text = "The patient is a 21-day-old Caucasian male here for 2 days of congestion - mom has been suctioning yellow discharge from the patient's nares, plus she has noticed some mild problems with his breathing while feeding (but negative for any perioral cyanosis or retractions). One day ago, mom also noticed a tactile temperature and gave the patient Tylenol. Baby also has had some decreased p.o. intake. His normal breast-feeding is down from 20 minutes q.2h. to 5 to 10 minutes secondary to his respiratory congestion. He sleeps well, but has been more tired and has been fussy over the past 2 days. The parents noticed no improvement with albuterol treatments given in the ER. His urine output has also decreased; normally he has 8 to 10 wet and 5 dirty diapers per 24 hours, now he has down to 4 wet diapers per 24 hours. Mom denies any diarrhea. His bowel movements are yellow colored and soft in nature."
-
-val result = pipeline.fullAnnotate(text)
-```
-{:.nlu-block}
-```python
-import nlu
-nlu.load("en.med_ner.jsl_biobert.pipeline").predict("""The patient is a 21-day-old Caucasian male here for 2 days of congestion - mom has been suctioning yellow discharge from the patient's nares, plus she has noticed some mild problems with his breathing while feeding (but negative for any perioral cyanosis or retractions). One day ago, mom also noticed a tactile temperature and gave the patient Tylenol. Baby also has had some decreased p.o. intake. His normal breast-feeding is down from 20 minutes q.2h. to 5 to 10 minutes secondary to his respiratory congestion. He sleeps well, but has been more tired and has been fussy over the past 2 days. The parents noticed no improvement with albuterol treatments given in the ER. His urine output has also decreased; normally he has 8 to 10 wet and 5 dirty diapers per 24 hours, now he has down to 4 wet diapers per 24 hours. Mom denies any diarrhea. His bowel movements are yellow colored and soft in nature.""")
-```
-
## Results
```bash
-Results
-
-
| | ner_chunk | begin | end | ner_label | confidence |
|---:|:------------------------------------------|--------:|------:|:-----------------------------|-------------:|
| 0 | 21-day-old | 17 | 26 | Age | 1 |
@@ -123,9 +95,6 @@ Results
| 22 | his | 488 | 490 | Gender | 0.9573 |
| 23 | respiratory congestion | 492 | 513 | Symptom | 0.5144 |
| 24 | He | 516 | 517 | Gender | 1 |
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-17-ner_jsl_enriched_biobert_pipeline_en.md b/docs/_posts/C-K-Loan/2023-06-17-ner_jsl_enriched_biobert_pipeline_en.md
index d29e804921..d7d5ef02cf 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-ner_jsl_enriched_biobert_pipeline_en.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-ner_jsl_enriched_biobert_pipeline_en.md
@@ -34,6 +34,7 @@ This pretrained pipeline is built on the top of [ner_jsl_enriched_biobert](https
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -62,40 +63,10 @@ nlu.load("en.med_ner.jsl_enriched_biobert.pipeline").predict("""The patient is a
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_jsl_enriched_biobert_pipeline", "en", "clinical/models")
-
-text = '''The patient is a 21-day-old Caucasian male here for 2 days of congestion - mom has been suctioning yellow discharge from the patient's nares, plus she has noticed some mild problems with his breathing while feeding (but negative for any perioral cyanosis or retractions). One day ago, mom also noticed a tactile temperature and gave the patient Tylenol. Baby also has had some decreased p.o. intake. His normal breast-feeding is down from 20 minutes q.2h. to 5 to 10 minutes secondary to his respiratory congestion. He sleeps well, but has been more tired and has been fussy over the past 2 days. The parents noticed no improvement with albuterol treatments given in the ER. His urine output has also decreased; normally he has 8 to 10 wet and 5 dirty diapers per 24 hours, now he has down to 4 wet diapers per 24 hours. Mom denies any diarrhea. His bowel movements are yellow colored and soft in nature.'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("ner_jsl_enriched_biobert_pipeline", "en", "clinical/models")
-
-val text = "The patient is a 21-day-old Caucasian male here for 2 days of congestion - mom has been suctioning yellow discharge from the patient's nares, plus she has noticed some mild problems with his breathing while feeding (but negative for any perioral cyanosis or retractions). One day ago, mom also noticed a tactile temperature and gave the patient Tylenol. Baby also has had some decreased p.o. intake. His normal breast-feeding is down from 20 minutes q.2h. to 5 to 10 minutes secondary to his respiratory congestion. He sleeps well, but has been more tired and has been fussy over the past 2 days. The parents noticed no improvement with albuterol treatments given in the ER. His urine output has also decreased; normally he has 8 to 10 wet and 5 dirty diapers per 24 hours, now he has down to 4 wet diapers per 24 hours. Mom denies any diarrhea. His bowel movements are yellow colored and soft in nature."
-
-val result = pipeline.fullAnnotate(text)
-```
-
-{:.nlu-block}
-```python
-import nlu
-nlu.load("en.med_ner.jsl_enriched_biobert.pipeline").predict("""The patient is a 21-day-old Caucasian male here for 2 days of congestion - mom has been suctioning yellow discharge from the patient's nares, plus she has noticed some mild problems with his breathing while feeding (but negative for any perioral cyanosis or retractions). One day ago, mom also noticed a tactile temperature and gave the patient Tylenol. Baby also has had some decreased p.o. intake. His normal breast-feeding is down from 20 minutes q.2h. to 5 to 10 minutes secondary to his respiratory congestion. He sleeps well, but has been more tired and has been fussy over the past 2 days. The parents noticed no improvement with albuterol treatments given in the ER. His urine output has also decreased; normally he has 8 to 10 wet and 5 dirty diapers per 24 hours, now he has down to 4 wet diapers per 24 hours. Mom denies any diarrhea. His bowel movements are yellow colored and soft in nature.""")
-```
-
## Results
```bash
-Results
-
-
| | ner_chunk | begin | end | ner_label | confidence |
|---:|:----------------------------|--------:|------:|:-------------|-------------:|
| 0 | 21-day-old | 17 | 26 | Age | 1 |
@@ -123,9 +94,6 @@ Results
| 22 | denies | 825 | 830 | Negation | 0.9841 |
| 23 | diarrhea | 836 | 843 | Symptom_Name | 0.6033 |
| 24 | His | 846 | 848 | Gender | 0.8459 |
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-17-ner_jsl_enriched_pipeline_en.md b/docs/_posts/C-K-Loan/2023-06-17-ner_jsl_enriched_pipeline_en.md
index 8f5df473c4..b414b8cc25 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-ner_jsl_enriched_pipeline_en.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-ner_jsl_enriched_pipeline_en.md
@@ -34,6 +34,7 @@ This pretrained pipeline is built on the top of [ner_jsl_enriched](https://nlp.j
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -62,40 +63,11 @@ nlu.load("en.med_ner.jsl_enriched.pipeline").predict("""The patient is a 21-day-
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_jsl_enriched_pipeline", "en", "clinical/models")
-
-text = '''The patient is a 21-day-old Caucasian male here for 2 days of congestion - mom has been suctioning yellow discharge from the patient's nares, plus she has noticed some mild problems with his breathing while feeding (but negative for any perioral cyanosis or retractions). One day ago, mom also noticed a tactile temperature and gave the patient Tylenol. Baby also has had some decreased p.o. intake. His normal breast-feeding is down from 20 minutes q.2h. to 5 to 10 minutes secondary to his respiratory congestion. He sleeps well, but has been more tired and has been fussy over the past 2 days. The parents noticed no improvement with albuterol treatments given in the ER. His urine output has also decreased; normally he has 8 to 10 wet and 5 dirty diapers per 24 hours, now he has down to 4 wet diapers per 24 hours. Mom denies any diarrhea. His bowel movements are yellow colored and soft in nature.'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("ner_jsl_enriched_pipeline", "en", "clinical/models")
-
-val text = "The patient is a 21-day-old Caucasian male here for 2 days of congestion - mom has been suctioning yellow discharge from the patient's nares, plus she has noticed some mild problems with his breathing while feeding (but negative for any perioral cyanosis or retractions). One day ago, mom also noticed a tactile temperature and gave the patient Tylenol. Baby also has had some decreased p.o. intake. His normal breast-feeding is down from 20 minutes q.2h. to 5 to 10 minutes secondary to his respiratory congestion. He sleeps well, but has been more tired and has been fussy over the past 2 days. The parents noticed no improvement with albuterol treatments given in the ER. His urine output has also decreased; normally he has 8 to 10 wet and 5 dirty diapers per 24 hours, now he has down to 4 wet diapers per 24 hours. Mom denies any diarrhea. His bowel movements are yellow colored and soft in nature."
-
-val result = pipeline.fullAnnotate(text)
-```
-{:.nlu-block}
-```python
-import nlu
-nlu.load("en.med_ner.jsl_enriched.pipeline").predict("""The patient is a 21-day-old Caucasian male here for 2 days of congestion - mom has been suctioning yellow discharge from the patient's nares, plus she has noticed some mild problems with his breathing while feeding (but negative for any perioral cyanosis or retractions). One day ago, mom also noticed a tactile temperature and gave the patient Tylenol. Baby also has had some decreased p.o. intake. His normal breast-feeding is down from 20 minutes q.2h. to 5 to 10 minutes secondary to his respiratory congestion. He sleeps well, but has been more tired and has been fussy over the past 2 days. The parents noticed no improvement with albuterol treatments given in the ER. His urine output has also decreased; normally he has 8 to 10 wet and 5 dirty diapers per 24 hours, now he has down to 4 wet diapers per 24 hours. Mom denies any diarrhea. His bowel movements are yellow colored and soft in nature.""")
-```
-
## Results
```bash
-Results
-
-
| | ner_chunks | begin | end | ner_label | confidence |
|---:|:------------------------------------------|--------:|------:|:-----------------------------|-------------:|
| 0 | 21-day-old | 17 | 26 | Age | 0.9993 |
@@ -137,9 +109,6 @@ Results
| 36 | diarrhea | 836 | 843 | Symptom | 0.9995 |
| 37 | His | 846 | 848 | Gender | 0.9998 |
| 38 | bowel | 850 | 854 | Internal_organ_or_component | 0.9675 |
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-17-ner_jsl_greedy_biobert_pipeline_en.md b/docs/_posts/C-K-Loan/2023-06-17-ner_jsl_greedy_biobert_pipeline_en.md
index 56fdde408d..08792011cf 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-ner_jsl_greedy_biobert_pipeline_en.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-ner_jsl_greedy_biobert_pipeline_en.md
@@ -34,6 +34,7 @@ This pretrained pipeline is built on the top of [ner_jsl_greedy_biobert](https:/
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -62,40 +63,10 @@ nlu.load("en.med_ner.biobert_jsl_greedy.pipeline").predict("""The patient is a 2
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_jsl_greedy_biobert_pipeline", "en", "clinical/models")
-
-text = '''The patient is a 21-day-old Caucasian male here for 2 days of congestion - mom has been suctioning yellow discharge from the patient's nares, plus she has noticed some mild problems with his breathing while feeding (but negative for any perioral cyanosis or retractions). One day ago, mom also noticed a tactile temperature and gave the patient Tylenol. Baby also has had some decreased p.o. intake. His normal breast-feeding is down from 20 minutes q.2h. to 5 to 10 minutes secondary to his respiratory congestion. He sleeps well, but has been more tired and has been fussy over the past 2 days. The parents noticed no improvement with albuterol treatments given in the ER. His urine output has also decreased; normally he has 8 to 10 wet and 5 dirty diapers per 24 hours, now he has down to 4 wet diapers per 24 hours. Mom denies any diarrhea. His bowel movements are yellow colored and soft in nature.'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("ner_jsl_greedy_biobert_pipeline", "en", "clinical/models")
-
-val text = "The patient is a 21-day-old Caucasian male here for 2 days of congestion - mom has been suctioning yellow discharge from the patient's nares, plus she has noticed some mild problems with his breathing while feeding (but negative for any perioral cyanosis or retractions). One day ago, mom also noticed a tactile temperature and gave the patient Tylenol. Baby also has had some decreased p.o. intake. His normal breast-feeding is down from 20 minutes q.2h. to 5 to 10 minutes secondary to his respiratory congestion. He sleeps well, but has been more tired and has been fussy over the past 2 days. The parents noticed no improvement with albuterol treatments given in the ER. His urine output has also decreased; normally he has 8 to 10 wet and 5 dirty diapers per 24 hours, now he has down to 4 wet diapers per 24 hours. Mom denies any diarrhea. His bowel movements are yellow colored and soft in nature."
-
-val result = pipeline.fullAnnotate(text)
-```
-
-{:.nlu-block}
-```python
-import nlu
-nlu.load("en.med_ner.biobert_jsl_greedy.pipeline").predict("""The patient is a 21-day-old Caucasian male here for 2 days of congestion - mom has been suctioning yellow discharge from the patient's nares, plus she has noticed some mild problems with his breathing while feeding (but negative for any perioral cyanosis or retractions). One day ago, mom also noticed a tactile temperature and gave the patient Tylenol. Baby also has had some decreased p.o. intake. His normal breast-feeding is down from 20 minutes q.2h. to 5 to 10 minutes secondary to his respiratory congestion. He sleeps well, but has been more tired and has been fussy over the past 2 days. The parents noticed no improvement with albuterol treatments given in the ER. His urine output has also decreased; normally he has 8 to 10 wet and 5 dirty diapers per 24 hours, now he has down to 4 wet diapers per 24 hours. Mom denies any diarrhea. His bowel movements are yellow colored and soft in nature.""")
-```
-
## Results
```bash
-Results
-
-
| | ner_chunk | begin | end | ner_label | confidence |
|---:|:-----------------------------------------------|--------:|------:|:-----------------------------|-------------:|
| 0 | 21-day-old | 17 | 26 | Age | 1 |
@@ -123,9 +94,6 @@ Results
| 22 | He | 516 | 517 | Gender | 0.9998 |
| 23 | tired | 550 | 554 | Symptom | 0.8912 |
| 24 | fussy | 569 | 573 | Symptom | 0.9541 |
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-17-ner_jsl_greedy_pipeline_en.md b/docs/_posts/C-K-Loan/2023-06-17-ner_jsl_greedy_pipeline_en.md
index 55583e4eb9..a2e67011b1 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-ner_jsl_greedy_pipeline_en.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-ner_jsl_greedy_pipeline_en.md
@@ -34,6 +34,7 @@ This pretrained pipeline is built on the top of [ner_jsl_greedy](https://nlp.joh
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -62,40 +63,9 @@ nlu.load("en.med_ner.jsl_greedy.pipeline").predict("""The patient is a 21-day-ol
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_jsl_greedy_pipeline", "en", "clinical/models")
-
-text = '''The patient is a 21-day-old Caucasian male here for 2 days of congestion - mom has been suctioning yellow discharge from the patient's nares, plus she has noticed some mild problems with his breathing while feeding (but negative for any perioral cyanosis or retractions). One day ago, mom also noticed a tactile temperature and gave the patient Tylenol. Baby also has had some decreased p.o. intake. His normal breast-feeding is down from 20 minutes q.2h. to 5 to 10 minutes secondary to his respiratory congestion. He sleeps well, but has been more tired and has been fussy over the past 2 days. The parents noticed no improvement with albuterol treatments given in the ER. His urine output has also decreased; normally he has 8 to 10 wet and 5 dirty diapers per 24 hours, now he has down to 4 wet diapers per 24 hours. Mom denies any diarrhea. His bowel movements are yellow colored and soft in nature.'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("ner_jsl_greedy_pipeline", "en", "clinical/models")
-
-val text = "The patient is a 21-day-old Caucasian male here for 2 days of congestion - mom has been suctioning yellow discharge from the patient's nares, plus she has noticed some mild problems with his breathing while feeding (but negative for any perioral cyanosis or retractions). One day ago, mom also noticed a tactile temperature and gave the patient Tylenol. Baby also has had some decreased p.o. intake. His normal breast-feeding is down from 20 minutes q.2h. to 5 to 10 minutes secondary to his respiratory congestion. He sleeps well, but has been more tired and has been fussy over the past 2 days. The parents noticed no improvement with albuterol treatments given in the ER. His urine output has also decreased; normally he has 8 to 10 wet and 5 dirty diapers per 24 hours, now he has down to 4 wet diapers per 24 hours. Mom denies any diarrhea. His bowel movements are yellow colored and soft in nature."
-
-val result = pipeline.fullAnnotate(text)
-```
-
-{:.nlu-block}
-```python
-import nlu
-nlu.load("en.med_ner.jsl_greedy.pipeline").predict("""The patient is a 21-day-old Caucasian male here for 2 days of congestion - mom has been suctioning yellow discharge from the patient's nares, plus she has noticed some mild problems with his breathing while feeding (but negative for any perioral cyanosis or retractions). One day ago, mom also noticed a tactile temperature and gave the patient Tylenol. Baby also has had some decreased p.o. intake. His normal breast-feeding is down from 20 minutes q.2h. to 5 to 10 minutes secondary to his respiratory congestion. He sleeps well, but has been more tired and has been fussy over the past 2 days. The parents noticed no improvement with albuterol treatments given in the ER. His urine output has also decreased; normally he has 8 to 10 wet and 5 dirty diapers per 24 hours, now he has down to 4 wet diapers per 24 hours. Mom denies any diarrhea. His bowel movements are yellow colored and soft in nature.""")
-```
-
-
## Results
```bash
-Results
-
-
| | ner_chunks | begin | end | ner_label | confidence |
|---:|:-----------------------------------------------|--------:|------:|:-----------------------------|-------------:|
| 0 | 21-day-old | 17 | 26 | Age | 0.9817 |
@@ -123,9 +93,6 @@ Results
| 22 | his | 488 | 490 | Gender | 0.9904 |
| 23 | respiratory congestion | 492 | 513 | Symptom | 0.5294 |
| 24 | He | 516 | 517 | Gender | 0.9989 |
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-17-ner_jsl_pipeline_en.md b/docs/_posts/C-K-Loan/2023-06-17-ner_jsl_pipeline_en.md
index 280ca0bc56..50dfb177ba 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-ner_jsl_pipeline_en.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-ner_jsl_pipeline_en.md
@@ -34,6 +34,7 @@ This pretrained pipeline is built on the top of [ner_jsl](https://nlp.johnsnowla
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -62,40 +63,11 @@ nlu.load("en.med_ner.jsl.pipeline").predict("""The patient is a 21-day-old Cauca
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_jsl_pipeline", "en", "clinical/models")
-
-text = '''The patient is a 21-day-old Caucasian male here for 2 days of congestion - mom has been suctioning yellow discharge from the patient's nares, plus she has noticed some mild problems with his breathing while feeding (but negative for any perioral cyanosis or retractions). Additionally, there is no side effect observed after Influenza vaccine. One day ago, mom also noticed a tactile temperature and gave the patient Tylenol. Baby also has had some decreased p.o. intake. His normal breast-feeding is down from 20 minutes q.2h. to 5 to 10 minutes secondary to his respiratory congestion. He sleeps well, but has been more tired and has been fussy over the past 2 days. The parents noticed no improvement with albuterol treatments given in the ER. His urine output has also decreased; normally he has 8 to 10 wet and 5 dirty diapers per 24 hours, now he has down to 4 wet diapers per 24 hours. Mom denies any diarrhea. His bowel movements are yellow colored and soft in nature.'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("ner_jsl_pipeline", "en", "clinical/models")
-
-val text = "The patient is a 21-day-old Caucasian male here for 2 days of congestion - mom has been suctioning yellow discharge from the patient's nares, plus she has noticed some mild problems with his breathing while feeding (but negative for any perioral cyanosis or retractions). Additionally, there is no side effect observed after Influenza vaccine. One day ago, mom also noticed a tactile temperature and gave the patient Tylenol. Baby also has had some decreased p.o. intake. His normal breast-feeding is down from 20 minutes q.2h. to 5 to 10 minutes secondary to his respiratory congestion. He sleeps well, but has been more tired and has been fussy over the past 2 days. The parents noticed no improvement with albuterol treatments given in the ER. His urine output has also decreased; normally he has 8 to 10 wet and 5 dirty diapers per 24 hours, now he has down to 4 wet diapers per 24 hours. Mom denies any diarrhea. His bowel movements are yellow colored and soft in nature."
-
-val result = pipeline.fullAnnotate(text)
-```
-{:.nlu-block}
-```python
-import nlu
-nlu.load("en.med_ner.jsl.pipeline").predict("""The patient is a 21-day-old Caucasian male here for 2 days of congestion - mom has been suctioning yellow discharge from the patient's nares, plus she has noticed some mild problems with his breathing while feeding (but negative for any perioral cyanosis or retractions). Additionally, there is no side effect observed after Influenza vaccine. One day ago, mom also noticed a tactile temperature and gave the patient Tylenol. Baby also has had some decreased p.o. intake. His normal breast-feeding is down from 20 minutes q.2h. to 5 to 10 minutes secondary to his respiratory congestion. He sleeps well, but has been more tired and has been fussy over the past 2 days. The parents noticed no improvement with albuterol treatments given in the ER. His urine output has also decreased; normally he has 8 to 10 wet and 5 dirty diapers per 24 hours, now he has down to 4 wet diapers per 24 hours. Mom denies any diarrhea. His bowel movements are yellow colored and soft in nature.""")
-```
-
## Results
```bash
-Results
-
-
| | ner_chunks | begin | end | ner_label | confidence |
|---:|:------------------------------------------|--------:|------:|:-----------------------------|-------------:|
| 0 | 21-day-old | 17 | 26 | Age | 0.997 |
@@ -139,9 +111,6 @@ Results
| 38 | diarrhea | 908 | 915 | Symptom | 0.9956 |
| 39 | His | 918 | 920 | Gender | 0.9997 |
| 40 | bowel | 922 | 926 | Internal_organ_or_component | 0.9218 |
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-17-ner_jsl_slim_pipeline_en.md b/docs/_posts/C-K-Loan/2023-06-17-ner_jsl_slim_pipeline_en.md
index e23aefa4b7..3f1db34f5b 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-ner_jsl_slim_pipeline_en.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-ner_jsl_slim_pipeline_en.md
@@ -34,6 +34,7 @@ This pretrained pipeline is built on the top of [ner_jsl_slim](https://nlp.johns
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -65,40 +66,11 @@ nlu.load("en.med_ner.jsl_slim.pipeline").predict("""Hyperparathyroidism was cons
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_jsl_slim_pipeline", "en", "clinical/models")
-
-text = "Hyperparathyroidism was considered upon the fourth occasion. The history of weakness and generalized joint pains were present. He also had history of epigastric pain diagnosed informally as gastritis. He had previously had open reduction and internal fixation for the initial two fractures under general anesthesia. He sustained mandibular fracture."
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("ner_jsl_slim_pipeline", "en", "clinical/models")
-
-val text = "Hyperparathyroidism was considered upon the fourth occasion. The history of weakness and generalized joint pains were present. He also had history of epigastric pain diagnosed informally as gastritis. He had previously had open reduction and internal fixation for the initial two fractures under general anesthesia. He sustained mandibular fracture."
-
-val result = pipeline.fullAnnotate(text)
-```
-{:.nlu-block}
-```python
-import nlu
-nlu.load("en.med_ner.jsl_slim.pipeline").predict("""Hyperparathyroidism was considered upon the fourth occasion. The history of weakness and generalized joint pains were present. He also had history of epigastric pain diagnosed informally as gastritis. He had previously had open reduction and internal fixation for the initial two fractures under general anesthesia. He sustained mandibular fracture.""")
-```
-
## Results
```bash
-Results
-
-
| | chunks | begin | end | entities | confidence |
|---:|:-------------------------------------|--------:|------:|:--------------------------|-------------:|
| 0 | Hyperparathyroidism | 0 | 18 | Disease_Syndrome_Disorder | 0.9977 |
@@ -112,9 +84,6 @@ Results
| 8 | fractures under general anesthesia | 280 | 313 | Drug | 0.79585 |
| 9 | He | 316 | 317 | Demographics | 0.9992 |
| 10 | sustained mandibular fracture | 319 | 347 | Disease_Syndrome_Disorder | 0.662467 |
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-17-ner_living_species_300_pipeline_es.md b/docs/_posts/C-K-Loan/2023-06-17-ner_living_species_300_pipeline_es.md
index 069ff68946..4bd47605b4 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-ner_living_species_300_pipeline_es.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-ner_living_species_300_pipeline_es.md
@@ -34,50 +34,7 @@ This pretrained pipeline is built on the top of [ner_living_species_300](https:/
{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_living_species_300_pipeline", "es", "clinical/models")
-
-text = '''Lactante varón de dos años. Antecedentes familiares sin interés. Antecedentes personales: Embarazo, parto y periodo neonatal normal. En seguimiento por alergia a legumbres, diagnosticado con diez meses por reacción urticarial generalizada con lentejas y garbanzos, con dieta de exclusión a legumbres desde entonces. En ésta visita la madre describe episodios de eritema en zona maxilar derecha con afectación ocular ipsilateral que se resuelve en horas tras la administración de corticoides. Le ha ocurrido en 5-6 ocasiones, en relación con la ingesta de alimentos previamente tolerados. Exploración complementaria: Cacahuete, ac(ige)19.2 Ku.arb/l. Resultados: Ante la sospecha clínica de Síndrome de Frey, se tranquiliza a los padres, explicándoles la naturaleza del cuadro y se cita para revisión anual.'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-val pipeline = new PretrainedPipeline("ner_living_species_300_pipeline", "es", "clinical/models")
-
-val text = "Lactante varón de dos años. Antecedentes familiares sin interés. Antecedentes personales: Embarazo, parto y periodo neonatal normal. En seguimiento por alergia a legumbres, diagnosticado con diez meses por reacción urticarial generalizada con lentejas y garbanzos, con dieta de exclusión a legumbres desde entonces. En ésta visita la madre describe episodios de eritema en zona maxilar derecha con afectación ocular ipsilateral que se resuelve en horas tras la administración de corticoides. Le ha ocurrido en 5-6 ocasiones, en relación con la ingesta de alimentos previamente tolerados. Exploración complementaria: Cacahuete, ac(ige)19.2 Ku.arb/l. Resultados: Ante la sospecha clínica de Síndrome de Frey, se tranquiliza a los padres, explicándoles la naturaleza del cuadro y se cita para revisión anual."
-
-val result = pipeline.fullAnnotate(text)
-```
-
-
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_living_species_300_pipeline", "es", "clinical/models")
-
-text = '''Lactante varón de dos años. Antecedentes familiares sin interés. Antecedentes personales: Embarazo, parto y periodo neonatal normal. En seguimiento por alergia a legumbres, diagnosticado con diez meses por reacción urticarial generalizada con lentejas y garbanzos, con dieta de exclusión a legumbres desde entonces. En ésta visita la madre describe episodios de eritema en zona maxilar derecha con afectación ocular ipsilateral que se resuelve en horas tras la administración de corticoides. Le ha ocurrido en 5-6 ocasiones, en relación con la ingesta de alimentos previamente tolerados. Exploración complementaria: Cacahuete, ac(ige)19.2 Ku.arb/l. Resultados: Ante la sospecha clínica de Síndrome de Frey, se tranquiliza a los padres, explicándoles la naturaleza del cuadro y se cita para revisión anual.'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("ner_living_species_300_pipeline", "es", "clinical/models")
-
-val text = "Lactante varón de dos años. Antecedentes familiares sin interés. Antecedentes personales: Embarazo, parto y periodo neonatal normal. En seguimiento por alergia a legumbres, diagnosticado con diez meses por reacción urticarial generalizada con lentejas y garbanzos, con dieta de exclusión a legumbres desde entonces. En ésta visita la madre describe episodios de eritema en zona maxilar derecha con afectación ocular ipsilateral que se resuelve en horas tras la administración de corticoides. Le ha ocurrido en 5-6 ocasiones, en relación con la ingesta de alimentos previamente tolerados. Exploración complementaria: Cacahuete, ac(ige)19.2 Ku.arb/l. Resultados: Ante la sospecha clínica de Síndrome de Frey, se tranquiliza a los padres, explicándoles la naturaleza del cuadro y se cita para revisión anual."
-
-val result = pipeline.fullAnnotate(text)
-```
-
-
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -112,12 +69,6 @@ result = pipeline.fullAnnotate(text)
## Results
```bash
-Results
-
-
-Results
-
-
| | ner_chunks | begin | end | ner_label | confidence |
|---:|:---------------|--------:|------:|:------------|-------------:|
| 0 | Lactante varón | 0 | 13 | HUMAN | 0.92045 |
@@ -131,12 +82,6 @@ Results
| 8 | madre | 334 | 338 | HUMAN | 1 |
| 9 | Cacahuete | 616 | 624 | SPECIES | 0.9963 |
| 10 | padres | 728 | 733 | HUMAN | 1 |
-
-
-{:.model-param}
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-17-ner_living_species_bert_pipeline_es.md b/docs/_posts/C-K-Loan/2023-06-17-ner_living_species_bert_pipeline_es.md
index 303b2ce91f..db07510b56 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-ner_living_species_bert_pipeline_es.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-ner_living_species_bert_pipeline_es.md
@@ -32,52 +32,10 @@ This pretrained pipeline is built on the top of [ner_living_species_bert](https:
## How to use
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_living_species_bert_pipeline", "es", "clinical/models")
-
-text = '''Lactante varón de dos años. Antecedentes familiares sin interés. Antecedentes personales: Embarazo, parto y periodo neonatal normal. En seguimiento por alergia a legumbres, diagnosticado con diez meses por reacción urticarial generalizada con lentejas y garbanzos, con dieta de exclusión a legumbres desde entonces. En ésta visita la madre describe episodios de eritema en zona maxilar derecha con afectación ocular ipsilateral que se resuelve en horas tras la administración de corticoides. Le ha ocurrido en 5-6 ocasiones, en relación con la ingesta de alimentos previamente tolerados. Exploración complementaria: Cacahuete, ac(ige)19.2 Ku.arb/l. Resultados: Ante la sospecha clínica de Síndrome de Frey, se tranquiliza a los padres, explicándoles la naturaleza del cuadro y se cita para revisión anual.'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("ner_living_species_bert_pipeline", "es", "clinical/models")
-
-val text = "Lactante varón de dos años. Antecedentes familiares sin interés. Antecedentes personales: Embarazo, parto y periodo neonatal normal. En seguimiento por alergia a legumbres, diagnosticado con diez meses por reacción urticarial generalizada con lentejas y garbanzos, con dieta de exclusión a legumbres desde entonces. En ésta visita la madre describe episodios de eritema en zona maxilar derecha con afectación ocular ipsilateral que se resuelve en horas tras la administración de corticoides. Le ha ocurrido en 5-6 ocasiones, en relación con la ingesta de alimentos previamente tolerados. Exploración complementaria: Cacahuete, ac(ige)19.2 Ku.arb/l. Resultados: Ante la sospecha clínica de Síndrome de Frey, se tranquiliza a los padres, explicándoles la naturaleza del cuadro y se cita para revisión anual."
-
-val result = pipeline.fullAnnotate(text)
-```
-
{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_living_species_bert_pipeline", "es", "clinical/models")
-
-text = '''Lactante varón de dos años. Antecedentes familiares sin interés. Antecedentes personales: Embarazo, parto y periodo neonatal normal. En seguimiento por alergia a legumbres, diagnosticado con diez meses por reacción urticarial generalizada con lentejas y garbanzos, con dieta de exclusión a legumbres desde entonces. En ésta visita la madre describe episodios de eritema en zona maxilar derecha con afectación ocular ipsilateral que se resuelve en horas tras la administración de corticoides. Le ha ocurrido en 5-6 ocasiones, en relación con la ingesta de alimentos previamente tolerados. Exploración complementaria: Cacahuete, ac(ige)19.2 Ku.arb/l. Resultados: Ante la sospecha clínica de Síndrome de Frey, se tranquiliza a los padres, explicándoles la naturaleza del cuadro y se cita para revisión anual.'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("ner_living_species_bert_pipeline", "es", "clinical/models")
-
-val text = "Lactante varón de dos años. Antecedentes familiares sin interés. Antecedentes personales: Embarazo, parto y periodo neonatal normal. En seguimiento por alergia a legumbres, diagnosticado con diez meses por reacción urticarial generalizada con lentejas y garbanzos, con dieta de exclusión a legumbres desde entonces. En ésta visita la madre describe episodios de eritema en zona maxilar derecha con afectación ocular ipsilateral que se resuelve en horas tras la administración de corticoides. Le ha ocurrido en 5-6 ocasiones, en relación con la ingesta de alimentos previamente tolerados. Exploración complementaria: Cacahuete, ac(ige)19.2 Ku.arb/l. Resultados: Ante la sospecha clínica de Síndrome de Frey, se tranquiliza a los padres, explicándoles la naturaleza del cuadro y se cita para revisión anual."
-
-val result = pipeline.fullAnnotate(text)
-```
-
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -112,12 +70,6 @@ result = pipeline.fullAnnotate(text)
## Results
```bash
-Results
-
-
-Results
-
-
| | ner_chunks | begin | end | ner_label | confidence |
|---:|:---------------|--------:|------:|:------------|-------------:|
| 0 | Lactante varón | 0 | 13 | HUMAN | 0.98915 |
@@ -131,12 +83,6 @@ Results
| 8 | madre | 334 | 338 | HUMAN | 1 |
| 9 | Cacahuete | 616 | 624 | SPECIES | 1 |
| 10 | padres | 728 | 733 | HUMAN | 1 |
-
-
-{:.model-param}
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-17-ner_living_species_bert_pipeline_fr.md b/docs/_posts/C-K-Loan/2023-06-17-ner_living_species_bert_pipeline_fr.md
index a36a86f8bb..b7d44c28c8 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-ner_living_species_bert_pipeline_fr.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-ner_living_species_bert_pipeline_fr.md
@@ -34,50 +34,7 @@ This pretrained pipeline is built on the top of [ner_living_species_bert](https:
{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_living_species_bert_pipeline", "fr", "clinical/models")
-
-text = '''Femme de 47 ans allergique à l'iode, fumeuse sociale, opérée pour des varices, deux césariennes et un abcès fessier. Vit avec son mari et ses trois enfants, travaille comme enseignante. Initialement, le patient a eu une bonne évolution, mais au 2ème jour postopératoire, il a commencé à montrer une instabilité hémodynamique. Les sérologies pour Coxiella burnetii, Bartonella henselae, Borrelia burgdorferi, Entamoeba histolytica, Toxoplasma gondii, herpès simplex virus 1 et 2, cytomégalovirus, virus d'Epstein Barr, virus de la varicelle et du zona et parvovirus B19 étaient négatives. Cependant, un test au rose Bengale positif pour Brucella, le test de Coombs et les agglutinations étaient également positifs avec un titre de 1/40.'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-val pipeline = new PretrainedPipeline("ner_living_species_bert_pipeline", "fr", "clinical/models")
-
-val text = "Femme de 47 ans allergique à l'iode, fumeuse sociale, opérée pour des varices, deux césariennes et un abcès fessier. Vit avec son mari et ses trois enfants, travaille comme enseignante. Initialement, le patient a eu une bonne évolution, mais au 2ème jour postopératoire, il a commencé à montrer une instabilité hémodynamique. Les sérologies pour Coxiella burnetii, Bartonella henselae, Borrelia burgdorferi, Entamoeba histolytica, Toxoplasma gondii, herpès simplex virus 1 et 2, cytomégalovirus, virus d'Epstein Barr, virus de la varicelle et du zona et parvovirus B19 étaient négatives. Cependant, un test au rose Bengale positif pour Brucella, le test de Coombs et les agglutinations étaient également positifs avec un titre de 1/40."
-
-val result = pipeline.fullAnnotate(text)
-```
-
-
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_living_species_bert_pipeline", "fr", "clinical/models")
-
-text = '''Femme de 47 ans allergique à l'iode, fumeuse sociale, opérée pour des varices, deux césariennes et un abcès fessier. Vit avec son mari et ses trois enfants, travaille comme enseignante. Initialement, le patient a eu une bonne évolution, mais au 2ème jour postopératoire, il a commencé à montrer une instabilité hémodynamique. Les sérologies pour Coxiella burnetii, Bartonella henselae, Borrelia burgdorferi, Entamoeba histolytica, Toxoplasma gondii, herpès simplex virus 1 et 2, cytomégalovirus, virus d'Epstein Barr, virus de la varicelle et du zona et parvovirus B19 étaient négatives. Cependant, un test au rose Bengale positif pour Brucella, le test de Coombs et les agglutinations étaient également positifs avec un titre de 1/40.'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("ner_living_species_bert_pipeline", "fr", "clinical/models")
-
-val text = "Femme de 47 ans allergique à l'iode, fumeuse sociale, opérée pour des varices, deux césariennes et un abcès fessier. Vit avec son mari et ses trois enfants, travaille comme enseignante. Initialement, le patient a eu une bonne évolution, mais au 2ème jour postopératoire, il a commencé à montrer une instabilité hémodynamique. Les sérologies pour Coxiella burnetii, Bartonella henselae, Borrelia burgdorferi, Entamoeba histolytica, Toxoplasma gondii, herpès simplex virus 1 et 2, cytomégalovirus, virus d'Epstein Barr, virus de la varicelle et du zona et parvovirus B19 étaient négatives. Cependant, un test au rose Bengale positif pour Brucella, le test de Coombs et les agglutinations étaient également positifs avec un titre de 1/40."
-
-val result = pipeline.fullAnnotate(text)
-```
-
-
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -112,12 +69,6 @@ result = pipeline.fullAnnotate(text)
## Results
```bash
-Results
-
-
-Results
-
-
| | ner_chunks | begin | end | ner_label | confidence |
|---:|:---------------------------------|--------:|------:|:------------|-------------:|
| 0 | Femme | 0 | 4 | HUMAN | 1 |
@@ -134,12 +85,6 @@ Results
| 11 | virus de la varicelle et du zona | 518 | 549 | SPECIES | 0.985429 |
| 12 | parvovirus B19 | 554 | 567 | SPECIES | 0.98595 |
| 13 | Brucella | 636 | 643 | SPECIES | 0.9995 |
-
-
-{:.model-param}
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-17-ner_living_species_bert_pipeline_it.md b/docs/_posts/C-K-Loan/2023-06-17-ner_living_species_bert_pipeline_it.md
index a735e22031..c759ac4f79 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-ner_living_species_bert_pipeline_it.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-ner_living_species_bert_pipeline_it.md
@@ -34,50 +34,7 @@ This pretrained pipeline is built on the top of [ner_living_species_bert](https:
{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_living_species_bert_pipeline", "it", "clinical/models")
-
-text = '''Una donna di 74 anni è stata ricoverata con dolore addominale diffuso, ipossia e astenia di 2 settimane di evoluzione. La sua storia personale includeva ipertensione in trattamento con amiloride/idroclorotiazide e dislipidemia controllata con lovastatina. La sua storia familiare era: madre morta di cancro gastrico, fratello con cirrosi epatica di eziologia sconosciuta e sorella con carcinoma epatocellulare. Lo studio eziologico delle diverse cause di malattia epatica cronica comprendeva: virus epatotropi (HBV, HCV) e HIV, studio dell'autoimmunità, ceruloplasmina, ferritina e porfirine nelle urine, tutti risultati negativi. Il paziente è stato messo in trattamento anticoagulante con acenocumarolo e diuretici a tempo indeterminato.'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-val pipeline = new PretrainedPipeline("ner_living_species_bert_pipeline", "it", "clinical/models")
-
-val text = "Una donna di 74 anni è stata ricoverata con dolore addominale diffuso, ipossia e astenia di 2 settimane di evoluzione. La sua storia personale includeva ipertensione in trattamento con amiloride/idroclorotiazide e dislipidemia controllata con lovastatina. La sua storia familiare era: madre morta di cancro gastrico, fratello con cirrosi epatica di eziologia sconosciuta e sorella con carcinoma epatocellulare. Lo studio eziologico delle diverse cause di malattia epatica cronica comprendeva: virus epatotropi (HBV, HCV) e HIV, studio dell'autoimmunità, ceruloplasmina, ferritina e porfirine nelle urine, tutti risultati negativi. Il paziente è stato messo in trattamento anticoagulante con acenocumarolo e diuretici a tempo indeterminato."
-
-val result = pipeline.fullAnnotate(text)
-```
-
-
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_living_species_bert_pipeline", "it", "clinical/models")
-
-text = '''Una donna di 74 anni è stata ricoverata con dolore addominale diffuso, ipossia e astenia di 2 settimane di evoluzione. La sua storia personale includeva ipertensione in trattamento con amiloride/idroclorotiazide e dislipidemia controllata con lovastatina. La sua storia familiare era: madre morta di cancro gastrico, fratello con cirrosi epatica di eziologia sconosciuta e sorella con carcinoma epatocellulare. Lo studio eziologico delle diverse cause di malattia epatica cronica comprendeva: virus epatotropi (HBV, HCV) e HIV, studio dell'autoimmunità, ceruloplasmina, ferritina e porfirine nelle urine, tutti risultati negativi. Il paziente è stato messo in trattamento anticoagulante con acenocumarolo e diuretici a tempo indeterminato.'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("ner_living_species_bert_pipeline", "it", "clinical/models")
-
-val text = "Una donna di 74 anni è stata ricoverata con dolore addominale diffuso, ipossia e astenia di 2 settimane di evoluzione. La sua storia personale includeva ipertensione in trattamento con amiloride/idroclorotiazide e dislipidemia controllata con lovastatina. La sua storia familiare era: madre morta di cancro gastrico, fratello con cirrosi epatica di eziologia sconosciuta e sorella con carcinoma epatocellulare. Lo studio eziologico delle diverse cause di malattia epatica cronica comprendeva: virus epatotropi (HBV, HCV) e HIV, studio dell'autoimmunità, ceruloplasmina, ferritina e porfirine nelle urine, tutti risultati negativi. Il paziente è stato messo in trattamento anticoagulante con acenocumarolo e diuretici a tempo indeterminato."
-
-val result = pipeline.fullAnnotate(text)
-```
-
-
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -112,12 +69,6 @@ result = pipeline.fullAnnotate(text)
## Results
```bash
-Results
-
-
-Results
-
-
| | ner_chunks | begin | end | ner_label | confidence |
|---:|:-----------------|--------:|------:|:------------|-------------:|
| 0 | donna | 4 | 8 | HUMAN | 0.9997 |
@@ -130,12 +81,6 @@ Results
| 7 | HCV | 516 | 518 | SPECIES | 0.9745 |
| 8 | HIV | 523 | 525 | SPECIES | 0.9838 |
| 9 | paziente | 634 | 641 | HUMAN | 0.9994 |
-
-
-{:.model-param}
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-17-ner_living_species_bert_pipeline_pt.md b/docs/_posts/C-K-Loan/2023-06-17-ner_living_species_bert_pipeline_pt.md
index 75b464d9be..4852d1f7ce 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-ner_living_species_bert_pipeline_pt.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-ner_living_species_bert_pipeline_pt.md
@@ -34,50 +34,7 @@ This pretrained pipeline is built on the top of [ner_living_species_bert](https:
{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_living_species_bert_pipeline", "pt", "clinical/models")
-
-text = '''Uma rapariga de 16 anos com um historial pessoal de asma apresentou ao departamento de dermatologia com lesões cutâneas assintomáticas que tinham estado presentes durante 2 meses. A paciente tinha sido tratada com creme corticosteróide devido a uma suspeita inicial de eczema atópico, apesar do qual apresentava um crescimento progressivo marcado das lesões. Tinha um gato doméstico que ela nunca tinha levado ao veterinário. O exame físico revelou placas em forma de anel com uma borda periférica activa na parte superior das costas e nos aspectos laterais do pescoço e da face. Cultura local obtida por raspagem de tapete isolado Trichophyton rubrum. Com base em dados clínicos e cultura, foi estabelecido o diagnóstico de tinea incognito..'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-val pipeline = new PretrainedPipeline("ner_living_species_bert_pipeline", "pt", "clinical/models")
-
-val text = "Uma rapariga de 16 anos com um historial pessoal de asma apresentou ao departamento de dermatologia com lesões cutâneas assintomáticas que tinham estado presentes durante 2 meses. A paciente tinha sido tratada com creme corticosteróide devido a uma suspeita inicial de eczema atópico, apesar do qual apresentava um crescimento progressivo marcado das lesões. Tinha um gato doméstico que ela nunca tinha levado ao veterinário. O exame físico revelou placas em forma de anel com uma borda periférica activa na parte superior das costas e nos aspectos laterais do pescoço e da face. Cultura local obtida por raspagem de tapete isolado Trichophyton rubrum. Com base em dados clínicos e cultura, foi estabelecido o diagnóstico de tinea incognito.."
-
-val result = pipeline.fullAnnotate(text)
-```
-
-
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_living_species_bert_pipeline", "pt", "clinical/models")
-
-text = '''Uma rapariga de 16 anos com um historial pessoal de asma apresentou ao departamento de dermatologia com lesões cutâneas assintomáticas que tinham estado presentes durante 2 meses. A paciente tinha sido tratada com creme corticosteróide devido a uma suspeita inicial de eczema atópico, apesar do qual apresentava um crescimento progressivo marcado das lesões. Tinha um gato doméstico que ela nunca tinha levado ao veterinário. O exame físico revelou placas em forma de anel com uma borda periférica activa na parte superior das costas e nos aspectos laterais do pescoço e da face. Cultura local obtida por raspagem de tapete isolado Trichophyton rubrum. Com base em dados clínicos e cultura, foi estabelecido o diagnóstico de tinea incognito..'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("ner_living_species_bert_pipeline", "pt", "clinical/models")
-
-val text = "Uma rapariga de 16 anos com um historial pessoal de asma apresentou ao departamento de dermatologia com lesões cutâneas assintomáticas que tinham estado presentes durante 2 meses. A paciente tinha sido tratada com creme corticosteróide devido a uma suspeita inicial de eczema atópico, apesar do qual apresentava um crescimento progressivo marcado das lesões. Tinha um gato doméstico que ela nunca tinha levado ao veterinário. O exame físico revelou placas em forma de anel com uma borda periférica activa na parte superior das costas e nos aspectos laterais do pescoço e da face. Cultura local obtida por raspagem de tapete isolado Trichophyton rubrum. Com base em dados clínicos e cultura, foi estabelecido o diagnóstico de tinea incognito.."
-
-val result = pipeline.fullAnnotate(text)
-```
-
-
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -112,12 +69,6 @@ result = pipeline.fullAnnotate(text)
## Results
```bash
-Results
-
-
-Results
-
-
| | ner_chunks | begin | end | ner_label | confidence |
|---:|:--------------------|--------:|------:|:------------|-------------:|
| 0 | rapariga | 4 | 11 | HUMAN | 0.9849 |
@@ -126,12 +77,6 @@ Results
| 3 | gato | 368 | 371 | SPECIES | 0.9912 |
| 4 | veterinário | 413 | 423 | HUMAN | 0.9909 |
| 5 | Trichophyton rubrum | 632 | 650 | SPECIES | 0.9778 |
-
-
-{:.model-param}
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-17-ner_living_species_bert_pipeline_ro.md b/docs/_posts/C-K-Loan/2023-06-17-ner_living_species_bert_pipeline_ro.md
index 1503e7e466..e244fd967f 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-ner_living_species_bert_pipeline_ro.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-ner_living_species_bert_pipeline_ro.md
@@ -32,52 +32,10 @@ This pretrained pipeline is built on the top of [ner_living_species_bert](https:
## How to use
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_living_species_bert_pipeline", "ro", "clinical/models")
-
-text = '''O femeie în vârstă de 26 de ani, însărcinată în 11 săptămâni, a consultat serviciul de urgențe dermatologice pentru că prezenta, de 4 zile, leziuni punctiforme dureroase de debut brusc pe vârful degetelor. Pacientul raportează că leziunile au început pe degete și ulterior s-au extins la degetele de la picioare. Markerii de imunitate, ANA și crioagglutininele, au fost negativi, iar serologia VHB a indicat doar vaccinarea. Pe baza acestor rezultate, diagnosticul de vasculită a fost exclus și, având în vedere diagnosticul suspectat de erupție cutanată cu mănuși și șosete, s-a efectuat serologia pentru virusul Ebstein Barr. Exantemă la mănuși și șosete datorat parvovirozei B19. Având în vedere suspiciunea unei afecțiuni infecțioase cu aceste caracteristici, a fost solicitată serologia pentru EBV, enterovirus și parvovirus B19, cu IgM pozitiv pentru acesta din urmă în două ocazii. De asemenea, nu au existat semne de anemie fetală sau complicații ale acesteia.'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("ner_living_species_bert_pipeline", "ro", "clinical/models")
-
-val text = "O femeie în vârstă de 26 de ani, însărcinată în 11 săptămâni, a consultat serviciul de urgențe dermatologice pentru că prezenta, de 4 zile, leziuni punctiforme dureroase de debut brusc pe vârful degetelor. Pacientul raportează că leziunile au început pe degete și ulterior s-au extins la degetele de la picioare. Markerii de imunitate, ANA și crioagglutininele, au fost negativi, iar serologia VHB a indicat doar vaccinarea. Pe baza acestor rezultate, diagnosticul de vasculită a fost exclus și, având în vedere diagnosticul suspectat de erupție cutanată cu mănuși și șosete, s-a efectuat serologia pentru virusul Ebstein Barr. Exantemă la mănuși și șosete datorat parvovirozei B19. Având în vedere suspiciunea unei afecțiuni infecțioase cu aceste caracteristici, a fost solicitată serologia pentru EBV, enterovirus și parvovirus B19, cu IgM pozitiv pentru acesta din urmă în două ocazii. De asemenea, nu au existat semne de anemie fetală sau complicații ale acesteia."
-
-val result = pipeline.fullAnnotate(text)
-```
-
{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_living_species_bert_pipeline", "ro", "clinical/models")
-
-text = '''O femeie în vârstă de 26 de ani, însărcinată în 11 săptămâni, a consultat serviciul de urgențe dermatologice pentru că prezenta, de 4 zile, leziuni punctiforme dureroase de debut brusc pe vârful degetelor. Pacientul raportează că leziunile au început pe degete și ulterior s-au extins la degetele de la picioare. Markerii de imunitate, ANA și crioagglutininele, au fost negativi, iar serologia VHB a indicat doar vaccinarea. Pe baza acestor rezultate, diagnosticul de vasculită a fost exclus și, având în vedere diagnosticul suspectat de erupție cutanată cu mănuși și șosete, s-a efectuat serologia pentru virusul Ebstein Barr. Exantemă la mănuși și șosete datorat parvovirozei B19. Având în vedere suspiciunea unei afecțiuni infecțioase cu aceste caracteristici, a fost solicitată serologia pentru EBV, enterovirus și parvovirus B19, cu IgM pozitiv pentru acesta din urmă în două ocazii. De asemenea, nu au existat semne de anemie fetală sau complicații ale acesteia.'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("ner_living_species_bert_pipeline", "ro", "clinical/models")
-
-val text = "O femeie în vârstă de 26 de ani, însărcinată în 11 săptămâni, a consultat serviciul de urgențe dermatologice pentru că prezenta, de 4 zile, leziuni punctiforme dureroase de debut brusc pe vârful degetelor. Pacientul raportează că leziunile au început pe degete și ulterior s-au extins la degetele de la picioare. Markerii de imunitate, ANA și crioagglutininele, au fost negativi, iar serologia VHB a indicat doar vaccinarea. Pe baza acestor rezultate, diagnosticul de vasculită a fost exclus și, având în vedere diagnosticul suspectat de erupție cutanată cu mănuși și șosete, s-a efectuat serologia pentru virusul Ebstein Barr. Exantemă la mănuși și șosete datorat parvovirozei B19. Având în vedere suspiciunea unei afecțiuni infecțioase cu aceste caracteristici, a fost solicitată serologia pentru EBV, enterovirus și parvovirus B19, cu IgM pozitiv pentru acesta din urmă în două ocazii. De asemenea, nu au existat semne de anemie fetală sau complicații ale acesteia."
-
-val result = pipeline.fullAnnotate(text)
-```
-
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -112,12 +70,6 @@ result = pipeline.fullAnnotate(text)
## Results
```bash
-Results
-
-
-Results
-
-
| | ner_chunks | begin | end | ner_label | confidence |
|---:|:---------------------|--------:|------:|:------------|-------------:|
| 0 | femeie | 2 | 7 | HUMAN | 0.9998 |
@@ -129,12 +81,6 @@ Results
| 6 | enterovirus | 804 | 814 | SPECIES | 0.9984 |
| 7 | parvovirus B19 | 819 | 832 | SPECIES | 0.99255 |
| 8 | fetală | 932 | 937 | HUMAN | 0.9994 |
-
-
-{:.model-param}
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-17-ner_living_species_biobert_pipeline_en.md b/docs/_posts/C-K-Loan/2023-06-17-ner_living_species_biobert_pipeline_en.md
index 34467b6fda..d59a3f3b64 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-ner_living_species_biobert_pipeline_en.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-ner_living_species_biobert_pipeline_en.md
@@ -34,50 +34,7 @@ This pretrained pipeline is built on the top of [ner_living_species_biobert](htt
{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_living_species_biobert_pipeline", "en", "clinical/models")
-
-text = '''42-year-old woman with end-stage chronic kidney disease, secondary to lupus nephropathy, and on peritoneal dialysis. History of four episodes of bacterial peritonitis and change of Tenckhoff catheter six months prior to admission due to catheter dysfunction. Three peritoneal fluid samples during her hospitalisation tested positive for Fusarium spp. The patient responded favourably and continued outpatient treatment with voriconazole (4mg/kg every 12 hours orally). All three isolates were identified as species of the Fusarium solani complex. In vitro susceptibility to itraconazole, voriconazole and posaconazole, according to Clinical and Laboratory Standards Institute - CLSI (M38-A) methodology, showed a minimum inhibitory concentration (MIC) in all three isolates and for all three antifungals of >16 μg/mL.'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-val pipeline = new PretrainedPipeline("ner_living_species_biobert_pipeline", "en", "clinical/models")
-
-val text = "42-year-old woman with end-stage chronic kidney disease, secondary to lupus nephropathy, and on peritoneal dialysis. History of four episodes of bacterial peritonitis and change of Tenckhoff catheter six months prior to admission due to catheter dysfunction. Three peritoneal fluid samples during her hospitalisation tested positive for Fusarium spp. The patient responded favourably and continued outpatient treatment with voriconazole (4mg/kg every 12 hours orally). All three isolates were identified as species of the Fusarium solani complex. In vitro susceptibility to itraconazole, voriconazole and posaconazole, according to Clinical and Laboratory Standards Institute - CLSI (M38-A) methodology, showed a minimum inhibitory concentration (MIC) in all three isolates and for all three antifungals of >16 μg/mL."
-
-val result = pipeline.fullAnnotate(text)
-```
-
-
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_living_species_biobert_pipeline", "en", "clinical/models")
-
-text = '''42-year-old woman with end-stage chronic kidney disease, secondary to lupus nephropathy, and on peritoneal dialysis. History of four episodes of bacterial peritonitis and change of Tenckhoff catheter six months prior to admission due to catheter dysfunction. Three peritoneal fluid samples during her hospitalisation tested positive for Fusarium spp. The patient responded favourably and continued outpatient treatment with voriconazole (4mg/kg every 12 hours orally). All three isolates were identified as species of the Fusarium solani complex. In vitro susceptibility to itraconazole, voriconazole and posaconazole, according to Clinical and Laboratory Standards Institute - CLSI (M38-A) methodology, showed a minimum inhibitory concentration (MIC) in all three isolates and for all three antifungals of >16 μg/mL.'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("ner_living_species_biobert_pipeline", "en", "clinical/models")
-
-val text = "42-year-old woman with end-stage chronic kidney disease, secondary to lupus nephropathy, and on peritoneal dialysis. History of four episodes of bacterial peritonitis and change of Tenckhoff catheter six months prior to admission due to catheter dysfunction. Three peritoneal fluid samples during her hospitalisation tested positive for Fusarium spp. The patient responded favourably and continued outpatient treatment with voriconazole (4mg/kg every 12 hours orally). All three isolates were identified as species of the Fusarium solani complex. In vitro susceptibility to itraconazole, voriconazole and posaconazole, according to Clinical and Laboratory Standards Institute - CLSI (M38-A) methodology, showed a minimum inhibitory concentration (MIC) in all three isolates and for all three antifungals of >16 μg/mL."
-
-val result = pipeline.fullAnnotate(text)
-```
-
-
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -112,12 +69,6 @@ result = pipeline.fullAnnotate(text)
## Results
```bash
-Results
-
-
-Results
-
-
| | ner_chunk | begin | end | ner_label | confidence |
|---:|:------------------------|--------:|------:|:------------|-------------:|
| 0 | woman | 12 | 16 | HUMAN | 0.9999 |
@@ -127,12 +78,6 @@ Results
| 4 | species | 507 | 513 | SPECIES | 0.9926 |
| 5 | Fusarium solani complex | 522 | 544 | SPECIES | 0.8422 |
| 6 | antifungals | 792 | 802 | SPECIES | 0.9929 |
-
-
-{:.model-param}
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-17-ner_living_species_pipeline_ca.md b/docs/_posts/C-K-Loan/2023-06-17-ner_living_species_pipeline_ca.md
index 23663a2988..e27341c044 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-ner_living_species_pipeline_ca.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-ner_living_species_pipeline_ca.md
@@ -34,50 +34,7 @@ This pretrained pipeline is built on the top of [ner_living_species](https://nlp
{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_living_species_pipeline", "ca", "clinical/models")
-
-text = '''Dona de 47 anys al·lèrgica al iode, fumadora social, intervinguda de varices, dues cesàries i un abscés gluti. Sense altres antecedents mèdics d'interès ni tractament habitual. Viu amb el seu marit i tres fills, treballa com a professora. En el moment de la nostra valoració en la planta de Cirurgia General, la pacient presenta TA 69/40 mm Hg, freqüència cardíaca 120 lpm, taquipnea en repòs, pal·lidesa mucocutánea, mala perfusió distal i afligeix nàusees. L'abdomen és tou, no presenta peritonismo i el dèbit del drenatge abdominal roman sense canvis. Les serologies de Coxiella burnetii, Bartonella henselae, Borrelia burgdorferi, Entamoeba histolytica, Toxoplasma gondii, citomegalovirus, virus de Epstein Barr, virus varicel·la zoster i parvovirus B19 van ser negatives. No obstant això, es va detectar test de rosa de Bengala positiu per a Brucella, el test de Coombs i les aglutinacions també van ser positives amb un títol 1/40.'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-val pipeline = new PretrainedPipeline("ner_living_species_pipeline", "ca", "clinical/models")
-
-val text = "Dona de 47 anys al·lèrgica al iode, fumadora social, intervinguda de varices, dues cesàries i un abscés gluti. Sense altres antecedents mèdics d'interès ni tractament habitual. Viu amb el seu marit i tres fills, treballa com a professora. En el moment de la nostra valoració en la planta de Cirurgia General, la pacient presenta TA 69/40 mm Hg, freqüència cardíaca 120 lpm, taquipnea en repòs, pal·lidesa mucocutánea, mala perfusió distal i afligeix nàusees. L'abdomen és tou, no presenta peritonismo i el dèbit del drenatge abdominal roman sense canvis. Les serologies de Coxiella burnetii, Bartonella henselae, Borrelia burgdorferi, Entamoeba histolytica, Toxoplasma gondii, citomegalovirus, virus de Epstein Barr, virus varicel·la zoster i parvovirus B19 van ser negatives. No obstant això, es va detectar test de rosa de Bengala positiu per a Brucella, el test de Coombs i les aglutinacions també van ser positives amb un títol 1/40."
-
-val result = pipeline.fullAnnotate(text)
-```
-
-
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_living_species_pipeline", "ca", "clinical/models")
-
-text = '''Dona de 47 anys al·lèrgica al iode, fumadora social, intervinguda de varices, dues cesàries i un abscés gluti. Sense altres antecedents mèdics d'interès ni tractament habitual. Viu amb el seu marit i tres fills, treballa com a professora. En el moment de la nostra valoració en la planta de Cirurgia General, la pacient presenta TA 69/40 mm Hg, freqüència cardíaca 120 lpm, taquipnea en repòs, pal·lidesa mucocutánea, mala perfusió distal i afligeix nàusees. L'abdomen és tou, no presenta peritonismo i el dèbit del drenatge abdominal roman sense canvis. Les serologies de Coxiella burnetii, Bartonella henselae, Borrelia burgdorferi, Entamoeba histolytica, Toxoplasma gondii, citomegalovirus, virus de Epstein Barr, virus varicel·la zoster i parvovirus B19 van ser negatives. No obstant això, es va detectar test de rosa de Bengala positiu per a Brucella, el test de Coombs i les aglutinacions també van ser positives amb un títol 1/40.'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("ner_living_species_pipeline", "ca", "clinical/models")
-
-val text = "Dona de 47 anys al·lèrgica al iode, fumadora social, intervinguda de varices, dues cesàries i un abscés gluti. Sense altres antecedents mèdics d'interès ni tractament habitual. Viu amb el seu marit i tres fills, treballa com a professora. En el moment de la nostra valoració en la planta de Cirurgia General, la pacient presenta TA 69/40 mm Hg, freqüència cardíaca 120 lpm, taquipnea en repòs, pal·lidesa mucocutánea, mala perfusió distal i afligeix nàusees. L'abdomen és tou, no presenta peritonismo i el dèbit del drenatge abdominal roman sense canvis. Les serologies de Coxiella burnetii, Bartonella henselae, Borrelia burgdorferi, Entamoeba histolytica, Toxoplasma gondii, citomegalovirus, virus de Epstein Barr, virus varicel·la zoster i parvovirus B19 van ser negatives. No obstant això, es va detectar test de rosa de Bengala positiu per a Brucella, el test de Coombs i les aglutinacions també van ser positives amb un títol 1/40."
-
-val result = pipeline.fullAnnotate(text)
-```
-
-
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -112,12 +69,6 @@ result = pipeline.fullAnnotate(text)
## Results
```bash
-Results
-
-
-Results
-
-
| | ner_chunks | begin | end | ner_label | confidence |
|---:|:------------------------|--------:|------:|:------------|-------------:|
| 0 | Dona | 0 | 3 | HUMAN | 1 |
@@ -135,12 +86,6 @@ Results
| 12 | virus varicel·la zoster | 717 | 739 | SPECIES | 0.778333 |
| 13 | parvovirus B19 | 743 | 756 | SPECIES | 0.9138 |
| 14 | Brucella | 847 | 854 | SPECIES | 0.9483 |
-
-
-{:.model-param}
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-17-ner_living_species_pipeline_en.md b/docs/_posts/C-K-Loan/2023-06-17-ner_living_species_pipeline_en.md
index e1669b6815..ccdb1fb91a 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-ner_living_species_pipeline_en.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-ner_living_species_pipeline_en.md
@@ -34,50 +34,7 @@ This pretrained pipeline is built on the top of [ner_living_species](https://nlp
{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_living_species_pipeline", "en", "clinical/models")
-
-text = '''42-year-old woman with end-stage chronic kidney disease, secondary to lupus nephropathy, and on peritoneal dialysis. History of four episodes of bacterial peritonitis and change of Tenckhoff catheter six months prior to admission due to catheter dysfunction. Three peritoneal fluid samples during her hospitalisation tested positive for Fusarium spp. The patient responded favourably and continued outpatient treatment with voriconazole (4mg/kg every 12 hours orally). All three isolates were identified as species of the Fusarium solani complex. In vitro susceptibility to itraconazole, voriconazole and posaconazole, according to Clinical and Laboratory Standards Institute - CLSI (M38-A) methodology, showed a minimum inhibitory concentration (MIC) in all three isolates and for all three antifungals of >16 μg/mL.'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-val pipeline = new PretrainedPipeline("ner_living_species_pipeline", "en", "clinical/models")
-
-val text = "42-year-old woman with end-stage chronic kidney disease, secondary to lupus nephropathy, and on peritoneal dialysis. History of four episodes of bacterial peritonitis and change of Tenckhoff catheter six months prior to admission due to catheter dysfunction. Three peritoneal fluid samples during her hospitalisation tested positive for Fusarium spp. The patient responded favourably and continued outpatient treatment with voriconazole (4mg/kg every 12 hours orally). All three isolates were identified as species of the Fusarium solani complex. In vitro susceptibility to itraconazole, voriconazole and posaconazole, according to Clinical and Laboratory Standards Institute - CLSI (M38-A) methodology, showed a minimum inhibitory concentration (MIC) in all three isolates and for all three antifungals of >16 μg/mL."
-
-val result = pipeline.fullAnnotate(text)
-```
-
-
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_living_species_pipeline", "en", "clinical/models")
-
-text = '''42-year-old woman with end-stage chronic kidney disease, secondary to lupus nephropathy, and on peritoneal dialysis. History of four episodes of bacterial peritonitis and change of Tenckhoff catheter six months prior to admission due to catheter dysfunction. Three peritoneal fluid samples during her hospitalisation tested positive for Fusarium spp. The patient responded favourably and continued outpatient treatment with voriconazole (4mg/kg every 12 hours orally). All three isolates were identified as species of the Fusarium solani complex. In vitro susceptibility to itraconazole, voriconazole and posaconazole, according to Clinical and Laboratory Standards Institute - CLSI (M38-A) methodology, showed a minimum inhibitory concentration (MIC) in all three isolates and for all three antifungals of >16 μg/mL.'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("ner_living_species_pipeline", "en", "clinical/models")
-
-val text = "42-year-old woman with end-stage chronic kidney disease, secondary to lupus nephropathy, and on peritoneal dialysis. History of four episodes of bacterial peritonitis and change of Tenckhoff catheter six months prior to admission due to catheter dysfunction. Three peritoneal fluid samples during her hospitalisation tested positive for Fusarium spp. The patient responded favourably and continued outpatient treatment with voriconazole (4mg/kg every 12 hours orally). All three isolates were identified as species of the Fusarium solani complex. In vitro susceptibility to itraconazole, voriconazole and posaconazole, according to Clinical and Laboratory Standards Institute - CLSI (M38-A) methodology, showed a minimum inhibitory concentration (MIC) in all three isolates and for all three antifungals of >16 μg/mL."
-
-val result = pipeline.fullAnnotate(text)
-```
-
-
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -112,12 +69,6 @@ result = pipeline.fullAnnotate(text)
## Results
```bash
-Results
-
-
-Results
-
-
| | ner_chunks | begin | end | ner_label | confidence |
|---:|:------------------------|--------:|------:|:------------|-------------:|
| 0 | woman | 12 | 16 | HUMAN | 0.9993 |
@@ -127,12 +78,6 @@ Results
| 4 | species | 507 | 513 | SPECIES | 0.8838 |
| 5 | Fusarium solani complex | 522 | 544 | SPECIES | 0.748667 |
| 6 | antifungals | 792 | 802 | SPECIES | 0.9847 |
-
-
-{:.model-param}
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-17-ner_living_species_pipeline_es.md b/docs/_posts/C-K-Loan/2023-06-17-ner_living_species_pipeline_es.md
index 74cc25f2ba..eb43222cbf 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-ner_living_species_pipeline_es.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-ner_living_species_pipeline_es.md
@@ -34,50 +34,7 @@ This pretrained pipeline is built on the top of [ner_living_species](https://nlp
{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_living_species_pipeline", "es", "clinical/models")
-
-text = '''Lactante varón de dos años. Antecedentes familiares sin interés. Antecedentes personales: Embarazo, parto y periodo neonatal normal. En seguimiento por alergia a legumbres, diagnosticado con diez meses por reacción urticarial generalizada con lentejas y garbanzos, con dieta de exclusión a legumbres desde entonces. En ésta visita la madre describe episodios de eritema en zona maxilar derecha con afectación ocular ipsilateral que se resuelve en horas tras la administración de corticoides. Le ha ocurrido en 5-6 ocasiones, en relación con la ingesta de alimentos previamente tolerados. Exploración complementaria: Cacahuete, ac(ige)19.2 Ku.arb/l. Resultados: Ante la sospecha clínica de Síndrome de Frey, se tranquiliza a los padres, explicándoles la naturaleza del cuadro y se cita para revisión anual.'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-val pipeline = new PretrainedPipeline("ner_living_species_pipeline", "es", "clinical/models")
-
-val text = "Lactante varón de dos años. Antecedentes familiares sin interés. Antecedentes personales: Embarazo, parto y periodo neonatal normal. En seguimiento por alergia a legumbres, diagnosticado con diez meses por reacción urticarial generalizada con lentejas y garbanzos, con dieta de exclusión a legumbres desde entonces. En ésta visita la madre describe episodios de eritema en zona maxilar derecha con afectación ocular ipsilateral que se resuelve en horas tras la administración de corticoides. Le ha ocurrido en 5-6 ocasiones, en relación con la ingesta de alimentos previamente tolerados. Exploración complementaria: Cacahuete, ac(ige)19.2 Ku.arb/l. Resultados: Ante la sospecha clínica de Síndrome de Frey, se tranquiliza a los padres, explicándoles la naturaleza del cuadro y se cita para revisión anual."
-
-val result = pipeline.fullAnnotate(text)
-```
-
-
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_living_species_pipeline", "es", "clinical/models")
-
-text = '''Lactante varón de dos años. Antecedentes familiares sin interés. Antecedentes personales: Embarazo, parto y periodo neonatal normal. En seguimiento por alergia a legumbres, diagnosticado con diez meses por reacción urticarial generalizada con lentejas y garbanzos, con dieta de exclusión a legumbres desde entonces. En ésta visita la madre describe episodios de eritema en zona maxilar derecha con afectación ocular ipsilateral que se resuelve en horas tras la administración de corticoides. Le ha ocurrido en 5-6 ocasiones, en relación con la ingesta de alimentos previamente tolerados. Exploración complementaria: Cacahuete, ac(ige)19.2 Ku.arb/l. Resultados: Ante la sospecha clínica de Síndrome de Frey, se tranquiliza a los padres, explicándoles la naturaleza del cuadro y se cita para revisión anual.'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("ner_living_species_pipeline", "es", "clinical/models")
-
-val text = "Lactante varón de dos años. Antecedentes familiares sin interés. Antecedentes personales: Embarazo, parto y periodo neonatal normal. En seguimiento por alergia a legumbres, diagnosticado con diez meses por reacción urticarial generalizada con lentejas y garbanzos, con dieta de exclusión a legumbres desde entonces. En ésta visita la madre describe episodios de eritema en zona maxilar derecha con afectación ocular ipsilateral que se resuelve en horas tras la administración de corticoides. Le ha ocurrido en 5-6 ocasiones, en relación con la ingesta de alimentos previamente tolerados. Exploración complementaria: Cacahuete, ac(ige)19.2 Ku.arb/l. Resultados: Ante la sospecha clínica de Síndrome de Frey, se tranquiliza a los padres, explicándoles la naturaleza del cuadro y se cita para revisión anual."
-
-val result = pipeline.fullAnnotate(text)
-```
-
-
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -112,12 +69,6 @@ result = pipeline.fullAnnotate(text)
## Results
```bash
-Results
-
-
-Results
-
-
| | ner_chunks | begin | end | ner_label | confidence |
|---:|:---------------|--------:|------:|:------------|-------------:|
| 0 | Lactante varón | 0 | 13 | HUMAN | 0.9926 |
@@ -131,12 +82,6 @@ Results
| 8 | madre | 334 | 338 | HUMAN | 0.9997 |
| 9 | Cacahuete | 616 | 624 | SPECIES | 0.9998 |
| 10 | padres | 728 | 733 | HUMAN | 0.9992 |
-
-
-{:.model-param}
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-17-ner_living_species_pipeline_fr.md b/docs/_posts/C-K-Loan/2023-06-17-ner_living_species_pipeline_fr.md
index 7e0118c2df..ba602fa3dc 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-ner_living_species_pipeline_fr.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-ner_living_species_pipeline_fr.md
@@ -32,52 +32,10 @@ This pretrained pipeline is built on the top of [ner_living_species](https://nlp
## How to use
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_living_species_pipeline", "fr", "clinical/models")
-
-text = '''Femme de 47 ans allergique à l'iode, fumeuse sociale, opérée pour des varices, deux césariennes et un abcès fessier. Vit avec son mari et ses trois enfants, travaille comme enseignante. Initialement, le patient a eu une bonne évolution, mais au 2ème jour postopératoire, il a commencé à montrer une instabilité hémodynamique. Les sérologies pour Coxiella burnetii, Bartonella henselae, Borrelia burgdorferi, Entamoeba histolytica, Toxoplasma gondii, herpès simplex virus 1 et 2, cytomégalovirus, virus d'Epstein Barr, virus de la varicelle et du zona et parvovirus B19 étaient négatives. Cependant, un test au rose Bengale positif pour Brucella, le test de Coombs et les agglutinations étaient également positifs avec un titre de 1/40.'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("ner_living_species_pipeline", "fr", "clinical/models")
-
-val text = "Femme de 47 ans allergique à l'iode, fumeuse sociale, opérée pour des varices, deux césariennes et un abcès fessier. Vit avec son mari et ses trois enfants, travaille comme enseignante. Initialement, le patient a eu une bonne évolution, mais au 2ème jour postopératoire, il a commencé à montrer une instabilité hémodynamique. Les sérologies pour Coxiella burnetii, Bartonella henselae, Borrelia burgdorferi, Entamoeba histolytica, Toxoplasma gondii, herpès simplex virus 1 et 2, cytomégalovirus, virus d'Epstein Barr, virus de la varicelle et du zona et parvovirus B19 étaient négatives. Cependant, un test au rose Bengale positif pour Brucella, le test de Coombs et les agglutinations étaient également positifs avec un titre de 1/40."
-
-val result = pipeline.fullAnnotate(text)
-```
-
{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_living_species_pipeline", "fr", "clinical/models")
-
-text = '''Femme de 47 ans allergique à l'iode, fumeuse sociale, opérée pour des varices, deux césariennes et un abcès fessier. Vit avec son mari et ses trois enfants, travaille comme enseignante. Initialement, le patient a eu une bonne évolution, mais au 2ème jour postopératoire, il a commencé à montrer une instabilité hémodynamique. Les sérologies pour Coxiella burnetii, Bartonella henselae, Borrelia burgdorferi, Entamoeba histolytica, Toxoplasma gondii, herpès simplex virus 1 et 2, cytomégalovirus, virus d'Epstein Barr, virus de la varicelle et du zona et parvovirus B19 étaient négatives. Cependant, un test au rose Bengale positif pour Brucella, le test de Coombs et les agglutinations étaient également positifs avec un titre de 1/40.'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("ner_living_species_pipeline", "fr", "clinical/models")
-
-val text = "Femme de 47 ans allergique à l'iode, fumeuse sociale, opérée pour des varices, deux césariennes et un abcès fessier. Vit avec son mari et ses trois enfants, travaille comme enseignante. Initialement, le patient a eu une bonne évolution, mais au 2ème jour postopératoire, il a commencé à montrer une instabilité hémodynamique. Les sérologies pour Coxiella burnetii, Bartonella henselae, Borrelia burgdorferi, Entamoeba histolytica, Toxoplasma gondii, herpès simplex virus 1 et 2, cytomégalovirus, virus d'Epstein Barr, virus de la varicelle et du zona et parvovirus B19 étaient négatives. Cependant, un test au rose Bengale positif pour Brucella, le test de Coombs et les agglutinations étaient également positifs avec un titre de 1/40."
-
-val result = pipeline.fullAnnotate(text)
-```
-
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -112,12 +70,6 @@ result = pipeline.fullAnnotate(text)
## Results
```bash
-Results
-
-
-Results
-
-
| | ner_chunks | begin | end | ner_label | confidence |
|---:|:---------------------------------|--------:|------:|:------------|-------------:|
| 0 | Femme | 0 | 4 | HUMAN | 1 |
@@ -133,13 +85,7 @@ Results
| 10 | virus d'Epstein Barr | 496 | 515 | SPECIES | 0.788667 |
| 11 | virus de la varicelle et du zona | 518 | 549 | SPECIES | 0.788543 |
| 12 | parvovirus B19 | 554 | 567 | SPECIES | 0.9341 |
-| 13 | Brucella | 636 | 643 | SPECIES | 0.9993 |
-
-
-{:.model-param}
-
-
-{:.model-param}
+| 13 | Brucella | 636 | 643 | SPECIES | 0.9993 |}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-17-ner_living_species_pipeline_gl.md b/docs/_posts/C-K-Loan/2023-06-17-ner_living_species_pipeline_gl.md
index 54c8dd29e0..7a7d9abc37 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-ner_living_species_pipeline_gl.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-ner_living_species_pipeline_gl.md
@@ -34,50 +34,7 @@ This pretrained pipeline is built on the top of [ner_living_species](https://nlp
{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_living_species_pipeline", "gl", "clinical/models")
-
-text = '''Muller de 45 anos, sen antecedentes médicos de interese, que foi remitida á consulta de dermatoloxía de urxencias por lesións faciales de tres semanas de evolución. A paciente non presentaba lesións noutras localizaciones nin outra clínica de interese. No seu centro de saúde prescribíronlle corticoides tópicos ante a sospeita de picaduras de artrópodos e unha semana despois, antivirales orais baixo o diagnóstico de posible infección herpética. As lesións interferían de forma notable na súa vida persoal e profesional xa que traballaba de face ao púbico. Unha semana máis tarde o diagnóstico foi confirmado ao resultar o cultivo positivo a Staphylococcus aureus.'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-val pipeline = new PretrainedPipeline("ner_living_species_pipeline", "gl", "clinical/models")
-
-val text = "Muller de 45 anos, sen antecedentes médicos de interese, que foi remitida á consulta de dermatoloxía de urxencias por lesións faciales de tres semanas de evolución. A paciente non presentaba lesións noutras localizaciones nin outra clínica de interese. No seu centro de saúde prescribíronlle corticoides tópicos ante a sospeita de picaduras de artrópodos e unha semana despois, antivirales orais baixo o diagnóstico de posible infección herpética. As lesións interferían de forma notable na súa vida persoal e profesional xa que traballaba de face ao púbico. Unha semana máis tarde o diagnóstico foi confirmado ao resultar o cultivo positivo a Staphylococcus aureus."
-
-val result = pipeline.fullAnnotate(text)
-```
-
-
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_living_species_pipeline", "gl", "clinical/models")
-
-text = '''Muller de 45 anos, sen antecedentes médicos de interese, que foi remitida á consulta de dermatoloxía de urxencias por lesións faciales de tres semanas de evolución. A paciente non presentaba lesións noutras localizaciones nin outra clínica de interese. No seu centro de saúde prescribíronlle corticoides tópicos ante a sospeita de picaduras de artrópodos e unha semana despois, antivirales orais baixo o diagnóstico de posible infección herpética. As lesións interferían de forma notable na súa vida persoal e profesional xa que traballaba de face ao púbico. Unha semana máis tarde o diagnóstico foi confirmado ao resultar o cultivo positivo a Staphylococcus aureus.'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("ner_living_species_pipeline", "gl", "clinical/models")
-
-val text = "Muller de 45 anos, sen antecedentes médicos de interese, que foi remitida á consulta de dermatoloxía de urxencias por lesións faciales de tres semanas de evolución. A paciente non presentaba lesións noutras localizaciones nin outra clínica de interese. No seu centro de saúde prescribíronlle corticoides tópicos ante a sospeita de picaduras de artrópodos e unha semana despois, antivirales orais baixo o diagnóstico de posible infección herpética. As lesións interferían de forma notable na súa vida persoal e profesional xa que traballaba de face ao púbico. Unha semana máis tarde o diagnóstico foi confirmado ao resultar o cultivo positivo a Staphylococcus aureus."
-
-val result = pipeline.fullAnnotate(text)
-```
-
-
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -112,12 +69,6 @@ result = pipeline.fullAnnotate(text)
## Results
```bash
-Results
-
-
-Results
-
-
| | ner_chunks | begin | end | ner_label | confidence |
|---:|:----------------------|--------:|------:|:------------|-------------:|
| 0 | Muller | 0 | 5 | HUMAN | 0.9998 |
@@ -127,12 +78,6 @@ Results
| 4 | herpética | 437 | 445 | SPECIES | 0.9592 |
| 5 | púbico | 551 | 556 | HUMAN | 0.7293 |
| 6 | Staphylococcus aureus | 644 | 664 | SPECIES | 0.87005 |
-
-
-{:.model-param}
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-17-ner_living_species_pipeline_it.md b/docs/_posts/C-K-Loan/2023-06-17-ner_living_species_pipeline_it.md
index 8b5a99fd77..cdebe18b5c 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-ner_living_species_pipeline_it.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-ner_living_species_pipeline_it.md
@@ -34,50 +34,7 @@ This pretrained pipeline is built on the top of [ner_living_species](https://nlp
{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_living_species_pipeline", "it", "clinical/models")
-
-text = '''Una donna di 74 anni è stata ricoverata con dolore addominale diffuso, ipossia e astenia di 2 settimane di evoluzione. La sua storia personale includeva ipertensione in trattamento con amiloride/idroclorotiazide e dislipidemia controllata con lovastatina. La sua storia familiare era: madre morta di cancro gastrico, fratello con cirrosi epatica di eziologia sconosciuta e sorella con carcinoma epatocellulare. Lo studio eziologico delle diverse cause di malattia epatica cronica comprendeva: virus epatotropi (HBV, HCV) e HIV, studio dell'autoimmunità, ceruloplasmina, ferritina e porfirine nelle urine, tutti risultati negativi. Il paziente è stato messo in trattamento anticoagulante con acenocumarolo e diuretici a tempo indeterminato.'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-val pipeline = new PretrainedPipeline("ner_living_species_pipeline", "it", "clinical/models")
-
-val text = "Una donna di 74 anni è stata ricoverata con dolore addominale diffuso, ipossia e astenia di 2 settimane di evoluzione. La sua storia personale includeva ipertensione in trattamento con amiloride/idroclorotiazide e dislipidemia controllata con lovastatina. La sua storia familiare era: madre morta di cancro gastrico, fratello con cirrosi epatica di eziologia sconosciuta e sorella con carcinoma epatocellulare. Lo studio eziologico delle diverse cause di malattia epatica cronica comprendeva: virus epatotropi (HBV, HCV) e HIV, studio dell'autoimmunità, ceruloplasmina, ferritina e porfirine nelle urine, tutti risultati negativi. Il paziente è stato messo in trattamento anticoagulante con acenocumarolo e diuretici a tempo indeterminato."
-
-val result = pipeline.fullAnnotate(text)
-```
-
-
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_living_species_pipeline", "it", "clinical/models")
-
-text = '''Una donna di 74 anni è stata ricoverata con dolore addominale diffuso, ipossia e astenia di 2 settimane di evoluzione. La sua storia personale includeva ipertensione in trattamento con amiloride/idroclorotiazide e dislipidemia controllata con lovastatina. La sua storia familiare era: madre morta di cancro gastrico, fratello con cirrosi epatica di eziologia sconosciuta e sorella con carcinoma epatocellulare. Lo studio eziologico delle diverse cause di malattia epatica cronica comprendeva: virus epatotropi (HBV, HCV) e HIV, studio dell'autoimmunità, ceruloplasmina, ferritina e porfirine nelle urine, tutti risultati negativi. Il paziente è stato messo in trattamento anticoagulante con acenocumarolo e diuretici a tempo indeterminato.'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("ner_living_species_pipeline", "it", "clinical/models")
-
-val text = "Una donna di 74 anni è stata ricoverata con dolore addominale diffuso, ipossia e astenia di 2 settimane di evoluzione. La sua storia personale includeva ipertensione in trattamento con amiloride/idroclorotiazide e dislipidemia controllata con lovastatina. La sua storia familiare era: madre morta di cancro gastrico, fratello con cirrosi epatica di eziologia sconosciuta e sorella con carcinoma epatocellulare. Lo studio eziologico delle diverse cause di malattia epatica cronica comprendeva: virus epatotropi (HBV, HCV) e HIV, studio dell'autoimmunità, ceruloplasmina, ferritina e porfirine nelle urine, tutti risultati negativi. Il paziente è stato messo in trattamento anticoagulante con acenocumarolo e diuretici a tempo indeterminato."
-
-val result = pipeline.fullAnnotate(text)
-```
-
-
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -112,12 +69,6 @@ result = pipeline.fullAnnotate(text)
## Results
```bash
-Results
-
-
-Results
-
-
| | ner_chunks | begin | end | ner_label | confidence |
|---:|:-----------------|--------:|------:|:------------|-------------:|
| 0 | donna | 4 | 8 | HUMAN | 0.9992 |
@@ -130,12 +81,6 @@ Results
| 7 | HCV | 516 | 518 | SPECIES | 0.991 |
| 8 | HIV | 523 | 525 | SPECIES | 0.991 |
| 9 | paziente | 634 | 641 | HUMAN | 0.9978 |
-
-
-{:.model-param}
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-17-ner_living_species_pipeline_pt.md b/docs/_posts/C-K-Loan/2023-06-17-ner_living_species_pipeline_pt.md
index c5779a8065..d61f4aad7d 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-ner_living_species_pipeline_pt.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-ner_living_species_pipeline_pt.md
@@ -34,50 +34,7 @@ This pretrained pipeline is built on the top of [ner_living_species](https://nlp
{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_living_species_pipeline", "pt", "clinical/models")
-
-text = '''Uma rapariga de 16 anos com um historial pessoal de asma apresentou ao departamento de dermatologia com lesões cutâneas assintomáticas que tinham estado presentes durante 2 meses. A paciente tinha sido tratada com creme corticosteróide devido a uma suspeita inicial de eczema atópico, apesar do qual apresentava um crescimento progressivo marcado das lesões. Tinha um gato doméstico que ela nunca tinha levado ao veterinário. O exame físico revelou placas em forma de anel com uma borda periférica activa na parte superior das costas e nos aspectos laterais do pescoço e da face. Cultura local obtida por raspagem de tapete isolado Trichophyton rubrum. Com base em dados clínicos e cultura, foi estabelecido o diagnóstico de tinea incognito.'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-val pipeline = new PretrainedPipeline("ner_living_species_pipeline", "pt", "clinical/models")
-
-val text = "Uma rapariga de 16 anos com um historial pessoal de asma apresentou ao departamento de dermatologia com lesões cutâneas assintomáticas que tinham estado presentes durante 2 meses. A paciente tinha sido tratada com creme corticosteróide devido a uma suspeita inicial de eczema atópico, apesar do qual apresentava um crescimento progressivo marcado das lesões. Tinha um gato doméstico que ela nunca tinha levado ao veterinário. O exame físico revelou placas em forma de anel com uma borda periférica activa na parte superior das costas e nos aspectos laterais do pescoço e da face. Cultura local obtida por raspagem de tapete isolado Trichophyton rubrum. Com base em dados clínicos e cultura, foi estabelecido o diagnóstico de tinea incognito."
-
-val result = pipeline.fullAnnotate(text)
-```
-
-
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_living_species_pipeline", "pt", "clinical/models")
-
-text = '''Uma rapariga de 16 anos com um historial pessoal de asma apresentou ao departamento de dermatologia com lesões cutâneas assintomáticas que tinham estado presentes durante 2 meses. A paciente tinha sido tratada com creme corticosteróide devido a uma suspeita inicial de eczema atópico, apesar do qual apresentava um crescimento progressivo marcado das lesões. Tinha um gato doméstico que ela nunca tinha levado ao veterinário. O exame físico revelou placas em forma de anel com uma borda periférica activa na parte superior das costas e nos aspectos laterais do pescoço e da face. Cultura local obtida por raspagem de tapete isolado Trichophyton rubrum. Com base em dados clínicos e cultura, foi estabelecido o diagnóstico de tinea incognito.'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("ner_living_species_pipeline", "pt", "clinical/models")
-
-val text = "Uma rapariga de 16 anos com um historial pessoal de asma apresentou ao departamento de dermatologia com lesões cutâneas assintomáticas que tinham estado presentes durante 2 meses. A paciente tinha sido tratada com creme corticosteróide devido a uma suspeita inicial de eczema atópico, apesar do qual apresentava um crescimento progressivo marcado das lesões. Tinha um gato doméstico que ela nunca tinha levado ao veterinário. O exame físico revelou placas em forma de anel com uma borda periférica activa na parte superior das costas e nos aspectos laterais do pescoço e da face. Cultura local obtida por raspagem de tapete isolado Trichophyton rubrum. Com base em dados clínicos e cultura, foi estabelecido o diagnóstico de tinea incognito."
-
-val result = pipeline.fullAnnotate(text)
-```
-
-
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -112,12 +69,6 @@ result = pipeline.fullAnnotate(text)
## Results
```bash
-Results
-
-
-Results
-
-
| | ner_chunks | begin | end | ner_label | confidence |
|---:|:--------------------|--------:|------:|:------------|-------------:|
| 0 | rapariga | 4 | 11 | HUMAN | 0.9991 |
@@ -126,12 +77,6 @@ Results
| 3 | gato | 368 | 371 | SPECIES | 0.9847 |
| 4 | veterinário | 413 | 423 | HUMAN | 0.91 |
| 5 | Trichophyton rubrum | 632 | 650 | SPECIES | 0.9996 |
-
-
-{:.model-param}
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-17-ner_living_species_roberta_pipeline_es.md b/docs/_posts/C-K-Loan/2023-06-17-ner_living_species_roberta_pipeline_es.md
index 6928be0c61..ba7fa66c5e 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-ner_living_species_roberta_pipeline_es.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-ner_living_species_roberta_pipeline_es.md
@@ -34,50 +34,7 @@ This pretrained pipeline is built on the top of [ner_living_species_roberta](htt
{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_living_species_roberta_pipeline", "es", "clinical/models")
-
-text = '''Lactante varón de dos años. Antecedentes familiares sin interés. Antecedentes personales: Embarazo, parto y periodo neonatal normal. En seguimiento por alergia a legumbres, diagnosticado con diez meses por reacción urticarial generalizada con lentejas y garbanzos, con dieta de exclusión a legumbres desde entonces. En ésta visita la madre describe episodios de eritema en zona maxilar derecha con afectación ocular ipsilateral que se resuelve en horas tras la administración de corticoides. Le ha ocurrido en 5-6 ocasiones, en relación con la ingesta de alimentos previamente tolerados. Exploración complementaria: Cacahuete, ac(ige)19.2 Ku.arb/l. Resultados: Ante la sospecha clínica de Síndrome de Frey, se tranquiliza a los padres, explicándoles la naturaleza del cuadro y se cita para revisión anual.'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-val pipeline = new PretrainedPipeline("ner_living_species_roberta_pipeline", "es", "clinical/models")
-
-val text = "Lactante varón de dos años. Antecedentes familiares sin interés. Antecedentes personales: Embarazo, parto y periodo neonatal normal. En seguimiento por alergia a legumbres, diagnosticado con diez meses por reacción urticarial generalizada con lentejas y garbanzos, con dieta de exclusión a legumbres desde entonces. En ésta visita la madre describe episodios de eritema en zona maxilar derecha con afectación ocular ipsilateral que se resuelve en horas tras la administración de corticoides. Le ha ocurrido en 5-6 ocasiones, en relación con la ingesta de alimentos previamente tolerados. Exploración complementaria: Cacahuete, ac(ige)19.2 Ku.arb/l. Resultados: Ante la sospecha clínica de Síndrome de Frey, se tranquiliza a los padres, explicándoles la naturaleza del cuadro y se cita para revisión anual."
-
-val result = pipeline.fullAnnotate(text)
-```
-
-
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_living_species_roberta_pipeline", "es", "clinical/models")
-
-text = '''Lactante varón de dos años. Antecedentes familiares sin interés. Antecedentes personales: Embarazo, parto y periodo neonatal normal. En seguimiento por alergia a legumbres, diagnosticado con diez meses por reacción urticarial generalizada con lentejas y garbanzos, con dieta de exclusión a legumbres desde entonces. En ésta visita la madre describe episodios de eritema en zona maxilar derecha con afectación ocular ipsilateral que se resuelve en horas tras la administración de corticoides. Le ha ocurrido en 5-6 ocasiones, en relación con la ingesta de alimentos previamente tolerados. Exploración complementaria: Cacahuete, ac(ige)19.2 Ku.arb/l. Resultados: Ante la sospecha clínica de Síndrome de Frey, se tranquiliza a los padres, explicándoles la naturaleza del cuadro y se cita para revisión anual.'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("ner_living_species_roberta_pipeline", "es", "clinical/models")
-
-val text = "Lactante varón de dos años. Antecedentes familiares sin interés. Antecedentes personales: Embarazo, parto y periodo neonatal normal. En seguimiento por alergia a legumbres, diagnosticado con diez meses por reacción urticarial generalizada con lentejas y garbanzos, con dieta de exclusión a legumbres desde entonces. En ésta visita la madre describe episodios de eritema en zona maxilar derecha con afectación ocular ipsilateral que se resuelve en horas tras la administración de corticoides. Le ha ocurrido en 5-6 ocasiones, en relación con la ingesta de alimentos previamente tolerados. Exploración complementaria: Cacahuete, ac(ige)19.2 Ku.arb/l. Resultados: Ante la sospecha clínica de Síndrome de Frey, se tranquiliza a los padres, explicándoles la naturaleza del cuadro y se cita para revisión anual."
-
-val result = pipeline.fullAnnotate(text)
-```
-
-
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -112,12 +69,6 @@ result = pipeline.fullAnnotate(text)
## Results
```bash
-Results
-
-
-Results
-
-
| | ner_chunks | begin | end | ner_label | confidence |
|---:|:---------------|--------:|------:|:------------|-------------:|
| 0 | Lactante varón | 0 | 13 | HUMAN | 0.93805 |
@@ -131,12 +82,6 @@ Results
| 8 | madre | 334 | 338 | HUMAN | 1 |
| 9 | Cacahuete | 616 | 624 | SPECIES | 0.9985 |
| 10 | padres | 728 | 733 | HUMAN | 1 |
-
-
-{:.model-param}
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-17-ner_living_species_roberta_pipeline_pt.md b/docs/_posts/C-K-Loan/2023-06-17-ner_living_species_roberta_pipeline_pt.md
index 1eaf17db0a..1bee7be43f 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-ner_living_species_roberta_pipeline_pt.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-ner_living_species_roberta_pipeline_pt.md
@@ -34,50 +34,7 @@ This pretrained pipeline is built on the top of [ner_living_species_roberta](htt
{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_living_species_roberta_pipeline", "pt", "clinical/models")
-
-text = '''Mulher de 23 anos, de Capinota, Cochabamba, Bolívia. Ela está no nosso país há quatro anos. Frequentou o departamento de emergência obstétrica onde foi encontrada grávida de 37 semanas, com um colo dilatado de 5 cm e membranas rompidas. O obstetra de emergência realizou um teste de estreptococos negativo e solicitou um hemograma, glucose, bioquímica básica, HBV, HCV e serologia da sífilis.'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-val pipeline = new PretrainedPipeline("ner_living_species_roberta_pipeline", "pt", "clinical/models")
-
-val text = "Mulher de 23 anos, de Capinota, Cochabamba, Bolívia. Ela está no nosso país há quatro anos. Frequentou o departamento de emergência obstétrica onde foi encontrada grávida de 37 semanas, com um colo dilatado de 5 cm e membranas rompidas. O obstetra de emergência realizou um teste de estreptococos negativo e solicitou um hemograma, glucose, bioquímica básica, HBV, HCV e serologia da sífilis."
-
-val result = pipeline.fullAnnotate(text)
-```
-
-
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_living_species_roberta_pipeline", "pt", "clinical/models")
-
-text = '''Mulher de 23 anos, de Capinota, Cochabamba, Bolívia. Ela está no nosso país há quatro anos. Frequentou o departamento de emergência obstétrica onde foi encontrada grávida de 37 semanas, com um colo dilatado de 5 cm e membranas rompidas. O obstetra de emergência realizou um teste de estreptococos negativo e solicitou um hemograma, glucose, bioquímica básica, HBV, HCV e serologia da sífilis.'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("ner_living_species_roberta_pipeline", "pt", "clinical/models")
-
-val text = "Mulher de 23 anos, de Capinota, Cochabamba, Bolívia. Ela está no nosso país há quatro anos. Frequentou o departamento de emergência obstétrica onde foi encontrada grávida de 37 semanas, com um colo dilatado de 5 cm e membranas rompidas. O obstetra de emergência realizou um teste de estreptococos negativo e solicitou um hemograma, glucose, bioquímica básica, HBV, HCV e serologia da sífilis."
-
-val result = pipeline.fullAnnotate(text)
-```
-
-
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -112,12 +69,6 @@ result = pipeline.fullAnnotate(text)
## Results
```bash
-Results
-
-
-Results
-
-
| | ner_chunks | begin | end | ner_label | confidence |
|---:|:--------------|--------:|------:|:------------|-------------:|
| 0 | Mulher | 0 | 5 | HUMAN | 0.9975 |
@@ -127,12 +78,6 @@ Results
| 4 | HBV | 360 | 362 | SPECIES | 0.9911 |
| 5 | HCV | 365 | 367 | SPECIES | 0.9858 |
| 6 | sífilis | 384 | 390 | SPECIES | 0.8898 |
-
-
-{:.model-param}
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-17-ner_measurements_clinical_pipeline_en.md b/docs/_posts/C-K-Loan/2023-06-17-ner_measurements_clinical_pipeline_en.md
index 2cf31ed6b8..bd6062557e 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-ner_measurements_clinical_pipeline_en.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-ner_measurements_clinical_pipeline_en.md
@@ -34,6 +34,7 @@ This pretrained pipeline is built on the top of [ner_measurements_clinical](http
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -62,47 +63,14 @@ nlu.load("en.med_ner.clinical_measurements.pipeline").predict("""Bilateral breas
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_measurements_clinical_pipeline", "en", "clinical/models")
-
-text = '''Bilateral breast ultrasound was subsequently performed, which demonstrated an ovoid mass measuring approximately 0.5 x 0.5 x 0.4 cm in diameter located within the anteromedial aspect of the left shoulder. This mass demonstrates isoechoic echotexture to the adjacent muscle, with no evidence of internal color flow. This may represent benign fibrous tissue or a lipoma.'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("ner_measurements_clinical_pipeline", "en", "clinical/models")
-
-val text = "Bilateral breast ultrasound was subsequently performed, which demonstrated an ovoid mass measuring approximately 0.5 x 0.5 x 0.4 cm in diameter located within the anteromedial aspect of the left shoulder. This mass demonstrates isoechoic echotexture to the adjacent muscle, with no evidence of internal color flow. This may represent benign fibrous tissue or a lipoma."
-
-val result = pipeline.fullAnnotate(text)
-```
-
-{:.nlu-block}
-```python
-import nlu
-nlu.load("en.med_ner.clinical_measurements.pipeline").predict("""Bilateral breast ultrasound was subsequently performed, which demonstrated an ovoid mass measuring approximately 0.5 x 0.5 x 0.4 cm in diameter located within the anteromedial aspect of the left shoulder. This mass demonstrates isoechoic echotexture to the adjacent muscle, with no evidence of internal color flow. This may represent benign fibrous tissue or a lipoma.""")
-```
-
## Results
```bash
-Results
-
-
| | ner_chunks | begin | end | ner_label | confidence |
|---:|:----------------|--------:|------:|:-------------|-------------:|
| 0 | 0.5 x 0.5 x 0.4 | 113 | 127 | Measurements | 0.98748 |
| 1 | cm | 129 | 130 | Units | 0.9996 |
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-17-ner_medication_pipeline_en.md b/docs/_posts/C-K-Loan/2023-06-17-ner_medication_pipeline_en.md
index 3b9bd955a6..288860627f 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-ner_medication_pipeline_en.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-ner_medication_pipeline_en.md
@@ -34,39 +34,7 @@ A pretrained pipeline to detect medication entities. It was built on the top of
{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-ner_medication_pipeline = PretrainedPipeline("ner_medication_pipeline", "en", "clinical/models")
-
-text = """The patient was prescribed metformin 1000 MG, and glipizide 2.5 MG. The other patient was given Fragmin 5000 units, Xenaderm to wounds topically b.i.d. and OxyContin 30 mg."""
-
-result = ner_medication_pipeline.fullAnnotate([text])
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val ner_medication_pipeline = new PretrainedPipeline("ner_medication_pipeline", "en", "clinical/models")
-
-val result = ner_medication_pipeline.fullAnnotate("The patient was prescribed metformin 1000 MG, and glipizide 2.5 MG. The other patient was given Fragmin 5000 units, Xenaderm to wounds topically b.i.d. and OxyContin 30 mg."")
-```
-{:.nlu-block}
-```python
-| ner_chunk | entity |
-|:-------------------|:---------|
-| metformin 1000 MG | DRUG |
-| glipizide 2.5 MG | DRUG |
-| Fragmin 5000 units | DRUG |
-| Xenaderm | DRUG |
-| OxyContin 30 mg | DRUG |
-```
-
-
-{:.model-param}
-
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -84,41 +52,12 @@ val ner_medication_pipeline = new PretrainedPipeline("ner_medication_pipeline",
val result = ner_medication_pipeline.fullAnnotate("The patient was prescribed metformin 1000 MG, and glipizide 2.5 MG. The other patient was given Fragmin 5000 units, Xenaderm to wounds topically b.i.d. and OxyContin 30 mg."")
```
-{:.nlu-block}
-```python
-| ner_chunk | entity |
-|:-------------------|:---------|
-| metformin 1000 MG | DRUG |
-| glipizide 2.5 MG | DRUG |
-| Fragmin 5000 units | DRUG |
-| Xenaderm | DRUG |
-| OxyContin 30 mg | DRUG |
-```
-{:.model-param}
-
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-ner_medication_pipeline = PretrainedPipeline("ner_medication_pipeline", "en", "clinical/models")
-
-text = """The patient was prescribed metformin 1000 MG, and glipizide 2.5 MG. The other patient was given Fragmin 5000 units, Xenaderm to wounds topically b.i.d. and OxyContin 30 mg."""
-result = ner_medication_pipeline.fullAnnotate([text])
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
+## Results
-val ner_medication_pipeline = new PretrainedPipeline("ner_medication_pipeline", "en", "clinical/models")
-
-val result = ner_medication_pipeline.fullAnnotate("The patient was prescribed metformin 1000 MG, and glipizide 2.5 MG. The other patient was given Fragmin 5000 units, Xenaderm to wounds topically b.i.d. and OxyContin 30 mg."")
-```
-
-{:.nlu-block}
-```python
+```bash
| ner_chunk | entity |
|:-------------------|:---------|
| metformin 1000 MG | DRUG |
@@ -127,7 +66,6 @@ val result = ner_medication_pipeline.fullAnnotate("The patient was prescribed me
| Xenaderm | DRUG |
| OxyContin 30 mg | DRUG |
```
-
{:.model-param}
## Model Information
diff --git a/docs/_posts/C-K-Loan/2023-06-17-ner_medmentions_coarse_pipeline_en.md b/docs/_posts/C-K-Loan/2023-06-17-ner_medmentions_coarse_pipeline_en.md
index 3f1e9d26b7..835a19297d 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-ner_medmentions_coarse_pipeline_en.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-ner_medmentions_coarse_pipeline_en.md
@@ -34,6 +34,7 @@ This pretrained pipeline is built on the top of [ner_medmentions_coarse](https:/
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -62,40 +63,9 @@ nlu.load("en.med_ner.medmentions_coarse.pipeline").predict("""he patient is a 21
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_medmentions_coarse_pipeline", "en", "clinical/models")
-
-text = '''he patient is a 21-day-old Caucasian male here for 2 days of congestion - mom has been suctioning yellow discharge from the patient's nares, plus she has noticed some mild problems with his breathing while feeding (but negative for any perioral cyanosis or retractions). Additionally, there is no side effect observed after Influenza vaccine. One day ago, mom also noticed a tactile temperature and gave the patient Tylenol. Baby also has had some decreased p.o. intake. His normal breast-feeding is down from 20 minutes q.2h. to 5 to 10 minutes secondary to his respiratory congestion. He sleeps well, but has been more tired and has been fussy over the past 2 days. The parents noticed no improvement with albuterol treatments given in the ER. His urine output has also decreased; normally he has 8 to 10 wet and 5 dirty diapers per 24 hours, now he has down to 4 wet diapers per 24 hours. Mom denies any diarrhea. His bowel movements are yellow colored and soft in nature.'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("ner_medmentions_coarse_pipeline", "en", "clinical/models")
-
-val text = "he patient is a 21-day-old Caucasian male here for 2 days of congestion - mom has been suctioning yellow discharge from the patient's nares, plus she has noticed some mild problems with his breathing while feeding (but negative for any perioral cyanosis or retractions). Additionally, there is no side effect observed after Influenza vaccine. One day ago, mom also noticed a tactile temperature and gave the patient Tylenol. Baby also has had some decreased p.o. intake. His normal breast-feeding is down from 20 minutes q.2h. to 5 to 10 minutes secondary to his respiratory congestion. He sleeps well, but has been more tired and has been fussy over the past 2 days. The parents noticed no improvement with albuterol treatments given in the ER. His urine output has also decreased; normally he has 8 to 10 wet and 5 dirty diapers per 24 hours, now he has down to 4 wet diapers per 24 hours. Mom denies any diarrhea. His bowel movements are yellow colored and soft in nature."
-
-val result = pipeline.fullAnnotate(text)
-```
-
-{:.nlu-block}
-```python
-import nlu
-nlu.load("en.med_ner.medmentions_coarse.pipeline").predict("""he patient is a 21-day-old Caucasian male here for 2 days of congestion - mom has been suctioning yellow discharge from the patient's nares, plus she has noticed some mild problems with his breathing while feeding (but negative for any perioral cyanosis or retractions). Additionally, there is no side effect observed after Influenza vaccine. One day ago, mom also noticed a tactile temperature and gave the patient Tylenol. Baby also has had some decreased p.o. intake. His normal breast-feeding is down from 20 minutes q.2h. to 5 to 10 minutes secondary to his respiratory congestion. He sleeps well, but has been more tired and has been fussy over the past 2 days. The parents noticed no improvement with albuterol treatments given in the ER. His urine output has also decreased; normally he has 8 to 10 wet and 5 dirty diapers per 24 hours, now he has down to 4 wet diapers per 24 hours. Mom denies any diarrhea. His bowel movements are yellow colored and soft in nature.""")
-```
-
-
## Results
```bash
-Results
-
-
| | ner_chunks | begin | end | ner_label | confidence |
|---:|:----------------------------|--------:|------:|:-------------------------------------|-------------:|
| 0 | Caucasian | 27 | 35 | Population_Group | 0.8439 |
@@ -123,9 +93,6 @@ Results
| 22 | bowel movements | 921 | 935 | Biologic_Function | 0.29385 |
| 23 | yellow | 941 | 946 | Qualitative_Concept | 0.742 |
| 24 | colored | 948 | 954 | Qualitative_Concept | 0.275 |
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-17-ner_nature_nero_clinical_pipeline_en.md b/docs/_posts/C-K-Loan/2023-06-17-ner_nature_nero_clinical_pipeline_en.md
index f792303ded..29813a55f6 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-ner_nature_nero_clinical_pipeline_en.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-ner_nature_nero_clinical_pipeline_en.md
@@ -32,52 +32,10 @@ This pretrained pipeline is built on the top of [ner_nature_nero_clinical](https
## How to use
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_nature_nero_clinical_pipeline", "en", "clinical/models")
-
-text = '''he patient is a 21-day-old Caucasian male here for 2 days of congestion - mom has been suctioning yellow discharge from the patient's nares, plus she has noticed some mild problems with his breathing while feeding (but negative for any perioral cyanosis or retractions). One day ago, mom also noticed a tactile temperature and gave the patient Tylenol. Baby also has had some decreased p.o. intake. His normal breast-feeding is down from 20 minutes q.2h. to 5 to 10 minutes secondary to his respiratory congestion. He sleeps well, but has been more tired and has been fussy over the past 2 days. The parents noticed no improvement with albuterol treatments given in the ER. His urine output has also decreased; normally he has 8 to 10 wet and 5 dirty diapers per 24 hours, now he has down to 4 wet diapers per 24 hours. Mom denies any diarrhea. His bowel movements are yellow colored and soft in nature.'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("ner_nature_nero_clinical_pipeline", "en", "clinical/models")
-
-val text = "he patient is a 21-day-old Caucasian male here for 2 days of congestion - mom has been suctioning yellow discharge from the patient's nares, plus she has noticed some mild problems with his breathing while feeding (but negative for any perioral cyanosis or retractions). One day ago, mom also noticed a tactile temperature and gave the patient Tylenol. Baby also has had some decreased p.o. intake. His normal breast-feeding is down from 20 minutes q.2h. to 5 to 10 minutes secondary to his respiratory congestion. He sleeps well, but has been more tired and has been fussy over the past 2 days. The parents noticed no improvement with albuterol treatments given in the ER. His urine output has also decreased; normally he has 8 to 10 wet and 5 dirty diapers per 24 hours, now he has down to 4 wet diapers per 24 hours. Mom denies any diarrhea. His bowel movements are yellow colored and soft in nature."
-
-val result = pipeline.fullAnnotate(text)
-```
-
{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_nature_nero_clinical_pipeline", "en", "clinical/models")
-
-text = '''he patient is a 21-day-old Caucasian male here for 2 days of congestion - mom has been suctioning yellow discharge from the patient's nares, plus she has noticed some mild problems with his breathing while feeding (but negative for any perioral cyanosis or retractions). One day ago, mom also noticed a tactile temperature and gave the patient Tylenol. Baby also has had some decreased p.o. intake. His normal breast-feeding is down from 20 minutes q.2h. to 5 to 10 minutes secondary to his respiratory congestion. He sleeps well, but has been more tired and has been fussy over the past 2 days. The parents noticed no improvement with albuterol treatments given in the ER. His urine output has also decreased; normally he has 8 to 10 wet and 5 dirty diapers per 24 hours, now he has down to 4 wet diapers per 24 hours. Mom denies any diarrhea. His bowel movements are yellow colored and soft in nature.'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("ner_nature_nero_clinical_pipeline", "en", "clinical/models")
-
-val text = "he patient is a 21-day-old Caucasian male here for 2 days of congestion - mom has been suctioning yellow discharge from the patient's nares, plus she has noticed some mild problems with his breathing while feeding (but negative for any perioral cyanosis or retractions). One day ago, mom also noticed a tactile temperature and gave the patient Tylenol. Baby also has had some decreased p.o. intake. His normal breast-feeding is down from 20 minutes q.2h. to 5 to 10 minutes secondary to his respiratory congestion. He sleeps well, but has been more tired and has been fussy over the past 2 days. The parents noticed no improvement with albuterol treatments given in the ER. His urine output has also decreased; normally he has 8 to 10 wet and 5 dirty diapers per 24 hours, now he has down to 4 wet diapers per 24 hours. Mom denies any diarrhea. His bowel movements are yellow colored and soft in nature."
-
-val result = pipeline.fullAnnotate(text)
-```
-
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -112,12 +70,6 @@ result = pipeline.fullAnnotate(text)
## Results
```bash
-Results
-
-
-Results
-
-
| | ner_chunks | begin | end | ner_label | confidence |
|---:|:---------------------------------------------|--------:|------:|:----------------------|-------------:|
| 0 | perioral cyanosis | 236 | 252 | Medicalfinding | 0.198 |
@@ -142,12 +94,6 @@ Results
| 19 | diarrhea | 835 | 842 | Medicalfinding | 0.533 |
| 20 | bowel movements | 849 | 863 | Biologicalprocess | 0.2036 |
| 21 | soft in nature | 888 | 901 | Biologicalprocess | 0.170467 |
-
-
-{:.model-param}
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-17-ner_negation_uncertainty_pipeline_es.md b/docs/_posts/C-K-Loan/2023-06-17-ner_negation_uncertainty_pipeline_es.md
index 7ffa292cb3..6db8d24861 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-ner_negation_uncertainty_pipeline_es.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-ner_negation_uncertainty_pipeline_es.md
@@ -34,50 +34,7 @@ This pretrained pipeline is built on the top of [ner_negation_uncertainty](https
{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_negation_uncertainty_pipeline", "es", "clinical/models")
-
-text = '''e realiza analítica destacando creatinkinasa 736 UI, LDH 545 UI, urea 63 mg/dl, CA 19.9 64,1 U/ml. Inmunofenotípicamente el tumor expresó vimentina, S-100, HMB-45 y actina. Se instauró el tratamiento con quimioterapia (Cisplatino, Interleukina II, Dacarbacina e Interferon alfa).'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-val pipeline = new PretrainedPipeline("ner_negation_uncertainty_pipeline", "es", "clinical/models")
-
-val text = "e realiza analítica destacando creatinkinasa 736 UI, LDH 545 UI, urea 63 mg/dl, CA 19.9 64,1 U/ml. Inmunofenotípicamente el tumor expresó vimentina, S-100, HMB-45 y actina. Se instauró el tratamiento con quimioterapia (Cisplatino, Interleukina II, Dacarbacina e Interferon alfa)."
-
-val result = pipeline.fullAnnotate(text)
-```
-
-
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_negation_uncertainty_pipeline", "es", "clinical/models")
-
-text = '''e realiza analítica destacando creatinkinasa 736 UI, LDH 545 UI, urea 63 mg/dl, CA 19.9 64,1 U/ml. Inmunofenotípicamente el tumor expresó vimentina, S-100, HMB-45 y actina. Se instauró el tratamiento con quimioterapia (Cisplatino, Interleukina II, Dacarbacina e Interferon alfa).'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("ner_negation_uncertainty_pipeline", "es", "clinical/models")
-
-val text = "e realiza analítica destacando creatinkinasa 736 UI, LDH 545 UI, urea 63 mg/dl, CA 19.9 64,1 U/ml. Inmunofenotípicamente el tumor expresó vimentina, S-100, HMB-45 y actina. Se instauró el tratamiento con quimioterapia (Cisplatino, Interleukina II, Dacarbacina e Interferon alfa)."
-
-val result = pipeline.fullAnnotate(text)
-```
-
-
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -112,12 +69,6 @@ result = pipeline.fullAnnotate(text)
## Results
```bash
-Results
-
-
-Results
-
-
+------------------------------------------------------+---------+
|chunk |ner_label|
+------------------------------------------------------+---------+
@@ -130,12 +81,6 @@ Results
|susceptible de |UNC |
|ca basocelular perlado |USCO |
+------------------------------------------------------+---------+
-
-
-{:.model-param}
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-17-ner_neoplasms_pipeline_es.md b/docs/_posts/C-K-Loan/2023-06-17-ner_neoplasms_pipeline_es.md
index 455ea71253..59e3443583 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-ner_neoplasms_pipeline_es.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-ner_neoplasms_pipeline_es.md
@@ -32,52 +32,10 @@ This pretrained pipeline is built on the top of [ner_neoplasms](https://nlp.john
## How to use
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_neoplasms_pipeline", "es", "clinical/models")
-
-text = '''HISTORIA DE ENFERMEDAD ACTUAL: El Sr. Smith es un hombre blanco veterano de 60 años con múltiples comorbilidades, que tiene antecedentes de cáncer de vejiga diagnosticado hace aproximadamente dos años por el Hospital VA. Allí se sometió a una resección. Debía ser ingresado en el Hospital de Día para una cistectomía. Fue visto en la Clínica de Urología y Clínica de Radiología el 02/04/2003. CURSO DE HOSPITAL: El Sr. Smith se presentó en el Hospital de Día antes de la cirugía de Urología. En evaluación, EKG, ecocardiograma fue anormal, se obtuvo una consulta de Cardiología. Luego se procedió a una resonancia magnética de estrés con adenosina cardíaca, la misma fue positiva para isquemia inducible, infarto subendocárdico inferolateral leve a moderado con isquemia peri-infarto. Además, se observa isquemia inducible en el tabique lateral inferior. El Sr. Smith se sometió a un cateterismo del corazón izquierdo, que reveló una enfermedad de las arterias coronarias de dos vasos. La RCA, proximal estaba estenosada en un 95% y la distal en un 80% estenosada. La LAD media estaba estenosada en un 85% y la LAD distal estaba estenosada en un 85%. Se colocaron cuatro stents de metal desnudo Multi-Link Vision para disminuir las cuatro lesiones al 0%. Después de la intervención, el Sr. Smith fue admitido en 7 Ardmore Tower bajo el Servicio de Cardiología bajo la dirección del Dr. Hart. El Sr. Smith tuvo un curso hospitalario post-intervención sin complicaciones. Se mantuvo estable para el alta hospitalaria el 07/02/2003 con instrucciones de tomar Plavix diariamente durante un mes y Urología está al tanto de lo mismo.'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("ner_neoplasms_pipeline", "es", "clinical/models")
-
-val text = "HISTORIA DE ENFERMEDAD ACTUAL: El Sr. Smith es un hombre blanco veterano de 60 años con múltiples comorbilidades, que tiene antecedentes de cáncer de vejiga diagnosticado hace aproximadamente dos años por el Hospital VA. Allí se sometió a una resección. Debía ser ingresado en el Hospital de Día para una cistectomía. Fue visto en la Clínica de Urología y Clínica de Radiología el 02/04/2003. CURSO DE HOSPITAL: El Sr. Smith se presentó en el Hospital de Día antes de la cirugía de Urología. En evaluación, EKG, ecocardiograma fue anormal, se obtuvo una consulta de Cardiología. Luego se procedió a una resonancia magnética de estrés con adenosina cardíaca, la misma fue positiva para isquemia inducible, infarto subendocárdico inferolateral leve a moderado con isquemia peri-infarto. Además, se observa isquemia inducible en el tabique lateral inferior. El Sr. Smith se sometió a un cateterismo del corazón izquierdo, que reveló una enfermedad de las arterias coronarias de dos vasos. La RCA, proximal estaba estenosada en un 95% y la distal en un 80% estenosada. La LAD media estaba estenosada en un 85% y la LAD distal estaba estenosada en un 85%. Se colocaron cuatro stents de metal desnudo Multi-Link Vision para disminuir las cuatro lesiones al 0%. Después de la intervención, el Sr. Smith fue admitido en 7 Ardmore Tower bajo el Servicio de Cardiología bajo la dirección del Dr. Hart. El Sr. Smith tuvo un curso hospitalario post-intervención sin complicaciones. Se mantuvo estable para el alta hospitalaria el 07/02/2003 con instrucciones de tomar Plavix diariamente durante un mes y Urología está al tanto de lo mismo."
-
-val result = pipeline.fullAnnotate(text)
-```
-
{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_neoplasms_pipeline", "es", "clinical/models")
-
-text = '''HISTORIA DE ENFERMEDAD ACTUAL: El Sr. Smith es un hombre blanco veterano de 60 años con múltiples comorbilidades, que tiene antecedentes de cáncer de vejiga diagnosticado hace aproximadamente dos años por el Hospital VA. Allí se sometió a una resección. Debía ser ingresado en el Hospital de Día para una cistectomía. Fue visto en la Clínica de Urología y Clínica de Radiología el 02/04/2003. CURSO DE HOSPITAL: El Sr. Smith se presentó en el Hospital de Día antes de la cirugía de Urología. En evaluación, EKG, ecocardiograma fue anormal, se obtuvo una consulta de Cardiología. Luego se procedió a una resonancia magnética de estrés con adenosina cardíaca, la misma fue positiva para isquemia inducible, infarto subendocárdico inferolateral leve a moderado con isquemia peri-infarto. Además, se observa isquemia inducible en el tabique lateral inferior. El Sr. Smith se sometió a un cateterismo del corazón izquierdo, que reveló una enfermedad de las arterias coronarias de dos vasos. La RCA, proximal estaba estenosada en un 95% y la distal en un 80% estenosada. La LAD media estaba estenosada en un 85% y la LAD distal estaba estenosada en un 85%. Se colocaron cuatro stents de metal desnudo Multi-Link Vision para disminuir las cuatro lesiones al 0%. Después de la intervención, el Sr. Smith fue admitido en 7 Ardmore Tower bajo el Servicio de Cardiología bajo la dirección del Dr. Hart. El Sr. Smith tuvo un curso hospitalario post-intervención sin complicaciones. Se mantuvo estable para el alta hospitalaria el 07/02/2003 con instrucciones de tomar Plavix diariamente durante un mes y Urología está al tanto de lo mismo.'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("ner_neoplasms_pipeline", "es", "clinical/models")
-
-val text = "HISTORIA DE ENFERMEDAD ACTUAL: El Sr. Smith es un hombre blanco veterano de 60 años con múltiples comorbilidades, que tiene antecedentes de cáncer de vejiga diagnosticado hace aproximadamente dos años por el Hospital VA. Allí se sometió a una resección. Debía ser ingresado en el Hospital de Día para una cistectomía. Fue visto en la Clínica de Urología y Clínica de Radiología el 02/04/2003. CURSO DE HOSPITAL: El Sr. Smith se presentó en el Hospital de Día antes de la cirugía de Urología. En evaluación, EKG, ecocardiograma fue anormal, se obtuvo una consulta de Cardiología. Luego se procedió a una resonancia magnética de estrés con adenosina cardíaca, la misma fue positiva para isquemia inducible, infarto subendocárdico inferolateral leve a moderado con isquemia peri-infarto. Además, se observa isquemia inducible en el tabique lateral inferior. El Sr. Smith se sometió a un cateterismo del corazón izquierdo, que reveló una enfermedad de las arterias coronarias de dos vasos. La RCA, proximal estaba estenosada en un 95% y la distal en un 80% estenosada. La LAD media estaba estenosada en un 85% y la LAD distal estaba estenosada en un 85%. Se colocaron cuatro stents de metal desnudo Multi-Link Vision para disminuir las cuatro lesiones al 0%. Después de la intervención, el Sr. Smith fue admitido en 7 Ardmore Tower bajo el Servicio de Cardiología bajo la dirección del Dr. Hart. El Sr. Smith tuvo un curso hospitalario post-intervención sin complicaciones. Se mantuvo estable para el alta hospitalaria el 07/02/2003 con instrucciones de tomar Plavix diariamente durante un mes y Urología está al tanto de lo mismo."
-
-val result = pipeline.fullAnnotate(text)
-```
-
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -112,22 +70,10 @@ result = pipeline.fullAnnotate(text)
## Results
```bash
-Results
-
-
-Results
-
-
| | ner_chunk | begin | end | ner_label | confidence |
|---:|:------------|--------:|------:|:---------------------|-------------:|
| 0 | cáncer | 140 | 145 | MORFOLOGIA_NEOPLASIA | 0.9997 |
| 1 | Multi-Link | 1195 | 1204 | MORFOLOGIA_NEOPLASIA | 0.574 |
-
-
-{:.model-param}
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-17-ner_nihss_pipeline_en.md b/docs/_posts/C-K-Loan/2023-06-17-ner_nihss_pipeline_en.md
index d739f176ee..6f7d710490 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-ner_nihss_pipeline_en.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-ner_nihss_pipeline_en.md
@@ -34,6 +34,7 @@ This pretrained pipeline is built on the top of [ner_nihss](https://nlp.johnsnow
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -62,40 +63,11 @@ nlu.load("en.med_ner.nihss_pipeline").predict("""Abdomen , soft , nontender . NI
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_nihss_pipeline", "en", "clinical/models")
-
-text = '''Abdomen , soft , nontender . NIH stroke scale on presentation was 23 to 24 for , one for consciousness , two for month and year and two for eye / grip , one to two for gaze , two for face , eight for motor , one for limited ataxia , one to two for sensory , three for best language and two for attention . On the neurologic examination the patient was intermittently'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("ner_nihss_pipeline", "en", "clinical/models")
-
-val text = "Abdomen , soft , nontender . NIH stroke scale on presentation was 23 to 24 for , one for consciousness , two for month and year and two for eye / grip , one to two for gaze , two for face , eight for motor , one for limited ataxia , one to two for sensory , three for best language and two for attention . On the neurologic examination the patient was intermittently"
-
-val result = pipeline.fullAnnotate(text)
-```
-{:.nlu-block}
-```python
-import nlu
-nlu.load("en.med_ner.nihss_pipeline").predict("""Abdomen , soft , nontender . NIH stroke scale on presentation was 23 to 24 for , one for consciousness , two for month and year and two for eye / grip , one to two for gaze , two for face , eight for motor , one for limited ataxia , one to two for sensory , three for best language and two for attention . On the neurologic examination the patient was intermittently""")
-```
-
## Results
```bash
-Results
-
-
| | ner_chunks | begin | end | ner_label | confidence |
|---:|:-----------------|--------:|------:|:----------------|-------------:|
| 0 | NIH stroke scale | 29 | 44 | NIHSS | 0.973533 |
@@ -120,9 +92,6 @@ Results
| 19 | three | 258 | 262 | Measurement | 0.8896 |
| 20 | best language | 268 | 280 | 9_BestLanguage | 0.89415 |
| 21 | two | 286 | 288 | Measurement | 0.949 |
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-17-ner_oncology_anatomy_general_healthcare_pipeline_en.md b/docs/_posts/C-K-Loan/2023-06-17-ner_oncology_anatomy_general_healthcare_pipeline_en.md
index 111d7d8d9a..75d10f381a 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-ner_oncology_anatomy_general_healthcare_pipeline_en.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-ner_oncology_anatomy_general_healthcare_pipeline_en.md
@@ -34,58 +34,7 @@ This pretrained pipeline is built on the top of [ner_oncology_anatomy_general_he
{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_oncology_anatomy_general_healthcare_pipeline", "en", "clinical/models")
-
-text = "
-The patient presented a mass in her left breast, and a possible metastasis in her lungs and in her liver.
-"
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("ner_oncology_anatomy_general_healthcare_pipeline", "en", "clinical/models")
-
-val text = "
-The patient presented a mass in her left breast, and a possible metastasis in her lungs and in her liver.
-"
-
-val result = pipeline.fullAnnotate(text)
-```
-
-
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_oncology_anatomy_general_healthcare_pipeline", "en", "clinical/models")
-
-text = "
-The patient presented a mass in her left breast, and a possible metastasis in her lungs and in her liver.
-"
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("ner_oncology_anatomy_general_healthcare_pipeline", "en", "clinical/models")
-
-val text = "
-The patient presented a mass in her left breast, and a possible metastasis in her lungs and in her liver.
-"
-
-val result = pipeline.fullAnnotate(text)
-```
-
-
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -126,24 +75,12 @@ result = pipeline.fullAnnotate(text)
## Results
```bash
-Results
-
-
-Results
-
-
| | chunks | begin | end | entities | confidence |
|---:|:---------|--------:|------:|:----------------|-------------:|
| 0 | left | 37 | 40 | Direction | 0.9948 |
| 1 | breast | 42 | 47 | Anatomical_Site | 0.5814 |
| 2 | lungs | 83 | 87 | Anatomical_Site | 0.9486 |
| 3 | liver | 100 | 104 | Anatomical_Site | 0.9646 |
-
-
-{:.model-param}
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-17-ner_oncology_anatomy_general_pipeline_en.md b/docs/_posts/C-K-Loan/2023-06-17-ner_oncology_anatomy_general_pipeline_en.md
index 4502b8a942..7b736ef69e 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-ner_oncology_anatomy_general_pipeline_en.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-ner_oncology_anatomy_general_pipeline_en.md
@@ -32,52 +32,11 @@ This pretrained pipeline is built on the top of [ner_oncology_anatomy_general](h
## How to use
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_oncology_anatomy_general_pipeline", "en", "clinical/models")
-
-text = '''The patient presented a mass in her left breast, and a possible metastasis in her lungs and in her liver.'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-val pipeline = new PretrainedPipeline("ner_oncology_anatomy_general_pipeline", "en", "clinical/models")
-
-val text = "The patient presented a mass in her left breast, and a possible metastasis in her lungs and in her liver."
-
-val result = pipeline.fullAnnotate(text)
-```
-
{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_oncology_anatomy_general_pipeline", "en", "clinical/models")
-
-text = '''The patient presented a mass in her left breast, and a possible metastasis in her lungs and in her liver.'''
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("ner_oncology_anatomy_general_pipeline", "en", "clinical/models")
-
-val text = "The patient presented a mass in her left breast, and a possible metastasis in her lungs and in her liver."
-
-val result = pipeline.fullAnnotate(text)
-```
-
-
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -112,24 +71,12 @@ result = pipeline.fullAnnotate(text)
## Results
```bash
-Results
-
-
-Results
-
-
| | ner_chunks | begin | end | ner_label | confidence |
|---:|:-------------|--------:|------:|:----------------|-------------:|
| 0 | left | 36 | 39 | Direction | 0.9825 |
| 1 | breast | 41 | 46 | Anatomical_Site | 0.9005 |
| 2 | lungs | 82 | 86 | Anatomical_Site | 0.9735 |
| 3 | liver | 99 | 103 | Anatomical_Site | 0.9817 |
-
-
-{:.model-param}
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-17-ner_oncology_biomarker_healthcare_pipeline_en.md b/docs/_posts/C-K-Loan/2023-06-17-ner_oncology_biomarker_healthcare_pipeline_en.md
index 0eb4df1017..2d941a715c 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-ner_oncology_biomarker_healthcare_pipeline_en.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-ner_oncology_biomarker_healthcare_pipeline_en.md
@@ -34,50 +34,7 @@ This pretrained pipeline is built on the top of [ner_oncology_biomarker_healthca
{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_oncology_biomarker_healthcare_pipeline", "en", "clinical/models")
-
-text = '''he results of immunohistochemical examination showed that she tested negative for CK7, synaptophysin (Syn), chromogranin A (CgA), Muc5AC, human epidermal growth factor receptor-2 (HER2), and Muc6; positive for CK20, Muc1, Muc2, E-cadherin, and p53; the Ki-67 index was about 87%.'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-val pipeline = new PretrainedPipeline("ner_oncology_biomarker_healthcare_pipeline", "en", "clinical/models")
-
-val text = "he results of immunohistochemical examination showed that she tested negative for CK7, synaptophysin (Syn), chromogranin A (CgA), Muc5AC, human epidermal growth factor receptor-2 (HER2), and Muc6; positive for CK20, Muc1, Muc2, E-cadherin, and p53; the Ki-67 index was about 87%."
-
-val result = pipeline.fullAnnotate(text)
-```
-
-
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_oncology_biomarker_healthcare_pipeline", "en", "clinical/models")
-
-text = '''he results of immunohistochemical examination showed that she tested negative for CK7, synaptophysin (Syn), chromogranin A (CgA), Muc5AC, human epidermal growth factor receptor-2 (HER2), and Muc6; positive for CK20, Muc1, Muc2, E-cadherin, and p53; the Ki-67 index was about 87%.'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("ner_oncology_biomarker_healthcare_pipeline", "en", "clinical/models")
-
-val text = "he results of immunohistochemical examination showed that she tested negative for CK7, synaptophysin (Syn), chromogranin A (CgA), Muc5AC, human epidermal growth factor receptor-2 (HER2), and Muc6; positive for CK20, Muc1, Muc2, E-cadherin, and p53; the Ki-67 index was about 87%."
-
-val result = pipeline.fullAnnotate(text)
-```
-
-
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -112,12 +69,6 @@ result = pipeline.fullAnnotate(text)
## Results
```bash
-Results
-
-
-Results
-
-
| | chunks | begin | end | entities | confidence |
|---:|:-----------------------------------------|--------:|------:|:-----------------|-------------:|
| 0 | negative | 69 | 76 | Biomarker_Result | 1 |
@@ -138,12 +89,6 @@ Results
| 15 | p53 | 244 | 246 | Biomarker | 1 |
| 16 | Ki-67 index | 253 | 263 | Biomarker | 0.99865 |
| 17 | 87% | 275 | 277 | Biomarker_Result | 0.828 |
-
-
-{:.model-param}
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-17-ner_oncology_biomarker_pipeline_en.md b/docs/_posts/C-K-Loan/2023-06-17-ner_oncology_biomarker_pipeline_en.md
index 842728957c..f26c3a6e9e 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-ner_oncology_biomarker_pipeline_en.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-ner_oncology_biomarker_pipeline_en.md
@@ -34,50 +34,7 @@ This pretrained pipeline is built on the top of [ner_oncology_biomarker](https:/
{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_oncology_biomarker_pipeline", "en", "clinical/models")
-
-text = '''The results of immunohistochemical examination showed that she tested negative for CK7, synaptophysin (Syn), chromogranin A (CgA), Muc5AC, human epidermal growth factor receptor-2 (HER2), and Muc6; positive for CK20, Muc1, Muc2, E-cadherin, and p53; the Ki-67 index was about 87%.'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-val pipeline = new PretrainedPipeline("ner_oncology_biomarker_pipeline", "en", "clinical/models")
-
-val text = "The results of immunohistochemical examination showed that she tested negative for CK7, synaptophysin (Syn), chromogranin A (CgA), Muc5AC, human epidermal growth factor receptor-2 (HER2), and Muc6; positive for CK20, Muc1, Muc2, E-cadherin, and p53; the Ki-67 index was about 87%."
-
-val result = pipeline.fullAnnotate(text)
-```
-
-
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_oncology_biomarker_pipeline", "en", "clinical/models")
-
-text = '''The results of immunohistochemical examination showed that she tested negative for CK7, synaptophysin (Syn), chromogranin A (CgA), Muc5AC, human epidermal growth factor receptor-2 (HER2), and Muc6; positive for CK20, Muc1, Muc2, E-cadherin, and p53; the Ki-67 index was about 87%.'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("ner_oncology_biomarker_pipeline", "en", "clinical/models")
-
-val text = "The results of immunohistochemical examination showed that she tested negative for CK7, synaptophysin (Syn), chromogranin A (CgA), Muc5AC, human epidermal growth factor receptor-2 (HER2), and Muc6; positive for CK20, Muc1, Muc2, E-cadherin, and p53; the Ki-67 index was about 87%."
-
-val result = pipeline.fullAnnotate(text)
-```
-
-
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -112,12 +69,6 @@ result = pipeline.fullAnnotate(text)
## Results
```bash
-Results
-
-
-Results
-
-
| | ner_chunks | begin | end | ner_label | confidence |
|---:|:-----------------------------------------|--------:|------:|:-----------------|-------------:|
| 0 | negative | 70 | 77 | Biomarker_Result | 0.9984 |
@@ -138,12 +89,6 @@ Results
| 15 | p53 | 245 | 247 | Biomarker | 1 |
| 16 | Ki-67 index | 254 | 264 | Biomarker | 0.99465 |
| 17 | 87% | 276 | 278 | Biomarker_Result | 0.9814 |
-
-
-{:.model-param}
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-17-ner_oncology_demographics_pipeline_en.md b/docs/_posts/C-K-Loan/2023-06-17-ner_oncology_demographics_pipeline_en.md
index 1585d0990b..66baaa0d95 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-ner_oncology_demographics_pipeline_en.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-ner_oncology_demographics_pipeline_en.md
@@ -34,50 +34,7 @@ This pretrained pipeline is built on the top of [ner_oncology_demographics](http
{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_oncology_demographics_pipeline", "en", "clinical/models")
-
-text = '''The patient is a 40-year-old man with history of heavy smoking.'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-val pipeline = new PretrainedPipeline("ner_oncology_demographics_pipeline", "en", "clinical/models")
-
-val text = "The patient is a 40-year-old man with history of heavy smoking."
-
-val result = pipeline.fullAnnotate(text)
-```
-
-
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_oncology_demographics_pipeline", "en", "clinical/models")
-
-text = '''The patient is a 40-year-old man with history of heavy smoking.'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("ner_oncology_demographics_pipeline", "en", "clinical/models")
-
-val text = "The patient is a 40-year-old man with history of heavy smoking."
-
-val result = pipeline.fullAnnotate(text)
-```
-
-
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -112,23 +69,11 @@ result = pipeline.fullAnnotate(text)
## Results
```bash
-Results
-
-
-Results
-
-
| | ner_chunks | begin | end | ner_label | confidence |
|---:|:--------------|--------:|------:|:---------------|-------------:|
| 0 | 40-year-old | 17 | 27 | Age | 0.6743 |
| 1 | man | 29 | 31 | Gender | 0.9365 |
| 2 | heavy smoking | 49 | 61 | Smoking_Status | 0.7294 |
-
-
-{:.model-param}
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-17-ner_oncology_diagnosis_pipeline_en.md b/docs/_posts/C-K-Loan/2023-06-17-ner_oncology_diagnosis_pipeline_en.md
index 18a9b2c31e..82a5fa81ec 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-ner_oncology_diagnosis_pipeline_en.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-ner_oncology_diagnosis_pipeline_en.md
@@ -32,52 +32,10 @@ This pretrained pipeline is built on the top of [ner_oncology_diagnosis](https:/
## How to use
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_oncology_diagnosis_pipeline", "en", "clinical/models")
-
-text = '''Two years ago, the patient presented with a tumor in her left breast and adenopathies. She was diagnosed with invasive ductal carcinoma. Last week she was also found to have a lung metastasis.'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("ner_oncology_diagnosis_pipeline", "en", "clinical/models")
-
-val text = "Two years ago, the patient presented with a tumor in her left breast and adenopathies. She was diagnosed with invasive ductal carcinoma. Last week she was also found to have a lung metastasis."
-
-val result = pipeline.fullAnnotate(text)
-```
-
{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_oncology_diagnosis_pipeline", "en", "clinical/models")
-
-text = '''Two years ago, the patient presented with a tumor in her left breast and adenopathies. She was diagnosed with invasive ductal carcinoma. Last week she was also found to have a lung metastasis.'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("ner_oncology_diagnosis_pipeline", "en", "clinical/models")
-
-val text = "Two years ago, the patient presented with a tumor in her left breast and adenopathies. She was diagnosed with invasive ductal carcinoma. Last week she was also found to have a lung metastasis."
-
-val result = pipeline.fullAnnotate(text)
-```
-
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -112,12 +70,6 @@ result = pipeline.fullAnnotate(text)
## Results
```bash
-Results
-
-
-Results
-
-
| | ner_chunks | begin | end | ner_label | confidence |
|---:|:-------------|--------:|------:|:------------------|-------------:|
| 0 | tumor | 44 | 48 | Tumor_Finding | 0.9958 |
@@ -126,12 +78,6 @@ Results
| 3 | ductal | 119 | 124 | Histological_Type | 0.9996 |
| 4 | carcinoma | 126 | 134 | Cancer_Dx | 0.9988 |
| 5 | metastasis | 181 | 190 | Metastasis | 0.9996 |
-
-
-{:.model-param}
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-17-ner_oncology_posology_pipeline_en.md b/docs/_posts/C-K-Loan/2023-06-17-ner_oncology_posology_pipeline_en.md
index e6bddfff64..f44615096e 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-ner_oncology_posology_pipeline_en.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-ner_oncology_posology_pipeline_en.md
@@ -34,50 +34,7 @@ This pretrained pipeline is built on the top of [ner_oncology_posology](https://
{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_oncology_posology_pipeline", "en", "clinical/models")
-
-text = '''The patient underwent a regimen consisting of adriamycin (60 mg/m2) and cyclophosphamide (600 mg/m2) over six courses. She is currently receiving his second cycle of chemotherapy and is in good overall condition.'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-val pipeline = new PretrainedPipeline("ner_oncology_posology_pipeline", "en", "clinical/models")
-
-val text = "The patient underwent a regimen consisting of adriamycin (60 mg/m2) and cyclophosphamide (600 mg/m2) over six courses. She is currently receiving his second cycle of chemotherapy and is in good overall condition."
-
-val result = pipeline.fullAnnotate(text)
-```
-
-
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_oncology_posology_pipeline", "en", "clinical/models")
-
-text = '''The patient underwent a regimen consisting of adriamycin (60 mg/m2) and cyclophosphamide (600 mg/m2) over six courses. She is currently receiving his second cycle of chemotherapy and is in good overall condition.'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("ner_oncology_posology_pipeline", "en", "clinical/models")
-
-val text = "The patient underwent a regimen consisting of adriamycin (60 mg/m2) and cyclophosphamide (600 mg/m2) over six courses. She is currently receiving his second cycle of chemotherapy and is in good overall condition."
-
-val result = pipeline.fullAnnotate(text)
-```
-
-
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -112,12 +69,6 @@ result = pipeline.fullAnnotate(text)
## Results
```bash
-Results
-
-
-Results
-
-
| | ner_chunks | begin | end | ner_label | confidence |
|---:|:-----------------|--------:|------:|:---------------|-------------:|
| 0 | adriamycin | 46 | 55 | Cancer_Therapy | 1 |
@@ -127,12 +78,6 @@ Results
| 4 | six courses | 106 | 116 | Cycle_Count | 0.494 |
| 5 | second cycle | 150 | 161 | Cycle_Number | 0.98675 |
| 6 | chemotherapy | 166 | 177 | Cancer_Therapy | 1 |
-
-
-{:.model-param}
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-17-ner_oncology_response_to_treatment_pipeline_en.md b/docs/_posts/C-K-Loan/2023-06-17-ner_oncology_response_to_treatment_pipeline_en.md
index 870222ec3b..fa04d7ecce 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-ner_oncology_response_to_treatment_pipeline_en.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-ner_oncology_response_to_treatment_pipeline_en.md
@@ -34,50 +34,7 @@ This pretrained pipeline is built on the top of [ner_oncology_response_to_treatm
{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_oncology_response_to_treatment_pipeline", "en", "clinical/models")
-
-text = '''She completed her first-line therapy, but some months later there was recurrence of the breast cancer.'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-val pipeline = new PretrainedPipeline("ner_oncology_response_to_treatment_pipeline", "en", "clinical/models")
-
-val text = "She completed her first-line therapy, but some months later there was recurrence of the breast cancer."
-
-val result = pipeline.fullAnnotate(text)
-```
-
-
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_oncology_response_to_treatment_pipeline", "en", "clinical/models")
-
-text = '''She completed her first-line therapy, but some months later there was recurrence of the breast cancer.'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("ner_oncology_response_to_treatment_pipeline", "en", "clinical/models")
-
-val text = "She completed her first-line therapy, but some months later there was recurrence of the breast cancer."
-
-val result = pipeline.fullAnnotate(text)
-```
-
-
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -112,21 +69,9 @@ result = pipeline.fullAnnotate(text)
## Results
```bash
-Results
-
-
-Results
-
-
| | ner_chunks | begin | end | ner_label | confidence |
|---:|:-------------|--------:|------:|:----------------------|-------------:|
| 0 | recurrence | 70 | 79 | Response_To_Treatment | 0.9767 |
-
-
-{:.model-param}
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-17-ner_oncology_test_pipeline_en.md b/docs/_posts/C-K-Loan/2023-06-17-ner_oncology_test_pipeline_en.md
index a983538c2f..5c57073efc 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-ner_oncology_test_pipeline_en.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-ner_oncology_test_pipeline_en.md
@@ -34,50 +34,7 @@ This pretrained pipeline is built on the top of [ner_oncology_test](https://nlp.
{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_oncology_test_pipeline", "en", "clinical/models")
-
-text = ''' biopsy was conducted using an ultrasound guided thick-needle. His chest computed tomography (CT) scan was negative.'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-val pipeline = new PretrainedPipeline("ner_oncology_test_pipeline", "en", "clinical/models")
-
-val text = " biopsy was conducted using an ultrasound guided thick-needle. His chest computed tomography (CT) scan was negative."
-
-val result = pipeline.fullAnnotate(text)
-```
-
-
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_oncology_test_pipeline", "en", "clinical/models")
-
-text = ''' biopsy was conducted using an ultrasound guided thick-needle. His chest computed tomography (CT) scan was negative.'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("ner_oncology_test_pipeline", "en", "clinical/models")
-
-val text = " biopsy was conducted using an ultrasound guided thick-needle. His chest computed tomography (CT) scan was negative."
-
-val result = pipeline.fullAnnotate(text)
-```
-
-
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -112,24 +69,12 @@ result = pipeline.fullAnnotate(text)
## Results
```bash
-Results
-
-
-Results
-
-
| | ner_chunks | begin | end | ner_label | confidence |
|---:|:--------------------------|--------:|------:|:---------------|-------------:|
| 0 | biopsy | 1 | 6 | Pathology_Test | 0.9987 |
| 1 | ultrasound guided | 31 | 47 | Imaging_Test | 0.87635 |
| 2 | chest computed tomography | 67 | 91 | Imaging_Test | 0.9176 |
| 3 | CT | 94 | 95 | Imaging_Test | 0.8294 |
-
-
-{:.model-param}
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-17-ner_oncology_therapy_pipeline_en.md b/docs/_posts/C-K-Loan/2023-06-17-ner_oncology_therapy_pipeline_en.md
index 7fb1940665..0e5481fa07 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-ner_oncology_therapy_pipeline_en.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-ner_oncology_therapy_pipeline_en.md
@@ -34,58 +34,7 @@ This pretrained pipeline is built on the top of [ner_oncology_therapy](https://n
{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_oncology_therapy_pipeline", "en", "clinical/models")
-
-text = '''The had previously undergone a left mastectomy and an axillary lymph node dissection for a left breast cancer twenty years ago.
-The tumor was positive for ER and PR. Postoperatively, radiotherapy was administered to her breast.
-The cancer recurred as a right lung metastasis 13 years later. The patient underwent a regimen consisting of adriamycin (60 mg/m2) and cyclophosphamide (600 mg/m2) over six courses, as first line therapy.'''
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("ner_oncology_therapy_pipeline", "en", "clinical/models")
-
-val text = "The had previously undergone a left mastectomy and an axillary lymph node dissection for a left breast cancer twenty years ago.
-The tumor was positive for ER and PR. Postoperatively, radiotherapy was administered to her breast.
-The cancer recurred as a right lung metastasis 13 years later. The patient underwent a regimen consisting of adriamycin (60 mg/m2) and cyclophosphamide (600 mg/m2) over six courses, as first line therapy."
-
-val result = pipeline.fullAnnotate(text)
-```
-
-
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_oncology_therapy_pipeline", "en", "clinical/models")
-
-text = '''The had previously undergone a left mastectomy and an axillary lymph node dissection for a left breast cancer twenty years ago.
-The tumor was positive for ER and PR. Postoperatively, radiotherapy was administered to her breast.
-The cancer recurred as a right lung metastasis 13 years later. The patient underwent a regimen consisting of adriamycin (60 mg/m2) and cyclophosphamide (600 mg/m2) over six courses, as first line therapy.'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("ner_oncology_therapy_pipeline", "en", "clinical/models")
-
-val text = "The had previously undergone a left mastectomy and an axillary lymph node dissection for a left breast cancer twenty years ago.
-The tumor was positive for ER and PR. Postoperatively, radiotherapy was administered to her breast.
-The cancer recurred as a right lung metastasis 13 years later. The patient underwent a regimen consisting of adriamycin (60 mg/m2) and cyclophosphamide (600 mg/m2) over six courses, as first line therapy."
-
-val result = pipeline.fullAnnotate(text)
-```
-
-
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -126,12 +75,6 @@ result = pipeline.fullAnnotate(text)
## Results
```bash
-Results
-
-
-Results
-
-
| | ner_chunks | begin | end | ner_label | confidence |
|---:|:-------------------------------|--------:|------:|:----------------------|-------------:|
| 0 | mastectomy | 36 | 45 | Cancer_Surgery | 0.9817 |
@@ -144,12 +87,6 @@ Results
| 7 | 600 mg/m2 | 381 | 389 | Dosage | 0.64205 |
| 8 | six courses | 397 | 407 | Cycle_Count | 0.46815 |
| 9 | first line | 413 | 422 | Line_Of_Therapy | 0.95015 |
-
-
-{:.model-param}
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-17-ner_oncology_tnm_pipeline_en.md b/docs/_posts/C-K-Loan/2023-06-17-ner_oncology_tnm_pipeline_en.md
index cb699ddb2f..6c97e320f7 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-ner_oncology_tnm_pipeline_en.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-ner_oncology_tnm_pipeline_en.md
@@ -34,50 +34,7 @@ This pretrained pipeline is built on the top of [ner_oncology_tnm](https://nlp.j
{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_oncology_tnm_pipeline", "en", "clinical/models")
-
-text = '''The final diagnosis was metastatic breast carcinoma, and it was classified as T2N1M1 stage IV. The histological grade of this 4 cm tumor was grade 2.'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-val pipeline = new PretrainedPipeline("ner_oncology_tnm_pipeline", "en", "clinical/models")
-
-val text = "The final diagnosis was metastatic breast carcinoma, and it was classified as T2N1M1 stage IV. The histological grade of this 4 cm tumor was grade 2."
-
-val result = pipeline.fullAnnotate(text)
-```
-
-
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_oncology_tnm_pipeline", "en", "clinical/models")
-
-text = '''The final diagnosis was metastatic breast carcinoma, and it was classified as T2N1M1 stage IV. The histological grade of this 4 cm tumor was grade 2.'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("ner_oncology_tnm_pipeline", "en", "clinical/models")
-
-val text = "The final diagnosis was metastatic breast carcinoma, and it was classified as T2N1M1 stage IV. The histological grade of this 4 cm tumor was grade 2."
-
-val result = pipeline.fullAnnotate(text)
-```
-
-
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -112,12 +69,6 @@ result = pipeline.fullAnnotate(text)
## Results
```bash
-Results
-
-
-Results
-
-
| | ner_chunks | begin | end | ner_label | confidence |
|---:|:-----------------|--------:|------:|:------------------|-------------:|
| 0 | metastatic | 24 | 33 | Metastasis | 0.9999 |
@@ -126,12 +77,6 @@ Results
| 3 | 4 cm | 126 | 129 | Tumor_Description | 0.85105 |
| 4 | tumor | 131 | 135 | Tumor | 0.9926 |
| 5 | grade 2 | 141 | 147 | Tumor_Description | 0.89705 |
-
-
-{:.model-param}
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-17-ner_oncology_unspecific_posology_healthcare_pipeline_en.md b/docs/_posts/C-K-Loan/2023-06-17-ner_oncology_unspecific_posology_healthcare_pipeline_en.md
index 14a2491f2e..bcfa765a03 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-ner_oncology_unspecific_posology_healthcare_pipeline_en.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-ner_oncology_unspecific_posology_healthcare_pipeline_en.md
@@ -34,58 +34,7 @@ This pretrained pipeline is built on the top of [ner_oncology_unspecific_posolog
{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_oncology_unspecific_posology_healthcare_pipeline", "en", "clinical/models")
-
-text = "
-he patient underwent a regimen consisting of adriamycin (60 mg/m2) and cyclophosphamide (600 mg/m2) over six courses. She is currently receiving his second cycle of chemotherapy and is in good overall condition.
-"
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("ner_oncology_unspecific_posology_healthcare_pipeline", "en", "clinical/models")
-
-val text = "
-he patient underwent a regimen consisting of adriamycin (60 mg/m2) and cyclophosphamide (600 mg/m2) over six courses. She is currently receiving his second cycle of chemotherapy and is in good overall condition.
-"
-
-val result = pipeline.fullAnnotate(text)
-```
-
-
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_oncology_unspecific_posology_healthcare_pipeline", "en", "clinical/models")
-
-text = "
-he patient underwent a regimen consisting of adriamycin (60 mg/m2) and cyclophosphamide (600 mg/m2) over six courses. She is currently receiving his second cycle of chemotherapy and is in good overall condition.
-"
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("ner_oncology_unspecific_posology_healthcare_pipeline", "en", "clinical/models")
-
-val text = "
-he patient underwent a regimen consisting of adriamycin (60 mg/m2) and cyclophosphamide (600 mg/m2) over six courses. She is currently receiving his second cycle of chemotherapy and is in good overall condition.
-"
-
-val result = pipeline.fullAnnotate(text)
-```
-
-
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -126,12 +75,6 @@ result = pipeline.fullAnnotate(text)
## Results
```bash
-Results
-
-
-Results
-
-
| | chunks | begin | end | entities | confidence |
|---:|:-----------------|--------:|------:|:---------------------|-------------:|
| 0 | adriamycin | 46 | 55 | Cancer_Therapy | 0.9999 |
@@ -141,12 +84,6 @@ Results
| 4 | over six courses | 101 | 116 | Posology_Information | 0.689833 |
| 5 | second cycle | 150 | 161 | Posology_Information | 0.9906 |
| 6 | chemotherapy | 166 | 177 | Cancer_Therapy | 0.9997 |
-
-
-{:.model-param}
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-17-ner_oncology_unspecific_posology_pipeline_en.md b/docs/_posts/C-K-Loan/2023-06-17-ner_oncology_unspecific_posology_pipeline_en.md
index 9276a3f71a..2e403a6176 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-ner_oncology_unspecific_posology_pipeline_en.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-ner_oncology_unspecific_posology_pipeline_en.md
@@ -34,50 +34,7 @@ This pretrained pipeline is built on the top of [ner_oncology_unspecific_posolog
{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_oncology_unspecific_posology_pipeline", "en", "clinical/models")
-
-text = '''The patient underwent a regimen consisting of adriamycin (60 mg/m2) and cyclophosphamide (600 mg/m2) over six courses. She is currently receiving his second cycle of chemotherapy and is in good overall condition.'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-val pipeline = new PretrainedPipeline("ner_oncology_unspecific_posology_pipeline", "en", "clinical/models")
-
-val text = "The patient underwent a regimen consisting of adriamycin (60 mg/m2) and cyclophosphamide (600 mg/m2) over six courses. She is currently receiving his second cycle of chemotherapy and is in good overall condition."
-
-val result = pipeline.fullAnnotate(text)
-```
-
-
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_oncology_unspecific_posology_pipeline", "en", "clinical/models")
-
-text = '''The patient underwent a regimen consisting of adriamycin (60 mg/m2) and cyclophosphamide (600 mg/m2) over six courses. She is currently receiving his second cycle of chemotherapy and is in good overall condition.'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("ner_oncology_unspecific_posology_pipeline", "en", "clinical/models")
-
-val text = "The patient underwent a regimen consisting of adriamycin (60 mg/m2) and cyclophosphamide (600 mg/m2) over six courses. She is currently receiving his second cycle of chemotherapy and is in good overall condition."
-
-val result = pipeline.fullAnnotate(text)
-```
-
-
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -112,12 +69,6 @@ result = pipeline.fullAnnotate(text)
## Results
```bash
-Results
-
-
-Results
-
-
| | ner_chunks | begin | end | ner_label | confidence |
|---:|:-----------------|--------:|------:|:---------------------|-------------:|
| 0 | adriamycin | 46 | 55 | Cancer_Therapy | 1 |
@@ -127,12 +78,6 @@ Results
| 4 | over six courses | 101 | 116 | Posology_Information | 0.9078 |
| 5 | second cycle | 150 | 161 | Posology_Information | 0.9853 |
| 6 | chemotherapy | 166 | 177 | Cancer_Therapy | 0.9998 |
-
-
-{:.model-param}
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-17-ner_pathogen_pipeline_en.md b/docs/_posts/C-K-Loan/2023-06-17-ner_pathogen_pipeline_en.md
index 2dd5bed5bb..d9457d31c5 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-ner_pathogen_pipeline_en.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-ner_pathogen_pipeline_en.md
@@ -34,6 +34,7 @@ This pretrained pipeline is built on the top of [ner_pathogen](https://nlp.johns
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -62,40 +63,10 @@ nlu.load("en.med_ner.pathogen.pipeline").predict("""Racecadotril is an antisecre
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_pathogen_pipeline", "en", "clinical/models")
-
-text = '''Racecadotril is an antisecretory medication and it has better tolerability than loperamide. Diarrhea is the condition of having loose, liquid or watery bowel movements each day. Signs of dehydration often begin with loss of the normal stretchiness of the skin. This can progress to loss of skin color, a fast heart rate as it becomes more severe. While it has been speculated that rabies virus, Lyssavirus and Ephemerovirus could be transmitted through aerosols, studies have concluded that this is only feasible in limited conditions.'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("ner_pathogen_pipeline", "en", "clinical/models")
-
-val text = "Racecadotril is an antisecretory medication and it has better tolerability than loperamide. Diarrhea is the condition of having loose, liquid or watery bowel movements each day. Signs of dehydration often begin with loss of the normal stretchiness of the skin. This can progress to loss of skin color, a fast heart rate as it becomes more severe. While it has been speculated that rabies virus, Lyssavirus and Ephemerovirus could be transmitted through aerosols, studies have concluded that this is only feasible in limited conditions."
-
-val result = pipeline.fullAnnotate(text)
-```
-
-{:.nlu-block}
-```python
-import nlu
-nlu.load("en.med_ner.pathogen.pipeline").predict("""Racecadotril is an antisecretory medication and it has better tolerability than loperamide. Diarrhea is the condition of having loose, liquid or watery bowel movements each day. Signs of dehydration often begin with loss of the normal stretchiness of the skin. This can progress to loss of skin color, a fast heart rate as it becomes more severe. While it has been speculated that rabies virus, Lyssavirus and Ephemerovirus could be transmitted through aerosols, studies have concluded that this is only feasible in limited conditions.""")
-```
-
## Results
```bash
-Results
-
-
| | ner_chunks | begin | end | ner_label | confidence |
|---:|:----------------|--------:|------:|:-----------------|-------------:|
| 0 | Racecadotril | 0 | 11 | Medicine | 0.9468 |
@@ -107,9 +78,6 @@ Results
| 6 | rabies virus | 383 | 394 | Pathogen | 0.95685 |
| 7 | Lyssavirus | 397 | 406 | Pathogen | 0.9694 |
| 8 | Ephemerovirus | 412 | 424 | Pathogen | 0.6919 |
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-17-ner_pharmacology_pipeline_es.md b/docs/_posts/C-K-Loan/2023-06-17-ner_pharmacology_pipeline_es.md
index 694c915f6f..dd9bedb2a8 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-ner_pharmacology_pipeline_es.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-ner_pharmacology_pipeline_es.md
@@ -34,50 +34,7 @@ This pretrained pipeline is built on the top of [ner_pharmacology](https://nlp.j
{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_pharmacology_pipeline", "es", "clinical/models")
-
-text = '''e realiza analítica destacando creatinkinasa 736 UI, LDH 545 UI, urea 63 mg/dl, CA 19.9 64,1 U/ml. Inmunofenotípicamente el tumor expresó vimentina, S-100, HMB-45 y actina. Se instauró el tratamiento con quimioterapia (Cisplatino, Interleukina II, Dacarbacina e Interferon alfa).'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-val pipeline = new PretrainedPipeline("ner_pharmacology_pipeline", "es", "clinical/models")
-
-val text = "e realiza analítica destacando creatinkinasa 736 UI, LDH 545 UI, urea 63 mg/dl, CA 19.9 64,1 U/ml. Inmunofenotípicamente el tumor expresó vimentina, S-100, HMB-45 y actina. Se instauró el tratamiento con quimioterapia (Cisplatino, Interleukina II, Dacarbacina e Interferon alfa)."
-
-val result = pipeline.fullAnnotate(text)
-```
-
-
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_pharmacology_pipeline", "es", "clinical/models")
-
-text = '''e realiza analítica destacando creatinkinasa 736 UI, LDH 545 UI, urea 63 mg/dl, CA 19.9 64,1 U/ml. Inmunofenotípicamente el tumor expresó vimentina, S-100, HMB-45 y actina. Se instauró el tratamiento con quimioterapia (Cisplatino, Interleukina II, Dacarbacina e Interferon alfa).'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("ner_pharmacology_pipeline", "es", "clinical/models")
-
-val text = "e realiza analítica destacando creatinkinasa 736 UI, LDH 545 UI, urea 63 mg/dl, CA 19.9 64,1 U/ml. Inmunofenotípicamente el tumor expresó vimentina, S-100, HMB-45 y actina. Se instauró el tratamiento con quimioterapia (Cisplatino, Interleukina II, Dacarbacina e Interferon alfa)."
-
-val result = pipeline.fullAnnotate(text)
-```
-
-
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -112,12 +69,6 @@ result = pipeline.fullAnnotate(text)
## Results
```bash
-Results
-
-
-Results
-
-
| | ner_chunks | begin | end | ner_label | confidence |
|---:|:----------------|--------:|------:|:--------------|-------------:|
| 0 | creatinkinasa | 31 | 43 | PROTEINAS | 0.9994 |
@@ -132,12 +83,6 @@ Results
| 9 | Interleukina II | 231 | 245 | PROTEINAS | 0.99955 |
| 10 | Dacarbacina | 248 | 258 | NORMALIZABLES | 0.9996 |
| 11 | Interferon alfa | 262 | 276 | PROTEINAS | 0.99935 |
-
-
-{:.model-param}
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-17-ner_posology_biobert_pipeline_en.md b/docs/_posts/C-K-Loan/2023-06-17-ner_posology_biobert_pipeline_en.md
index 384c7b5b38..5c425c7190 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-ner_posology_biobert_pipeline_en.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-ner_posology_biobert_pipeline_en.md
@@ -34,6 +34,7 @@ This pretrained pipeline is built on the top of [ner_posology_biobert](https://n
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -62,40 +63,11 @@ nlu.load("en.med_ner.posology_biobert.pipeline").predict("""The patient was pres
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_posology_biobert_pipeline", "en", "clinical/models")
-
-text = '''The patient was prescribed 1 capsule of Advil 10 mg for 5 days and magnesium hydroxide 100mg/1ml suspension PO. He was seen by the endocrinology service and she was discharged on 40 units of insulin glargine at night, 12 units of insulin lispro with meals, and metformin 1000 mg two times a day.'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("ner_posology_biobert_pipeline", "en", "clinical/models")
-
-val text = "The patient was prescribed 1 capsule of Advil 10 mg for 5 days and magnesium hydroxide 100mg/1ml suspension PO. He was seen by the endocrinology service and she was discharged on 40 units of insulin glargine at night, 12 units of insulin lispro with meals, and metformin 1000 mg two times a day."
-
-val result = pipeline.fullAnnotate(text)
-```
-{:.nlu-block}
-```python
-import nlu
-nlu.load("en.med_ner.posology_biobert.pipeline").predict("""The patient was prescribed 1 capsule of Advil 10 mg for 5 days and magnesium hydroxide 100mg/1ml suspension PO. He was seen by the endocrinology service and she was discharged on 40 units of insulin glargine at night, 12 units of insulin lispro with meals, and metformin 1000 mg two times a day.""")
-```
-
## Results
```bash
-Results
-
-
| | ner_chunk | begin | end | ner_label | confidence |
|---:|:--------------------|--------:|------:|:------------|-------------:|
| 0 | 1 | 27 | 27 | DOSAGE | 0.9993 |
@@ -115,9 +87,6 @@ Results
| 14 | metformin | 261 | 269 | DRUG | 0.9999 |
| 15 | 1000 mg | 271 | 277 | STRENGTH | 0.91255 |
| 16 | two times a day | 279 | 293 | FREQUENCY | 0.9969 |
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-17-ner_posology_experimental_pipeline_en.md b/docs/_posts/C-K-Loan/2023-06-17-ner_posology_experimental_pipeline_en.md
index a3b8cdab27..1a63fc8d9a 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-ner_posology_experimental_pipeline_en.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-ner_posology_experimental_pipeline_en.md
@@ -34,6 +34,7 @@ This pretrained pipeline is built on the top of [ner_posology_experimental](http
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -68,46 +69,9 @@ Calcium-DTPA: Ca-DTPA will be administered intravenously on Days 1-3 to clear th
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_posology_experimental_pipeline", "en", "clinical/models")
-
-text = '''Y-90 Humanized Anti-Tac: 10 mCi (if a bone marrow transplant was part of the patient's previous therapy) or 15 mCi of yttrium labeled anti-TAC; followed by calcium trisodium Inj (Ca DTPA)..
-
-Calcium-DTPA: Ca-DTPA will be administered intravenously on Days 1-3 to clear the radioactive agent from the body.'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("ner_posology_experimental_pipeline", "en", "clinical/models")
-
-val text = "Y-90 Humanized Anti-Tac: 10 mCi (if a bone marrow transplant was part of the patient's previous therapy) or 15 mCi of yttrium labeled anti-TAC; followed by calcium trisodium Inj (Ca DTPA)..
-
-Calcium-DTPA: Ca-DTPA will be administered intravenously on Days 1-3 to clear the radioactive agent from the body."
-
-val result = pipeline.fullAnnotate(text)
-```
-
-{:.nlu-block}
-```python
-import nlu
-nlu.load("en.med_ner.posology_experimental.pipeline").predict("""Y-90 Humanized Anti-Tac: 10 mCi (if a bone marrow transplant was part of the patient's previous therapy) or 15 mCi of yttrium labeled anti-TAC; followed by calcium trisodium Inj (Ca DTPA)..
-
-Calcium-DTPA: Ca-DTPA will be administered intravenously on Days 1-3 to clear the radioactive agent from the body.""")
-```
-
-
## Results
```bash
-Results
-
-
| | ner_chunk | begin | end | ner_label | confidence |
|---:|:-------------------------|--------:|------:|:------------|-------------:|
| 0 | Anti-Tac | 15 | 22 | Drug | 0.8797 |
@@ -119,9 +83,6 @@ Results
| 6 | Ca-DTPA | 205 | 211 | Drug | 0.9544 |
| 7 | intravenously | 234 | 246 | Route | 0.9518 |
| 8 | Days 1-3 | 251 | 258 | Cycleday | 0.83325 |
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-17-ner_posology_greedy_pipeline_en.md b/docs/_posts/C-K-Loan/2023-06-17-ner_posology_greedy_pipeline_en.md
index 99c77720ac..8aba45450b 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-ner_posology_greedy_pipeline_en.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-ner_posology_greedy_pipeline_en.md
@@ -34,6 +34,7 @@ This pretrained pipeline is built on the top of [ner_posology_greedy](https://nl
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -62,40 +63,9 @@ nlu.load("en.med_ner.posology_greedy.pipeline").predict("""The patient was presc
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_posology_greedy_pipeline", "en", "clinical/models")
-
-text = '''The patient was prescribed 1 capsule of Advil 10 mg for 5 days and magnesium hydroxide 100mg/1ml suspension PO. He was seen by the endocrinology service and she was discharged on 40 units of insulin glargine at night, 12 units of insulin lispro with meals, and metformin 1000 mg two times a day.'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("ner_posology_greedy_pipeline", "en", "clinical/models")
-
-val text = "The patient was prescribed 1 capsule of Advil 10 mg for 5 days and magnesium hydroxide 100mg/1ml suspension PO. He was seen by the endocrinology service and she was discharged on 40 units of insulin glargine at night, 12 units of insulin lispro with meals, and metformin 1000 mg two times a day."
-
-val result = pipeline.fullAnnotate(text)
-```
-
-{:.nlu-block}
-```python
-import nlu
-nlu.load("en.med_ner.posology_greedy.pipeline").predict("""The patient was prescribed 1 capsule of Advil 10 mg for 5 days and magnesium hydroxide 100mg/1ml suspension PO. He was seen by the endocrinology service and she was discharged on 40 units of insulin glargine at night, 12 units of insulin lispro with meals, and metformin 1000 mg two times a day.""")
-```
-
-
## Results
```bash
-Results
-
-
| | ner_chunk | begin | end | ner_label | confidence |
|---:|:--------------------------------------------|--------:|------:|:------------|-------------:|
| 0 | 1 capsule of Advil 10 mg | 27 | 50 | DRUG | 0.638183 |
@@ -107,9 +77,6 @@ Results
| 6 | with meals | 245 | 254 | FREQUENCY | 0.79235 |
| 7 | metformin 1000 mg | 261 | 277 | DRUG | 0.707133 |
| 8 | two times a day | 279 | 293 | FREQUENCY | 0.700825 |
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-17-ner_posology_healthcare_pipeline_en.md b/docs/_posts/C-K-Loan/2023-06-17-ner_posology_healthcare_pipeline_en.md
index 384cee0ae2..81c9c1c923 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-ner_posology_healthcare_pipeline_en.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-ner_posology_healthcare_pipeline_en.md
@@ -34,6 +34,7 @@ This pretrained pipeline is built on the top of [ner_posology_healthcare](https:
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -62,40 +63,10 @@ nlu.load("en.med_ner.posology.healthcare_pipeline").predict("""The patient is a
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_posology_healthcare_pipeline", "en", "clinical/models")
-
-text = '''The patient is a 40-year-old white male who presents with a chief complaint of 'chest pain'. The patient is diabetic and has a prior history of coronary artery disease. The patient presents today stating that chest pain started yesterday evening. He has been advised Aspirin 81 milligrams QDay. insulin 50 units in a.m. HCTZ 50 mg QDay. Nitroglycerin 1/150 sublingually.'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("ner_posology_healthcare_pipeline", "en", "clinical/models")
-
-val text = "The patient is a 40-year-old white male who presents with a chief complaint of 'chest pain'. The patient is diabetic and has a prior history of coronary artery disease. The patient presents today stating that chest pain started yesterday evening. He has been advised Aspirin 81 milligrams QDay. insulin 50 units in a.m. HCTZ 50 mg QDay. Nitroglycerin 1/150 sublingually."
-
-val result = pipeline.fullAnnotate(text)
-```
-
-{:.nlu-block}
-```python
-import nlu
-nlu.load("en.med_ner.posology.healthcare_pipeline").predict("""The patient is a 40-year-old white male who presents with a chief complaint of 'chest pain'. The patient is diabetic and has a prior history of coronary artery disease. The patient presents today stating that chest pain started yesterday evening. He has been advised Aspirin 81 milligrams QDay. insulin 50 units in a.m. HCTZ 50 mg QDay. Nitroglycerin 1/150 sublingually.""")
-```
-
## Results
```bash
-Results
-
-
| | ner_chunk | begin | end | ner_label | confidence |
|---:|:--------------|--------:|------:|:------------|-------------:|
| 0 | Aspirin | 267 | 273 | Drug | 0.9983 |
@@ -110,9 +81,6 @@ Results
| 9 | Nitroglycerin | 337 | 349 | Drug | 0.9927 |
| 10 | 1/150 | 351 | 355 | Strength | 0.9565 |
| 11 | sublingually. | 357 | 369 | Route | 0.72065 |
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-17-ner_posology_large_biobert_pipeline_en.md b/docs/_posts/C-K-Loan/2023-06-17-ner_posology_large_biobert_pipeline_en.md
index 7410efbd64..aec3f2067c 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-ner_posology_large_biobert_pipeline_en.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-ner_posology_large_biobert_pipeline_en.md
@@ -34,6 +34,7 @@ This pretrained pipeline is built on the top of [ner_posology_large_biobert](htt
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -62,40 +63,9 @@ nlu.load("en.med_ner.posology_biobert_large.pipeline").predict("""The patient wa
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_posology_large_biobert_pipeline", "en", "clinical/models")
-
-text = '''The patient was prescribed 1 capsule of Advil 10 mg for 5 days and magnesium hydroxide 100mg/1ml suspension PO. He was seen by the endocrinology service and she was discharged on 40 units of insulin glargine at night, 12 units of insulin lispro with meals, and metformin 1000 mg two times a day.'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("ner_posology_large_biobert_pipeline", "en", "clinical/models")
-
-val text = "The patient was prescribed 1 capsule of Advil 10 mg for 5 days and magnesium hydroxide 100mg/1ml suspension PO. He was seen by the endocrinology service and she was discharged on 40 units of insulin glargine at night, 12 units of insulin lispro with meals, and metformin 1000 mg two times a day."
-
-val result = pipeline.fullAnnotate(text)
-```
-
-{:.nlu-block}
-```python
-import nlu
-nlu.load("en.med_ner.posology_biobert_large.pipeline").predict("""The patient was prescribed 1 capsule of Advil 10 mg for 5 days and magnesium hydroxide 100mg/1ml suspension PO. He was seen by the endocrinology service and she was discharged on 40 units of insulin glargine at night, 12 units of insulin lispro with meals, and metformin 1000 mg two times a day.""")
-```
-
-
## Results
```bash
-Results
-
-
| | ner_chunk | begin | end | ner_label | confidence |
|---:|:--------------------|--------:|------:|:------------|-------------:|
| 0 | 1 | 27 | 27 | DOSAGE | 0.9998 |
@@ -116,9 +86,6 @@ Results
| 15 | metformin | 261 | 269 | DRUG | 1 |
| 16 | 1000 mg | 271 | 277 | STRENGTH | 0.69955 |
| 17 | two times a day | 279 | 293 | FREQUENCY | 0.758125 |
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-17-ner_posology_large_pipeline_en.md b/docs/_posts/C-K-Loan/2023-06-17-ner_posology_large_pipeline_en.md
index 8e0ff394a3..12fc88ee08 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-ner_posology_large_pipeline_en.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-ner_posology_large_pipeline_en.md
@@ -34,6 +34,7 @@ This pretrained pipeline is built on the top of [ner_posology_large](https://nlp
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -62,40 +63,10 @@ nlu.load("en.med_ner.posoloy_large.pipeline").predict("""The patient is a 30-yea
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_posology_large_pipeline", "en", "clinical/models")
-
-text = '''The patient is a 30-year-old female with a long history of insulin dependent diabetes, type 2; coronary artery disease; chronic renal insufficiency; peripheral vascular disease, also secondary to diabetes; who was originally admitted to an outside hospital for what appeared to be acute paraplegia, lower extremities. She did receive a course of Bactrim for 14 days for UTI. Evidently, at some point in time, the patient was noted to develop a pressure-type wound on the sole of her left foot and left great toe. She was also noted to have a large sacral wound; this is in a similar location with her previous laminectomy, and this continues to receive daily care. The patient was transferred secondary to inability to participate in full physical and occupational therapy and continue medical management of her diabetes, the sacral decubitus, left foot pressure wound, and associated complications of diabetes. She is given Fragmin 5000 units subcutaneously daily, Xenaderm to wounds topically b.i.d., Lantus 40 units subcutaneously at bedtime, OxyContin 30 mg p.o. q.12 h., folic acid 1 mg daily, levothyroxine 0.1 mg p.o. daily, Prevacid 30 mg daily, Avandia 4 mg daily, Norvasc 10 mg daily, Lexapro 20 mg daily, aspirin 81 mg daily, Senna 2 tablets p.o. q.a.m., Neurontin 400 mg p.o. t.i.d., Percocet 5/325 mg 2 tablets q.4 h. p.r.n., magnesium citrate 1 bottle p.o. p.r.n., sliding scale coverage insulin, Wellbutrin 100 mg p.o. daily, and Bactrim DS b.i.d.'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("ner_posology_large_pipeline", "en", "clinical/models")
-
-val text = "The patient is a 30-year-old female with a long history of insulin dependent diabetes, type 2; coronary artery disease; chronic renal insufficiency; peripheral vascular disease, also secondary to diabetes; who was originally admitted to an outside hospital for what appeared to be acute paraplegia, lower extremities. She did receive a course of Bactrim for 14 days for UTI. Evidently, at some point in time, the patient was noted to develop a pressure-type wound on the sole of her left foot and left great toe. She was also noted to have a large sacral wound; this is in a similar location with her previous laminectomy, and this continues to receive daily care. The patient was transferred secondary to inability to participate in full physical and occupational therapy and continue medical management of her diabetes, the sacral decubitus, left foot pressure wound, and associated complications of diabetes. She is given Fragmin 5000 units subcutaneously daily, Xenaderm to wounds topically b.i.d., Lantus 40 units subcutaneously at bedtime, OxyContin 30 mg p.o. q.12 h., folic acid 1 mg daily, levothyroxine 0.1 mg p.o. daily, Prevacid 30 mg daily, Avandia 4 mg daily, Norvasc 10 mg daily, Lexapro 20 mg daily, aspirin 81 mg daily, Senna 2 tablets p.o. q.a.m., Neurontin 400 mg p.o. t.i.d., Percocet 5/325 mg 2 tablets q.4 h. p.r.n., magnesium citrate 1 bottle p.o. p.r.n., sliding scale coverage insulin, Wellbutrin 100 mg p.o. daily, and Bactrim DS b.i.d."
-
-val result = pipeline.fullAnnotate(text)
-```
-
-{:.nlu-block}
-```python
-import nlu
-nlu.load("en.med_ner.posoloy_large.pipeline").predict("""The patient is a 30-year-old female with a long history of insulin dependent diabetes, type 2; coronary artery disease; chronic renal insufficiency; peripheral vascular disease, also secondary to diabetes; who was originally admitted to an outside hospital for what appeared to be acute paraplegia, lower extremities. She did receive a course of Bactrim for 14 days for UTI. Evidently, at some point in time, the patient was noted to develop a pressure-type wound on the sole of her left foot and left great toe. She was also noted to have a large sacral wound; this is in a similar location with her previous laminectomy, and this continues to receive daily care. The patient was transferred secondary to inability to participate in full physical and occupational therapy and continue medical management of her diabetes, the sacral decubitus, left foot pressure wound, and associated complications of diabetes. She is given Fragmin 5000 units subcutaneously daily, Xenaderm to wounds topically b.i.d., Lantus 40 units subcutaneously at bedtime, OxyContin 30 mg p.o. q.12 h., folic acid 1 mg daily, levothyroxine 0.1 mg p.o. daily, Prevacid 30 mg daily, Avandia 4 mg daily, Norvasc 10 mg daily, Lexapro 20 mg daily, aspirin 81 mg daily, Senna 2 tablets p.o. q.a.m., Neurontin 400 mg p.o. t.i.d., Percocet 5/325 mg 2 tablets q.4 h. p.r.n., magnesium citrate 1 bottle p.o. p.r.n., sliding scale coverage insulin, Wellbutrin 100 mg p.o. daily, and Bactrim DS b.i.d.""")
-```
-
## Results
```bash
-Results
-
-
| | ner_chunk | begin | end | ner_label | confidence |
|---:|:---------------|--------:|------:|:------------|-------------:|
| 0 | insulin | 59 | 65 | DRUG | 0.9752 |
@@ -123,9 +94,6 @@ Results
| 22 | 0.1 mg | 1113 | 1118 | STRENGTH | 0.9325 |
| 23 | p.o. | 1120 | 1123 | ROUTE | 0.6783 |
| 24 | daily | 1125 | 1129 | FREQUENCY | 0.9925 |
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-17-ner_posology_pipeline_en.md b/docs/_posts/C-K-Loan/2023-06-17-ner_posology_pipeline_en.md
index 106e7ed493..046d282cec 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-ner_posology_pipeline_en.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-ner_posology_pipeline_en.md
@@ -34,6 +34,7 @@ This pretrained pipeline is built on the top of [ner_posology](https://nlp.johns
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -62,40 +63,10 @@ nlu.load("en.med_ner.posology_pipeline").predict("""The patient is a 30-year-old
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_posology_pipeline", "en", "clinical/models")
-
-text = '''The patient is a 30-year-old female with a long history of insulin dependent diabetes, type 2; coronary artery disease; chronic renal insufficiency; peripheral vascular disease, also secondary to diabetes; who was originally admitted to an outside hospital for what appeared to be acute paraplegia, lower extremities. She did receive a course of Bactrim for 14 days for UTI. Evidently, at some point in time, the patient was noted to develop a pressure-type wound on the sole of her left foot and left great toe. She was also noted to have a large sacral wound; this is in a similar location with her previous laminectomy, and this continues to receive daily care. The patient was transferred secondary to inability to participate in full physical and occupational therapy and continue medical management of her diabetes, the sacral decubitus, left foot pressure wound, and associated complications of diabetes. She is given Fragmin 5000 units subcutaneously daily, Xenaderm to wounds topically b.i.d., Lantus 40 units subcutaneously at bedtime, OxyContin 30 mg p.o. q.12 h., folic acid 1 mg daily, levothyroxine 0.1 mg p.o. daily, Prevacid 30 mg daily, Avandia 4 mg daily, Norvasc 10 mg daily, Lexapro 20 mg daily, aspirin 81 mg daily, Senna 2 tablets p.o. q.a.m., Neurontin 400 mg p.o. t.i.d., Percocet 5/325 mg 2 tablets q.4 h. p.r.n., magnesium citrate 1 bottle p.o. p.r.n., sliding scale coverage insulin, Wellbutrin 100 mg p.o. daily, and Bactrim DS b.i.d.'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("ner_posology_pipeline", "en", "clinical/models")
-
-val text = "The patient is a 30-year-old female with a long history of insulin dependent diabetes, type 2; coronary artery disease; chronic renal insufficiency; peripheral vascular disease, also secondary to diabetes; who was originally admitted to an outside hospital for what appeared to be acute paraplegia, lower extremities. She did receive a course of Bactrim for 14 days for UTI. Evidently, at some point in time, the patient was noted to develop a pressure-type wound on the sole of her left foot and left great toe. She was also noted to have a large sacral wound; this is in a similar location with her previous laminectomy, and this continues to receive daily care. The patient was transferred secondary to inability to participate in full physical and occupational therapy and continue medical management of her diabetes, the sacral decubitus, left foot pressure wound, and associated complications of diabetes. She is given Fragmin 5000 units subcutaneously daily, Xenaderm to wounds topically b.i.d., Lantus 40 units subcutaneously at bedtime, OxyContin 30 mg p.o. q.12 h., folic acid 1 mg daily, levothyroxine 0.1 mg p.o. daily, Prevacid 30 mg daily, Avandia 4 mg daily, Norvasc 10 mg daily, Lexapro 20 mg daily, aspirin 81 mg daily, Senna 2 tablets p.o. q.a.m., Neurontin 400 mg p.o. t.i.d., Percocet 5/325 mg 2 tablets q.4 h. p.r.n., magnesium citrate 1 bottle p.o. p.r.n., sliding scale coverage insulin, Wellbutrin 100 mg p.o. daily, and Bactrim DS b.i.d."
-
-val result = pipeline.fullAnnotate(text)
-```
-
-{:.nlu-block}
-```python
-import nlu
-nlu.load("en.med_ner.posology_pipeline").predict("""The patient is a 30-year-old female with a long history of insulin dependent diabetes, type 2; coronary artery disease; chronic renal insufficiency; peripheral vascular disease, also secondary to diabetes; who was originally admitted to an outside hospital for what appeared to be acute paraplegia, lower extremities. She did receive a course of Bactrim for 14 days for UTI. Evidently, at some point in time, the patient was noted to develop a pressure-type wound on the sole of her left foot and left great toe. She was also noted to have a large sacral wound; this is in a similar location with her previous laminectomy, and this continues to receive daily care. The patient was transferred secondary to inability to participate in full physical and occupational therapy and continue medical management of her diabetes, the sacral decubitus, left foot pressure wound, and associated complications of diabetes. She is given Fragmin 5000 units subcutaneously daily, Xenaderm to wounds topically b.i.d., Lantus 40 units subcutaneously at bedtime, OxyContin 30 mg p.o. q.12 h., folic acid 1 mg daily, levothyroxine 0.1 mg p.o. daily, Prevacid 30 mg daily, Avandia 4 mg daily, Norvasc 10 mg daily, Lexapro 20 mg daily, aspirin 81 mg daily, Senna 2 tablets p.o. q.a.m., Neurontin 400 mg p.o. t.i.d., Percocet 5/325 mg 2 tablets q.4 h. p.r.n., magnesium citrate 1 bottle p.o. p.r.n., sliding scale coverage insulin, Wellbutrin 100 mg p.o. daily, and Bactrim DS b.i.d.""")
-```
-
## Results
```bash
-Results
-
-
| | ner_chunk | begin | end | ner_label | confidence |
|---:|:---------------|--------:|------:|:------------|-------------:|
| 0 | insulin | 59 | 65 | DRUG | 0.9759 |
@@ -123,9 +94,6 @@ Results
| 22 | 0.1 mg | 1113 | 1118 | STRENGTH | 0.7658 |
| 23 | p.o | 1120 | 1122 | ROUTE | 0.9982 |
| 24 | daily | 1125 | 1129 | FREQUENCY | 0.9983 |
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-17-ner_posology_small_pipeline_en.md b/docs/_posts/C-K-Loan/2023-06-17-ner_posology_small_pipeline_en.md
index a940422260..9a51d45050 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-ner_posology_small_pipeline_en.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-ner_posology_small_pipeline_en.md
@@ -34,6 +34,7 @@ This pretrained pipeline is built on the top of [ner_posology_small](https://nlp
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -62,40 +63,10 @@ nlu.load("en.med_ner.posology_small.pipeline").predict("""The patient is a 30-ye
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_posology_small_pipeline", "en", "clinical/models")
-
-text = '''The patient is a 30-year-old female with a long history of insulin dependent diabetes, type 2; coronary artery disease; chronic renal insufficiency; peripheral vascular disease, also secondary to diabetes; who was originally admitted to an outside hospital for what appeared to be acute paraplegia, lower extremities. She did receive a course of Bactrim for 14 days for UTI. Evidently, at some point in time, the patient was noted to develop a pressure-type wound on the sole of her left foot and left great toe. She was also noted to have a large sacral wound; this is in a similar location with her previous laminectomy, and this continues to receive daily care. The patient was transferred secondary to inability to participate in full physical and occupational therapy and continue medical management of her diabetes, the sacral decubitus, left foot pressure wound, and associated complications of diabetes. She is given Fragmin 5000 units subcutaneously daily, Xenaderm to wounds topically b.i.d., Lantus 40 units subcutaneously at bedtime, OxyContin 30 mg p.o. q.12 h., folic acid 1 mg daily, levothyroxine 0.1 mg p.o. daily, Prevacid 30 mg daily, Avandia 4 mg daily, Norvasc 10 mg daily, Lexapro 20 mg daily, aspirin 81 mg daily, Senna 2 tablets p.o. q.a.m., Neurontin 400 mg p.o. t.i.d., Percocet 5/325 mg 2 tablets q.4 h. p.r.n., magnesium citrate 1 bottle p.o. p.r.n., sliding scale coverage insulin, Wellbutrin 100 mg p.o. daily, and Bactrim DS b.i.d.'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("ner_posology_small_pipeline", "en", "clinical/models")
-
-val text = "The patient is a 30-year-old female with a long history of insulin dependent diabetes, type 2; coronary artery disease; chronic renal insufficiency; peripheral vascular disease, also secondary to diabetes; who was originally admitted to an outside hospital for what appeared to be acute paraplegia, lower extremities. She did receive a course of Bactrim for 14 days for UTI. Evidently, at some point in time, the patient was noted to develop a pressure-type wound on the sole of her left foot and left great toe. She was also noted to have a large sacral wound; this is in a similar location with her previous laminectomy, and this continues to receive daily care. The patient was transferred secondary to inability to participate in full physical and occupational therapy and continue medical management of her diabetes, the sacral decubitus, left foot pressure wound, and associated complications of diabetes. She is given Fragmin 5000 units subcutaneously daily, Xenaderm to wounds topically b.i.d., Lantus 40 units subcutaneously at bedtime, OxyContin 30 mg p.o. q.12 h., folic acid 1 mg daily, levothyroxine 0.1 mg p.o. daily, Prevacid 30 mg daily, Avandia 4 mg daily, Norvasc 10 mg daily, Lexapro 20 mg daily, aspirin 81 mg daily, Senna 2 tablets p.o. q.a.m., Neurontin 400 mg p.o. t.i.d., Percocet 5/325 mg 2 tablets q.4 h. p.r.n., magnesium citrate 1 bottle p.o. p.r.n., sliding scale coverage insulin, Wellbutrin 100 mg p.o. daily, and Bactrim DS b.i.d."
-
-val result = pipeline.fullAnnotate(text)
-```
-
-{:.nlu-block}
-```python
-import nlu
-nlu.load("en.med_ner.posology_small.pipeline").predict("""The patient is a 30-year-old female with a long history of insulin dependent diabetes, type 2; coronary artery disease; chronic renal insufficiency; peripheral vascular disease, also secondary to diabetes; who was originally admitted to an outside hospital for what appeared to be acute paraplegia, lower extremities. She did receive a course of Bactrim for 14 days for UTI. Evidently, at some point in time, the patient was noted to develop a pressure-type wound on the sole of her left foot and left great toe. She was also noted to have a large sacral wound; this is in a similar location with her previous laminectomy, and this continues to receive daily care. The patient was transferred secondary to inability to participate in full physical and occupational therapy and continue medical management of her diabetes, the sacral decubitus, left foot pressure wound, and associated complications of diabetes. She is given Fragmin 5000 units subcutaneously daily, Xenaderm to wounds topically b.i.d., Lantus 40 units subcutaneously at bedtime, OxyContin 30 mg p.o. q.12 h., folic acid 1 mg daily, levothyroxine 0.1 mg p.o. daily, Prevacid 30 mg daily, Avandia 4 mg daily, Norvasc 10 mg daily, Lexapro 20 mg daily, aspirin 81 mg daily, Senna 2 tablets p.o. q.a.m., Neurontin 400 mg p.o. t.i.d., Percocet 5/325 mg 2 tablets q.4 h. p.r.n., magnesium citrate 1 bottle p.o. p.r.n., sliding scale coverage insulin, Wellbutrin 100 mg p.o. daily, and Bactrim DS b.i.d.""")
-```
-
## Results
```bash
-Results
-
-
| | ner_chunk | begin | end | ner_label | confidence |
|---:|:---------------|--------:|------:|:------------|-------------:|
| 0 | insulin | 59 | 65 | DRUG | 0.9984 |
@@ -123,9 +94,6 @@ Results
| 22 | 0.1 mg | 1113 | 1118 | STRENGTH | 0.99965 |
| 23 | p.o | 1120 | 1122 | ROUTE | 0.999 |
| 24 | daily | 1125 | 1129 | FREQUENCY | 0.9373 |
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-17-ner_profiling_biobert_en.md b/docs/_posts/C-K-Loan/2023-06-17-ner_profiling_biobert_en.md
index 04e90bed87..301a78adf6 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-ner_profiling_biobert_en.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-ner_profiling_biobert_en.md
@@ -38,6 +38,7 @@ Here are the NER models that this pretrained pipeline includes:
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -67,66 +68,11 @@ nlu.load("en.med_ner.profiling_biobert").predict("""A 28-year-old female with a
```
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-ner_profiling_pipeline = PretrainedPipeline('ner_profiling_biobert', 'en', 'clinical/models')
-
-result = ner_profiling_pipeline.annotate("""A 28-year-old female with a history of gestational diabetes mellitus diagnosed eight years prior to presentation and subsequent type two diabetes mellitus ( T2DM ), one prior episode of HTG-induced pancreatitis three years prior to presentation , associated with an acute hepatitis , and obesity with a body mass index ( BMI ) of 33.5 kg/m2 , presented with a one-week history of polyuria , polydipsia , poor appetite , and vomiting.""")
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-val ner_profiling_pipeline = PretrainedPipeline("ner_profiling_biobert", "en", "clinical/models")
-
-val result = ner_profiling_pipeline.annotate("""A 28-year-old female with a history of gestational diabetes mellitus diagnosed eight years prior to presentation and subsequent type two diabetes mellitus ( T2DM ), one prior episode of HTG-induced pancreatitis three years prior to presentation , associated with an acute hepatitis , and obesity with a body mass index ( BMI ) of 33.5 kg/m2 , presented with a one-week history of polyuria , polydipsia , poor appetite , and vomiting.""")
-```
-
-{:.nlu-block}
-```python
-import nlu
-
-nlu.load("en.med_ner.profiling_biobert").predict("""A 28-year-old female with a history of gestational diabetes mellitus diagnosed eight years prior to presentation and subsequent type two diabetes mellitus ( T2DM ), one prior episode of HTG-induced pancreatitis three years prior to presentation , associated with an acute hepatitis , and obesity with a body mass index ( BMI ) of 33.5 kg/m2 , presented with a one-week history of polyuria , polydipsia , poor appetite , and vomiting.""")
-```
-
-
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-ner_profiling_pipeline = PretrainedPipeline('ner_profiling_biobert', 'en', 'clinical/models')
-
-result = ner_profiling_pipeline.annotate("""A 28-year-old female with a history of gestational diabetes mellitus diagnosed eight years prior to presentation and subsequent type two diabetes mellitus ( T2DM ), one prior episode of HTG-induced pancreatitis three years prior to presentation , associated with an acute hepatitis , and obesity with a body mass index ( BMI ) of 33.5 kg/m2 , presented with a one-week history of polyuria , polydipsia , poor appetite , and vomiting.""")
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val ner_profiling_pipeline = PretrainedPipeline("ner_profiling_biobert", "en", "clinical/models")
-
-val result = ner_profiling_pipeline.annotate("""A 28-year-old female with a history of gestational diabetes mellitus diagnosed eight years prior to presentation and subsequent type two diabetes mellitus ( T2DM ), one prior episode of HTG-induced pancreatitis three years prior to presentation , associated with an acute hepatitis , and obesity with a body mass index ( BMI ) of 33.5 kg/m2 , presented with a one-week history of polyuria , polydipsia , poor appetite , and vomiting.""")
-```
-
-{:.nlu-block}
-```python
-import nlu
-
-nlu.load("en.med_ner.profiling_biobert").predict("""A 28-year-old female with a history of gestational diabetes mellitus diagnosed eight years prior to presentation and subsequent type two diabetes mellitus ( T2DM ), one prior episode of HTG-induced pancreatitis three years prior to presentation , associated with an acute hepatitis , and obesity with a body mass index ( BMI ) of 33.5 kg/m2 , presented with a one-week history of polyuria , polydipsia , poor appetite , and vomiting.""")
-```
-
## Results
```bash
-Results
-
-
-Results
-
-
-
******************** ner_diseases_biobert Model Results ********************
[('gestational diabetes mellitus', 'Disease'), ('type two diabetes mellitus', 'Disease'), ('T2DM', 'Disease'), ('HTG-induced pancreatitis', 'Disease'), ('hepatitis', 'Disease'), ('obesity', 'Disease'), ('polyuria', 'Disease'), ('polydipsia', 'Disease'), ('poor appetite', 'Disease'), ('vomiting', 'Disease')]
@@ -150,13 +96,6 @@ Results
******************** ner_risk_factors_biobert Model Results ********************
[('diabetes mellitus', 'DIABETES'), ('subsequent type two diabetes mellitus', 'DIABETES'), ('obesity', 'OBESE')]
-
-
-
-{:.model-param}
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-17-ner_radiology_pipeline_en.md b/docs/_posts/C-K-Loan/2023-06-17-ner_radiology_pipeline_en.md
index 0b5fe06d56..75fe2d1848 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-ner_radiology_pipeline_en.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-ner_radiology_pipeline_en.md
@@ -34,6 +34,7 @@ This pretrained pipeline is built on the top of [ner_radiology](https://nlp.john
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -62,40 +63,10 @@ nlu.load("en.med_ner.radiology.pipeline").predict("""Bilateral breast ultrasound
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_radiology_pipeline", "en", "clinical/models")
-
-text = '''Bilateral breast ultrasound was subsequently performed, which demonstrated an ovoid mass measuring approximately 0.5 x 0.5 x 0.4 cm in diameter located within the anteromedial aspect of the left shoulder. This mass demonstrates isoechoic echotexture to the adjacent muscle, with no evidence of internal color flow. This may represent benign fibrous tissue or a lipoma.'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("ner_radiology_pipeline", "en", "clinical/models")
-
-val text = "Bilateral breast ultrasound was subsequently performed, which demonstrated an ovoid mass measuring approximately 0.5 x 0.5 x 0.4 cm in diameter located within the anteromedial aspect of the left shoulder. This mass demonstrates isoechoic echotexture to the adjacent muscle, with no evidence of internal color flow. This may represent benign fibrous tissue or a lipoma."
-
-val result = pipeline.fullAnnotate(text)
-```
-
-{:.nlu-block}
-```python
-import nlu
-nlu.load("en.med_ner.radiology.pipeline").predict("""Bilateral breast ultrasound was subsequently performed, which demonstrated an ovoid mass measuring approximately 0.5 x 0.5 x 0.4 cm in diameter located within the anteromedial aspect of the left shoulder. This mass demonstrates isoechoic echotexture to the adjacent muscle, with no evidence of internal color flow. This may represent benign fibrous tissue or a lipoma.""")
-```
-
## Results
```bash
-Results
-
-
| | ner_chunk | begin | end | ner_label | confidence |
|---:|:-----------------------------------------|--------:|------:|:--------------------------|-------------:|
| 0 | Bilateral breast | 0 | 15 | BodyPart | 0.945 |
@@ -110,9 +81,6 @@ Results
| 9 | internal color flow | 294 | 312 | ImagingFindings | 0.477233 |
| 10 | benign fibrous tissue | 334 | 354 | ImagingFindings | 0.524067 |
| 11 | lipoma | 361 | 366 | Disease_Syndrome_Disorder | 0.6081 |
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-17-ner_radiology_wip_clinical_pipeline_en.md b/docs/_posts/C-K-Loan/2023-06-17-ner_radiology_wip_clinical_pipeline_en.md
index b8726883a9..a6b8116d18 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-ner_radiology_wip_clinical_pipeline_en.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-ner_radiology_wip_clinical_pipeline_en.md
@@ -34,6 +34,7 @@ This pretrained pipeline is built on the top of [ner_radiology_wip_clinical](htt
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -62,40 +63,10 @@ nlu.load("en.med_ner.radiology.clinical_wip.pipeline").predict("""Bilateral brea
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_radiology_wip_clinical_pipeline", "en", "clinical/models")
-
-text = '''Bilateral breast ultrasound was subsequently performed, which demonstrated an ovoid mass measuring approximately 0.5 x 0.5 x 0.4 cm in diameter located within the anteromedial aspect of the left shoulder. This mass demonstrates isoechoic echotexture to the adjacent muscle, with no evidence of internal color flow. This may represent benign fibrous tissue or a lipoma.'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("ner_radiology_wip_clinical_pipeline", "en", "clinical/models")
-
-val text = "Bilateral breast ultrasound was subsequently performed, which demonstrated an ovoid mass measuring approximately 0.5 x 0.5 x 0.4 cm in diameter located within the anteromedial aspect of the left shoulder. This mass demonstrates isoechoic echotexture to the adjacent muscle, with no evidence of internal color flow. This may represent benign fibrous tissue or a lipoma."
-
-val result = pipeline.fullAnnotate(text)
-```
-
-{:.nlu-block}
-```python
-import nlu
-nlu.load("en.med_ner.radiology.clinical_wip.pipeline").predict("""Bilateral breast ultrasound was subsequently performed, which demonstrated an ovoid mass measuring approximately 0.5 x 0.5 x 0.4 cm in diameter located within the anteromedial aspect of the left shoulder. This mass demonstrates isoechoic echotexture to the adjacent muscle, with no evidence of internal color flow. This may represent benign fibrous tissue or a lipoma.""")
-```
-
## Results
```bash
-Results
-
-
| | ner_chunks | begin | end | ner_label | confidence |
|---:|:----------------------|--------:|------:|:--------------------------|-------------:|
| 0 | Bilateral | 0 | 8 | Direction | 0.9828 |
@@ -113,9 +84,6 @@ Results
| 12 | internal color flow | 294 | 312 | ImagingFindings | 0.5153 |
| 13 | benign fibrous tissue | 334 | 354 | ImagingFindings | 0.394867 |
| 14 | lipoma | 361 | 366 | Disease_Syndrome_Disorder | 0.9142 |
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-17-ner_risk_factors_biobert_pipeline_en.md b/docs/_posts/C-K-Loan/2023-06-17-ner_risk_factors_biobert_pipeline_en.md
index 1499373c8d..572189c7da 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-ner_risk_factors_biobert_pipeline_en.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-ner_risk_factors_biobert_pipeline_en.md
@@ -34,6 +34,7 @@ This pretrained pipeline is built on the top of [ner_risk_factors_biobert](https
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -86,64 +87,10 @@ FAMILY HISTORY: Positive for coronary artery disease (father & brother).""")
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_risk_factors_biobert_pipeline", "en", "clinical/models")
-
-text = '''ISTORY OF PRESENT ILLNESS: The patient is a 40-year-old white male who presents with a chief complaint of "chest pain". The patient is diabetic and has a prior history of coronary artery disease. The patient presents today stating that his chest pain started yesterday evening and has been somewhat intermittent. The severity of the pain has progressively increased. He describes the pain as a sharp and heavy pain which radiates to his neck & left arm. He ranks the pain a 7 on a scale of 1-10. He admits some shortness of breath & diaphoresis. He states that he has had nausea & 3 episodes of vomiting tonight. He denies any fever or chills. He admits prior episodes of similar pain prior to his PTCA in 1995. He states the pain is somewhat worse with walking and seems to be relieved with rest. There is no change in pain with positioning. He states that he took 3 nitroglycerin tablets sublingually over the past 1 hour, which he states has partially relieved his pain. The patient ranks his present pain a 4 on a scale of 1-10. The most recent episode of pain has lasted one-hour. The patient denies any history of recent surgery, head trauma, recent stroke, abnormal bleeding such as blood in urine or stool or nosebleed.
-
-REVIEW OF SYSTEMS: All other systems reviewed & are negative.
-
-PAST MEDICAL HISTORY: Diabetes mellitus type II, hypertension, coronary artery disease, atrial fibrillation, status post PTCA in 1995 by Dr. ABC.
-
-SOCIAL HISTORY: Denies alcohol or drugs. Smokes 2 packs of cigarettes per day. Works as a banker.
-
-FAMILY HISTORY: Positive for coronary artery disease (father & brother).'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("ner_risk_factors_biobert_pipeline", "en", "clinical/models")
-
-val text = "ISTORY OF PRESENT ILLNESS: The patient is a 40-year-old white male who presents with a chief complaint of "chest pain". The patient is diabetic and has a prior history of coronary artery disease. The patient presents today stating that his chest pain started yesterday evening and has been somewhat intermittent. The severity of the pain has progressively increased. He describes the pain as a sharp and heavy pain which radiates to his neck & left arm. He ranks the pain a 7 on a scale of 1-10. He admits some shortness of breath & diaphoresis. He states that he has had nausea & 3 episodes of vomiting tonight. He denies any fever or chills. He admits prior episodes of similar pain prior to his PTCA in 1995. He states the pain is somewhat worse with walking and seems to be relieved with rest. There is no change in pain with positioning. He states that he took 3 nitroglycerin tablets sublingually over the past 1 hour, which he states has partially relieved his pain. The patient ranks his present pain a 4 on a scale of 1-10. The most recent episode of pain has lasted one-hour. The patient denies any history of recent surgery, head trauma, recent stroke, abnormal bleeding such as blood in urine or stool or nosebleed.
-
-REVIEW OF SYSTEMS: All other systems reviewed & are negative.
-
-PAST MEDICAL HISTORY: Diabetes mellitus type II, hypertension, coronary artery disease, atrial fibrillation, status post PTCA in 1995 by Dr. ABC.
-
-SOCIAL HISTORY: Denies alcohol or drugs. Smokes 2 packs of cigarettes per day. Works as a banker.
-
-FAMILY HISTORY: Positive for coronary artery disease (father & brother)."
-
-val result = pipeline.fullAnnotate(text)
-```
-
-{:.nlu-block}
-```python
-import nlu
-nlu.load("en.med_ner.risk_factors_biobert.pipeline").predict("""ISTORY OF PRESENT ILLNESS: The patient is a 40-year-old white male who presents with a chief complaint of "chest pain". The patient is diabetic and has a prior history of coronary artery disease. The patient presents today stating that his chest pain started yesterday evening and has been somewhat intermittent. The severity of the pain has progressively increased. He describes the pain as a sharp and heavy pain which radiates to his neck & left arm. He ranks the pain a 7 on a scale of 1-10. He admits some shortness of breath & diaphoresis. He states that he has had nausea & 3 episodes of vomiting tonight. He denies any fever or chills. He admits prior episodes of similar pain prior to his PTCA in 1995. He states the pain is somewhat worse with walking and seems to be relieved with rest. There is no change in pain with positioning. He states that he took 3 nitroglycerin tablets sublingually over the past 1 hour, which he states has partially relieved his pain. The patient ranks his present pain a 4 on a scale of 1-10. The most recent episode of pain has lasted one-hour. The patient denies any history of recent surgery, head trauma, recent stroke, abnormal bleeding such as blood in urine or stool or nosebleed.
-
-REVIEW OF SYSTEMS: All other systems reviewed & are negative.
-
-PAST MEDICAL HISTORY: Diabetes mellitus type II, hypertension, coronary artery disease, atrial fibrillation, status post PTCA in 1995 by Dr. ABC.
-
-SOCIAL HISTORY: Denies alcohol or drugs. Smokes 2 packs of cigarettes per day. Works as a banker.
-
-FAMILY HISTORY: Positive for coronary artery disease (father & brother).""")
-```
-
## Results
```bash
-Results
-
-
| | ner_chunk | begin | end | ner_label | confidence |
|---:|:-----------------------------------------|--------:|------:|:-------------|-------------:|
| 0 | diabetic | 135 | 142 | DIABETES | 0.9689 |
@@ -153,9 +100,6 @@ Results
| 4 | hypertension | 1341 | 1352 | HYPERTENSION | 0.956 |
| 5 | coronary artery disease | 1355 | 1377 | CAD | 0.7962 |
| 6 | Smokes 2 packs of cigarettes per day | 1480 | 1515 | SMOKER | 0.461643 |
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-17-ner_risk_factors_pipeline_en.md b/docs/_posts/C-K-Loan/2023-06-17-ner_risk_factors_pipeline_en.md
index c6ac8971a4..473ffce745 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-ner_risk_factors_pipeline_en.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-ner_risk_factors_pipeline_en.md
@@ -34,6 +34,7 @@ This pretrained pipeline is built on the top of [ner_risk_factors](https://nlp.j
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -86,64 +87,11 @@ FAMILY HISTORY: Positive for coronary artery disease (father & brother).""")
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_risk_factors_pipeline", "en", "clinical/models")
-
-text = '''HISTORY OF PRESENT ILLNESS: The patient is a 40-year-old white male who presents with a chief complaint of "chest pain". The patient is diabetic and has a prior history of coronary artery disease. The patient presents today stating that his chest pain started yesterday evening and has been somewhat intermittent. The severity of the pain has progressively increased. He describes the pain as a sharp and heavy pain which radiates to his neck & left arm. He ranks the pain a 7 on a scale of 1-10. He admits some shortness of breath & diaphoresis. He states that he has had nausea & 3 episodes of vomiting tonight. He denies any fever or chills. He admits prior episodes of similar pain prior to his PTCA in 1995. He states the pain is somewhat worse with walking and seems to be relieved with rest. There is no change in pain with positioning. He states that he took 3 nitroglycerin tablets sublingually over the past 1 hour, which he states has partially relieved his pain. The patient ranks his present pain a 4 on a scale of 1-10. The most recent episode of pain has lasted one-hour. The patient denies any history of recent surgery, head trauma, recent stroke, abnormal bleeding such as blood in urine or stool or nosebleed.
-
-REVIEW OF SYSTEMS: All other systems reviewed & are negative.
-
-PAST MEDICAL HISTORY: Diabetes mellitus type II, hypertension, coronary artery disease, atrial fibrillation, status post PTCA in 1995 by Dr. ABC.
-
-SOCIAL HISTORY: Denies alcohol or drugs. Smokes 2 packs of cigarettes per day. Works as a banker.
-
-FAMILY HISTORY: Positive for coronary artery disease (father & brother).'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("ner_risk_factors_pipeline", "en", "clinical/models")
-
-val text = "HISTORY OF PRESENT ILLNESS: The patient is a 40-year-old white male who presents with a chief complaint of "chest pain". The patient is diabetic and has a prior history of coronary artery disease. The patient presents today stating that his chest pain started yesterday evening and has been somewhat intermittent. The severity of the pain has progressively increased. He describes the pain as a sharp and heavy pain which radiates to his neck & left arm. He ranks the pain a 7 on a scale of 1-10. He admits some shortness of breath & diaphoresis. He states that he has had nausea & 3 episodes of vomiting tonight. He denies any fever or chills. He admits prior episodes of similar pain prior to his PTCA in 1995. He states the pain is somewhat worse with walking and seems to be relieved with rest. There is no change in pain with positioning. He states that he took 3 nitroglycerin tablets sublingually over the past 1 hour, which he states has partially relieved his pain. The patient ranks his present pain a 4 on a scale of 1-10. The most recent episode of pain has lasted one-hour. The patient denies any history of recent surgery, head trauma, recent stroke, abnormal bleeding such as blood in urine or stool or nosebleed.
-
-REVIEW OF SYSTEMS: All other systems reviewed & are negative.
-
-PAST MEDICAL HISTORY: Diabetes mellitus type II, hypertension, coronary artery disease, atrial fibrillation, status post PTCA in 1995 by Dr. ABC.
-
-SOCIAL HISTORY: Denies alcohol or drugs. Smokes 2 packs of cigarettes per day. Works as a banker.
-
-FAMILY HISTORY: Positive for coronary artery disease (father & brother)."
-
-val result = pipeline.fullAnnotate(text)
-```
-
-{:.nlu-block}
-```python
-import nlu
-nlu.load("en.med_ner.risk_factors.pipeline").predict("""HISTORY OF PRESENT ILLNESS: The patient is a 40-year-old white male who presents with a chief complaint of "chest pain". The patient is diabetic and has a prior history of coronary artery disease. The patient presents today stating that his chest pain started yesterday evening and has been somewhat intermittent. The severity of the pain has progressively increased. He describes the pain as a sharp and heavy pain which radiates to his neck & left arm. He ranks the pain a 7 on a scale of 1-10. He admits some shortness of breath & diaphoresis. He states that he has had nausea & 3 episodes of vomiting tonight. He denies any fever or chills. He admits prior episodes of similar pain prior to his PTCA in 1995. He states the pain is somewhat worse with walking and seems to be relieved with rest. There is no change in pain with positioning. He states that he took 3 nitroglycerin tablets sublingually over the past 1 hour, which he states has partially relieved his pain. The patient ranks his present pain a 4 on a scale of 1-10. The most recent episode of pain has lasted one-hour. The patient denies any history of recent surgery, head trauma, recent stroke, abnormal bleeding such as blood in urine or stool or nosebleed.
-
-REVIEW OF SYSTEMS: All other systems reviewed & are negative.
-
-PAST MEDICAL HISTORY: Diabetes mellitus type II, hypertension, coronary artery disease, atrial fibrillation, status post PTCA in 1995 by Dr. ABC.
-SOCIAL HISTORY: Denies alcohol or drugs. Smokes 2 packs of cigarettes per day. Works as a banker.
-
-FAMILY HISTORY: Positive for coronary artery disease (father & brother).""")
-```
-
## Results
```bash
-Results
-
-
| | ner_chunk | begin | end | ner_label | confidence |
|---:|:-------------------------------------|--------:|------:|:-------------|-------------:|
| 0 | diabetic | 136 | 143 | DIABETES | 0.9992 |
@@ -155,9 +103,6 @@ Results
| 6 | ABC | 1434 | 1436 | PHI | 0.9999 |
| 7 | Smokes 2 packs of cigarettes per day | 1481 | 1516 | SMOKER | 0.634257 |
| 8 | banker | 1530 | 1535 | PHI | 0.9779 |
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-17-ner_sdoh_mentions_pipeline_en.md b/docs/_posts/C-K-Loan/2023-06-17-ner_sdoh_mentions_pipeline_en.md
index 13e55b491b..cadfccb75c 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-ner_sdoh_mentions_pipeline_en.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-ner_sdoh_mentions_pipeline_en.md
@@ -62,7 +62,6 @@ val result = pipeline.fullAnnotate(text)
## Results
```bash
-
| | chunks | begin | end | entities | confidence |
|---:|:-----------------|--------:|------:|:-----------------|-------------:|
| 0 | married | 123 | 129 | sdoh_community | 0.9972 |
@@ -71,7 +70,6 @@ val result = pipeline.fullAnnotate(text)
| 3 | alcohol | 185 | 191 | behavior_alcohol | 0.9925 |
| 4 | intravenous drug | 196 | 211 | behavior_drug | 0.9803 |
| 5 | smoking | 230 | 236 | behavior_tobacco | 0.9997 |
-
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-17-ner_supplement_clinical_pipeline_en.md b/docs/_posts/C-K-Loan/2023-06-17-ner_supplement_clinical_pipeline_en.md
index ea2833dd52..d27f0eb5ef 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-ner_supplement_clinical_pipeline_en.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-ner_supplement_clinical_pipeline_en.md
@@ -32,52 +32,10 @@ This pretrained pipeline is built on the top of [ner_supplement_clinical](https:
## How to use
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_supplement_clinical_pipeline", "en", "clinical/models")
-
-text = '''Excellent!. The state of health improves, nervousness disappears, and night sleep improves. It also promotes hair and nail growth. I recommend :'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("ner_supplement_clinical_pipeline", "en", "clinical/models")
-
-val text = "Excellent!. The state of health improves, nervousness disappears, and night sleep improves. It also promotes hair and nail growth. I recommend :"
-
-val result = pipeline.fullAnnotate(text)
-```
-
{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_supplement_clinical_pipeline", "en", "clinical/models")
-
-text = '''Excellent!. The state of health improves, nervousness disappears, and night sleep improves. It also promotes hair and nail growth. I recommend :'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("ner_supplement_clinical_pipeline", "en", "clinical/models")
-
-val text = "Excellent!. The state of health improves, nervousness disappears, and night sleep improves. It also promotes hair and nail growth. I recommend :"
-
-val result = pipeline.fullAnnotate(text)
-```
-
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -112,24 +70,12 @@ result = pipeline.fullAnnotate(text)
## Results
```bash
-Results
-
-
-Results
-
-
| | ner_chunks | begin | end | ner_label | confidence |
|---:|:-------------|--------:|------:|:------------|-------------:|
| 0 | nervousness | 42 | 52 | CONDITION | 0.9999 |
| 1 | night sleep | 70 | 80 | BENEFIT | 0.80775 |
| 2 | hair | 109 | 112 | BENEFIT | 0.9997 |
| 3 | nail growth | 118 | 128 | BENEFIT | 0.9997 |
-
-
-{:.model-param}
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-17-nerdl_tumour_demo_pipeline_en.md b/docs/_posts/C-K-Loan/2023-06-17-nerdl_tumour_demo_pipeline_en.md
index cc16993a70..0325e195fd 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-nerdl_tumour_demo_pipeline_en.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-nerdl_tumour_demo_pipeline_en.md
@@ -32,52 +32,10 @@ This pretrained pipeline is built on the top of [nerdl_tumour_demo](https://nlp.
## How to use
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("nerdl_tumour_demo_pipeline", "en", "clinical/models")
-
-text = '''The final diagnosis was metastatic breast carcinoma, and it was classified as T2N1M1 stage IV. The histological grade of this 4 cm tumor was grade 2.'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("nerdl_tumour_demo_pipeline", "en", "clinical/models")
-
-val text = "The final diagnosis was metastatic breast carcinoma, and it was classified as T2N1M1 stage IV. The histological grade of this 4 cm tumor was grade 2."
-
-val result = pipeline.fullAnnotate(text)
-```
-
{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("nerdl_tumour_demo_pipeline", "en", "clinical/models")
-
-text = '''The final diagnosis was metastatic breast carcinoma, and it was classified as T2N1M1 stage IV. The histological grade of this 4 cm tumor was grade 2.'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("nerdl_tumour_demo_pipeline", "en", "clinical/models")
-
-val text = "The final diagnosis was metastatic breast carcinoma, and it was classified as T2N1M1 stage IV. The histological grade of this 4 cm tumor was grade 2."
-
-val result = pipeline.fullAnnotate(text)
-```
-
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -112,21 +70,9 @@ result = pipeline.fullAnnotate(text)
## Results
```bash
-Results
-
-
-Results
-
-
| | ner_chunks | begin | end | ner_label | confidence |
|---:|:-----------------|--------:|------:|:-------------|:-------------|
| 0 | breast carcinoma | 35 | 50 | Localization | |
-
-
-{:.model-param}
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-17-oncology_biomarker_pipeline_en.md b/docs/_posts/C-K-Loan/2023-06-17-oncology_biomarker_pipeline_en.md
index 0eb7dc87f1..f1f177d4a5 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-oncology_biomarker_pipeline_en.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-oncology_biomarker_pipeline_en.md
@@ -34,6 +34,7 @@ This pipeline includes Named-Entity Recognition, Assertion Status and Relation E
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -62,72 +63,10 @@ nlu.load("en.oncology_biomarker.pipeline").predict("""Immunohistochemistry was n
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("oncology_biomarker_pipeline", "en", "clinical/models")
-
-text = '''Immunohistochemistry was negative for thyroid transcription factor-1 and napsin A. The test was positive for ER and PR, and negative for HER2.'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("oncology_biomarker_pipeline", "en", "clinical/models")
-
-val text = "Immunohistochemistry was negative for thyroid transcription factor-1 and napsin A. The test was positive for ER and PR, and negative for HER2."
-
-val result = pipeline.fullAnnotate(text)
-```
-
-{:.nlu-block}
-```python
-import nlu
-nlu.load("en.oncology_biomarker.pipeline").predict("""Immunohistochemistry was negative for thyroid transcription factor-1 and napsin A. The test was positive for ER and PR, and negative for HER2.""")
-```
-
-
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("oncology_biomarker_pipeline", "en", "clinical/models")
-
-text = '''Immunohistochemistry was negative for thyroid transcription factor-1 and napsin A. The test was positive for ER and PR, and negative for HER2.'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("oncology_biomarker_pipeline", "en", "clinical/models")
-
-val text = "Immunohistochemistry was negative for thyroid transcription factor-1 and napsin A. The test was positive for ER and PR, and negative for HER2."
-
-val result = pipeline.fullAnnotate(text)
-```
-
-{:.nlu-block}
-```python
-import nlu
-nlu.load("en.oncology_biomarker.pipeline").predict("""Immunohistochemistry was negative for thyroid transcription factor-1 and napsin A. The test was positive for ER and PR, and negative for HER2.""")
-```
-
## Results
```bash
-Results
-
-
-Results
-
-
-"
******************** ner_oncology_wip results ********************
| chunk | ner_label |
@@ -253,13 +192,6 @@ Results
| ER | Biomarker | negative | Biomarker_Result | O |
| PR | Biomarker | negative | Biomarker_Result | O |
| negative | Biomarker_Result | HER2 | Oncogene | is_finding_of |
-
-
-
-{:.model-param}
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-17-re_bodypart_directions_pipeline_en.md b/docs/_posts/C-K-Loan/2023-06-17-re_bodypart_directions_pipeline_en.md
index 67cced7da2..45e4ddfe84 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-re_bodypart_directions_pipeline_en.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-re_bodypart_directions_pipeline_en.md
@@ -59,64 +59,11 @@ nlu.load("en.relation.bodypart_directions.pipeline").predict("""MRI demonstrated
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("re_bodypart_directions_pipeline", "en", "clinical/models")
-
-pipeline.fullAnnotate("MRI demonstrated infarction in the upper brain stem , left cerebellum and right basil ganglia")
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("re_bodypart_directions_pipeline", "en", "clinical/models")
-
-pipeline.fullAnnotate("MRI demonstrated infarction in the upper brain stem , left cerebellum and right basil ganglia")
-```
-
-{:.nlu-block}
-```python
-import nlu
-nlu.load("en.relation.bodypart_directions.pipeline").predict("""MRI demonstrated infarction in the upper brain stem , left cerebellum and right basil ganglia""")
-```
-
-
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("re_bodypart_directions_pipeline", "en", "clinical/models")
-
-pipeline.fullAnnotate("MRI demonstrated infarction in the upper brain stem , left cerebellum and right basil ganglia")
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-val pipeline = new PretrainedPipeline("re_bodypart_directions_pipeline", "en", "clinical/models")
-
-pipeline.fullAnnotate("MRI demonstrated infarction in the upper brain stem , left cerebellum and right basil ganglia")
-```
-
-{:.nlu-block}
-```python
-import nlu
-nlu.load("en.relation.bodypart_directions.pipeline").predict("""MRI demonstrated infarction in the upper brain stem , left cerebellum and right basil ganglia""")
-```
-
## Results
```bash
-Results
-
-
-Results
-
-
-
| index | relations | entity1 | entity1_begin | entity1_end | chunk1 | entity2 | entity2_end | entity2_end | chunk2 | confidence |
|-------|-----------|-----------------------------|---------------|-------------|------------|-----------------------------|-------------|-------------|---------------|------------|
| 0 | 1 | Direction | 35 | 39 | upper | Internal_organ_or_component | 41 | 50 | brain stem | 0.9999989 |
@@ -128,13 +75,6 @@ Results
| 6 | 0 | Direction | 54 | 57 | left | Internal_organ_or_component | 81 | 93 | basil ganglia | 0.97616416 |
| 7 | 0 | Internal_organ_or_component | 59 | 68 | cerebellum | Direction | 75 | 79 | right | 0.953046 |
| 8 | 1 | Direction | 75 | 79 | right | Internal_organ_or_component | 81 | 93 | basil ganglia | 1.0 |
-
-
-
-{:.model-param}
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-17-re_bodypart_proceduretest_pipeline_en.md b/docs/_posts/C-K-Loan/2023-06-17-re_bodypart_proceduretest_pipeline_en.md
index 9acccf2b48..3a5af04e08 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-re_bodypart_proceduretest_pipeline_en.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-re_bodypart_proceduretest_pipeline_en.md
@@ -59,74 +59,14 @@ nlu.load("en.relation.bodypart_proceduretest.pipeline").predict("""TECHNIQUE IN
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("re_bodypart_proceduretest_pipeline", "en", "clinical/models")
-
-pipeline.fullAnnotate("TECHNIQUE IN DETAIL: After informed consent was obtained from the patient and his mother, the chest was scanned with portable ultrasound.")
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("re_bodypart_proceduretest_pipeline", "en", "clinical/models")
-
-pipeline.fullAnnotate("TECHNIQUE IN DETAIL: After informed consent was obtained from the patient and his mother, the chest was scanned with portable ultrasound.")
-```
-
-{:.nlu-block}
-```python
-import nlu
-nlu.load("en.relation.bodypart_proceduretest.pipeline").predict("""TECHNIQUE IN DETAIL: After informed consent was obtained from the patient and his mother, the chest was scanned with portable ultrasound.""")
-```
-
-
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("re_bodypart_proceduretest_pipeline", "en", "clinical/models")
-
-pipeline.fullAnnotate("TECHNIQUE IN DETAIL: After informed consent was obtained from the patient and his mother, the chest was scanned with portable ultrasound.")
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-val pipeline = new PretrainedPipeline("re_bodypart_proceduretest_pipeline", "en", "clinical/models")
-
-pipeline.fullAnnotate("TECHNIQUE IN DETAIL: After informed consent was obtained from the patient and his mother, the chest was scanned with portable ultrasound.")
-```
-
-{:.nlu-block}
-```python
-import nlu
-nlu.load("en.relation.bodypart_proceduretest.pipeline").predict("""TECHNIQUE IN DETAIL: After informed consent was obtained from the patient and his mother, the chest was scanned with portable ultrasound.""")
-```
-
## Results
```bash
-Results
-
-
-Results
-
-
-
| index | relations | entity1 | entity1_begin | entity1_end | chunk1 | entity2 | entity2_end | entity2_end | chunk2 | confidence |
|-------|-----------|------------------------------|---------------|-------------|--------|---------|-------------|-------------|---------------------|------------|
| 0 | 1 | External_body_part_or_region | 94 | 98 | chest | Test | 117 | 135 | portable ultrasound | 1.0 |
-
-
-
-{:.model-param}
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-17-re_human_phenotype_gene_clinical_pipeline_en.md b/docs/_posts/C-K-Loan/2023-06-17-re_human_phenotype_gene_clinical_pipeline_en.md
index 69ad33ba96..09fb6cc8b9 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-re_human_phenotype_gene_clinical_pipeline_en.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-re_human_phenotype_gene_clinical_pipeline_en.md
@@ -34,6 +34,7 @@ This pretrained pipeline is built on the top of [re_human_phenotype_gene_clinica
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
pipeline = PretrainedPipeline("re_human_phenotype_gene_clinical_pipeline", "en", "clinical/models")
@@ -56,59 +57,10 @@ nlu.load("en.relation.human_gene_clinical.pipeline").predict("""Bilateral colobo
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-pipeline = PretrainedPipeline("re_human_phenotype_gene_clinical_pipeline", "en", "clinical/models")
-
-
-pipeline.annotate("Bilateral colobomatous microphthalmia and developmental delay in whom genetic studies identified a homozygous TENM3")
-```
-```scala
-val pipeline = new PretrainedPipeline("re_human_phenotype_gene_clinical_pipeline", "en", "clinical/models")
-
-
-pipeline.annotate("Bilateral colobomatous microphthalmia and developmental delay in whom genetic studies identified a homozygous TENM3")
-```
-
-{:.nlu-block}
-```python
-import nlu
-nlu.load("en.relation.human_gene_clinical.pipeline").predict("""Bilateral colobomatous microphthalmia and developmental delay in whom genetic studies identified a homozygous TENM3""")
-```
-
-
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-pipeline = PretrainedPipeline("re_human_phenotype_gene_clinical_pipeline", "en", "clinical/models")
-
-
-pipeline.annotate("Bilateral colobomatous microphthalmia and developmental delay in whom genetic studies identified a homozygous TENM3")
-```
-```scala
-val pipeline = new PretrainedPipeline("re_human_phenotype_gene_clinical_pipeline", "en", "clinical/models")
-
-
-pipeline.annotate("Bilateral colobomatous microphthalmia and developmental delay in whom genetic studies identified a homozygous TENM3")
-```
-
-{:.nlu-block}
-```python
-import nlu
-nlu.load("en.relation.human_gene_clinical.pipeline").predict("""Bilateral colobomatous microphthalmia and developmental delay in whom genetic studies identified a homozygous TENM3""")
-```
-
## Results
```bash
-Results
-
-
-Results
-
-
+----+------------+-----------+-----------------+---------------+---------------------+-----------+-----------------+---------------+---------------------+--------------+
| | relation | entity1 | entity1_begin | entity1_end | chunk1 | entity2 | entity2_begin | entity2_end | chunk2 | confidence |
+====+============+===========+=================+===============+=====================+===========+=================+===============+=====================+==============+
@@ -116,12 +68,6 @@ Results
+----+------------+-----------+-----------------+---------------+---------------------+-----------+-----------------+---------------+---------------------+--------------+
| 1 | 1 | HP | 23 | 36 | microphthalmia | GENE | 110 | 114 | TENM3 | 0.999999 |
+----+------------+-----------+-----------------+---------------+---------------------+-----------+-----------------+---------------+---------------------+--------------+
-
-
-{:.model-param}
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-17-re_temporal_events_clinical_pipeline_en.md b/docs/_posts/C-K-Loan/2023-06-17-re_temporal_events_clinical_pipeline_en.md
index 05f208262e..a9a2b79b7e 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-re_temporal_events_clinical_pipeline_en.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-re_temporal_events_clinical_pipeline_en.md
@@ -34,6 +34,7 @@ This pretrained pipeline is built on the top of [re_temporal_events_clinical](ht
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
pipeline = PretrainedPipeline("re_temporal_events_clinical_pipeline", "en", "clinical/models")
@@ -56,59 +57,10 @@ nlu.load("en.relation.temporal_event_clinical.pipeline").predict("""The patient
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-pipeline = PretrainedPipeline("re_temporal_events_clinical_pipeline", "en", "clinical/models")
-
-
-pipeline.annotate("The patient is a 56-year-old right-handed female with longstanding intermittent right low back pain, who was involved in a motor vehicle accident in September of 2005. At that time, she did not notice any specific injury, but five days later, she started getting abnormal right low back pain.")
-```
-```scala
-val pipeline = new PretrainedPipeline("re_temporal_events_clinical_pipeline", "en", "clinical/models")
-
-
-pipeline.annotate("The patient is a 56-year-old right-handed female with longstanding intermittent right low back pain, who was involved in a motor vehicle accident in September of 2005. At that time, she did not notice any specific injury, but five days later, she started getting abnormal right low back pain.")
-```
-
-{:.nlu-block}
-```python
-import nlu
-nlu.load("en.relation.temporal_event_clinical.pipeline").predict("""The patient is a 56-year-old right-handed female with longstanding intermittent right low back pain, who was involved in a motor vehicle accident in September of 2005. At that time, she did not notice any specific injury, but five days later, she started getting abnormal right low back pain.""")
-```
-
-
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-pipeline = PretrainedPipeline("re_temporal_events_clinical_pipeline", "en", "clinical/models")
-
-
-pipeline.annotate("The patient is a 56-year-old right-handed female with longstanding intermittent right low back pain, who was involved in a motor vehicle accident in September of 2005. At that time, she did not notice any specific injury, but five days later, she started getting abnormal right low back pain.")
-```
-```scala
-val pipeline = new PretrainedPipeline("re_temporal_events_clinical_pipeline", "en", "clinical/models")
-
-
-pipeline.annotate("The patient is a 56-year-old right-handed female with longstanding intermittent right low back pain, who was involved in a motor vehicle accident in September of 2005. At that time, she did not notice any specific injury, but five days later, she started getting abnormal right low back pain.")
-```
-
-{:.nlu-block}
-```python
-import nlu
-nlu.load("en.relation.temporal_event_clinical.pipeline").predict("""The patient is a 56-year-old right-handed female with longstanding intermittent right low back pain, who was involved in a motor vehicle accident in September of 2005. At that time, she did not notice any specific injury, but five days later, she started getting abnormal right low back pain.""")
-```
-
## Results
```bash
-Results
-
-
-Results
-
-
+----+------------+------------+-----------------+---------------+--------------------------+-----------+-----------------+---------------+---------------------+--------------+
| | relation | entity1 | entity1_begin | entity1_end | chunk1 | entity2 | entity2_begin | entity2_end | chunk2 | confidence |
+====+============+============+=================+===============+==========================+===========+=================+===============+=====================+==============+
@@ -116,12 +68,6 @@ Results
+----+------------+------------+-----------------+---------------+--------------------------+-----------+-----------------+---------------+---------------------+--------------+
| 1 | OVERLAP | DATE | 171 | 179 | that time | PROBLEM | 201 | 219 | any specific injury | 0.956654 |
+----+------------+------------+-----------------+---------------+--------------------------+-----------+-----------------+---------------+---------------------+--------------+
-
-
-{:.model-param}
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-17-re_temporal_events_enriched_clinical_pipeline_en.md b/docs/_posts/C-K-Loan/2023-06-17-re_temporal_events_enriched_clinical_pipeline_en.md
index 31ecb0c719..9242e5d43e 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-re_temporal_events_enriched_clinical_pipeline_en.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-re_temporal_events_enriched_clinical_pipeline_en.md
@@ -34,6 +34,7 @@ This pretrained pipeline is built on the top of [re_temporal_events_enriched_cli
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
pipeline = PretrainedPipeline("re_temporal_events_enriched_clinical_pipeline", "en", "clinical/models")
@@ -56,59 +57,11 @@ nlu.load("en.relation.temproal_enriched.pipeline").predict("""The patient is a 5
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-pipeline = PretrainedPipeline("re_temporal_events_enriched_clinical_pipeline", "en", "clinical/models")
-
-
-pipeline.annotate("The patient is a 56-year-old right-handed female with longstanding intermittent right low back pain, who was involved in a motor vehicle accident in September of 2005. At that time, she did not notice any specific injury, but five days later, she started getting abnormal right low back pain.")
-```
-```scala
-val pipeline = new PretrainedPipeline("re_temporal_events_enriched_clinical_pipeline", "en", "clinical/models")
-
-
-pipeline.annotate("The patient is a 56-year-old right-handed female with longstanding intermittent right low back pain, who was involved in a motor vehicle accident in September of 2005. At that time, she did not notice any specific injury, but five days later, she started getting abnormal right low back pain.")
-```
-
-{:.nlu-block}
-```python
-import nlu
-nlu.load("en.relation.temproal_enriched.pipeline").predict("""The patient is a 56-year-old right-handed female with longstanding intermittent right low back pain, who was involved in a motor vehicle accident in September of 2005. At that time, she did not notice any specific injury, but five days later, she started getting abnormal right low back pain.""")
-```
-
-
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-pipeline = PretrainedPipeline("re_temporal_events_enriched_clinical_pipeline", "en", "clinical/models")
-pipeline.annotate("The patient is a 56-year-old right-handed female with longstanding intermittent right low back pain, who was involved in a motor vehicle accident in September of 2005. At that time, she did not notice any specific injury, but five days later, she started getting abnormal right low back pain.")
-```
-```scala
-val pipeline = new PretrainedPipeline("re_temporal_events_enriched_clinical_pipeline", "en", "clinical/models")
-
-
-pipeline.annotate("The patient is a 56-year-old right-handed female with longstanding intermittent right low back pain, who was involved in a motor vehicle accident in September of 2005. At that time, she did not notice any specific injury, but five days later, she started getting abnormal right low back pain.")
-```
-
-{:.nlu-block}
-```python
-import nlu
-nlu.load("en.relation.temproal_enriched.pipeline").predict("""The patient is a 56-year-old right-handed female with longstanding intermittent right low back pain, who was involved in a motor vehicle accident in September of 2005. At that time, she did not notice any specific injury, but five days later, she started getting abnormal right low back pain.""")
-```
-
-
## Results
```bash
-Results
-
-
-Results
-
-
+----+------------+-----------+-----------------+---------------+-----------------------------------------------+------------+-----------------+---------------+--------------------------+--------------+
| | relation | entity1 | entity1_begin | entity1_end | chunk1 | entity2 | entity2_begin | entity2_end | chunk2 | confidence |
+====+============+===========+=================+===============+===============================================+============+=================+===============+==========================+==============+
@@ -116,12 +69,6 @@ Results
+----+------------+-----------+-----------------+---------------+-----------------------------------------------+------------+-----------------+---------------+--------------------------+--------------+
| 1 | AFTER | DATE | 171 | 179 | that time | PROBLEM | 201 | 219 | any specific injury | 0.577288 |
+----+------------+-----------+-----------------+---------------+-----------------------------------------------+------------+-----------------+---------------+--------------------------+--------------+
-
-
-{:.model-param}
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-17-re_test_problem_finding_pipeline_en.md b/docs/_posts/C-K-Loan/2023-06-17-re_test_problem_finding_pipeline_en.md
index 4ea67c9d13..7cee5850b4 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-re_test_problem_finding_pipeline_en.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-re_test_problem_finding_pipeline_en.md
@@ -59,74 +59,13 @@ nlu.load("en.relation.test_problem_finding.pipeline").predict("""Targeted biopsy
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("re_test_problem_finding_pipeline", "en", "clinical/models")
-
-pipeline.fullAnnotate("Targeted biopsy of this lesion for histological correlation should be considered.")
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("re_test_problem_finding_pipeline", "en", "clinical/models")
-
-pipeline.fullAnnotate("Targeted biopsy of this lesion for histological correlation should be considered.")
-```
-
-{:.nlu-block}
-```python
-import nlu
-nlu.load("en.relation.test_problem_finding.pipeline").predict("""Targeted biopsy of this lesion for histological correlation should be considered.""")
-```
-
-
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("re_test_problem_finding_pipeline", "en", "clinical/models")
-
-pipeline.fullAnnotate("Targeted biopsy of this lesion for histological correlation should be considered.")
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("re_test_problem_finding_pipeline", "en", "clinical/models")
-
-pipeline.fullAnnotate("Targeted biopsy of this lesion for histological correlation should be considered.")
-```
-
-{:.nlu-block}
-```python
-import nlu
-nlu.load("en.relation.test_problem_finding.pipeline").predict("""Targeted biopsy of this lesion for histological correlation should be considered.""")
-```
-
## Results
```bash
-Results
-
-
-Results
-
-
-
| index | relations | entity1 | chunk1 | entity2 | chunk2 |
|-------|--------------|--------------|---------------------|--------------|---------|
| 0 | 1 | PROCEDURE | biopsy | SYMPTOM | lesion |
-
-
-
-{:.model-param}
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-17-re_test_result_date_pipeline_en.md b/docs/_posts/C-K-Loan/2023-06-17-re_test_result_date_pipeline_en.md
index 8e1e701ac1..ce2856208f 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-re_test_result_date_pipeline_en.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-re_test_result_date_pipeline_en.md
@@ -59,76 +59,16 @@ nlu.load("en.relation.date_test_result.pipeline").predict("""He was advised ches
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("re_test_result_date_pipeline", "en", "clinical/models")
-
-pipeline.fullAnnotate("He was advised chest X-ray or CT scan after checking his SpO2 which was <= 93%")
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("re_test_result_date_pipeline", "en", "clinical/models")
-
-pipeline.fullAnnotate("He was advised chest X-ray or CT scan after checking his SpO2 which was <= 93%")
-```
-
-{:.nlu-block}
-```python
-import nlu
-nlu.load("en.relation.date_test_result.pipeline").predict("""He was advised chest X-ray or CT scan after checking his SpO2 which was <= 93%""")
-```
-
-
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("re_test_result_date_pipeline", "en", "clinical/models")
-
-pipeline.fullAnnotate("He was advised chest X-ray or CT scan after checking his SpO2 which was <= 93%")
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-val pipeline = new PretrainedPipeline("re_test_result_date_pipeline", "en", "clinical/models")
-
-pipeline.fullAnnotate("He was advised chest X-ray or CT scan after checking his SpO2 which was <= 93%")
-```
-
-{:.nlu-block}
-```python
-import nlu
-nlu.load("en.relation.date_test_result.pipeline").predict("""He was advised chest X-ray or CT scan after checking his SpO2 which was <= 93%""")
-```
-
## Results
```bash
-Results
-
-
-Results
-
-
-
| index | relations | entity1 | chunk1 | entity2 | chunk2 |
|-------|--------------|--------------|---------------------|--------------|---------|
| 0 | O | TEST | chest X-ray | MEASUREMENTS | 93% |
| 1 | O | TEST | CT scan | MEASUREMENTS | 93% |
| 2 | is_result_of | TEST | SpO2 | MEASUREMENTS | 93% |
-
-
-
-{:.model-param}
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-17-recognize_entities_posology_en.md b/docs/_posts/C-K-Loan/2023-06-17-recognize_entities_posology_en.md
index 63aef55635..5162541c17 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-recognize_entities_posology_en.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-recognize_entities_posology_en.md
@@ -34,6 +34,7 @@ A pipeline with `ner_posology`. It will only extract medication entities.
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
pipeline = PretrainedPipeline('recognize_entities_posology', 'en', 'clinical/models')
@@ -61,67 +62,11 @@ She was seen by the endocrinology service and discharged on 40 units of insulin
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-pipeline = PretrainedPipeline('recognize_entities_posology', 'en', 'clinical/models')
-
-res = pipeline.fullAnnotate("""A 28-year-old female with a history of gestational diabetes mellitus, used to take metformin 1000 mg two times a day, presented with a one-week history of polyuria , polydipsia , poor appetite , and vomiting .
-She was seen by the endocrinology service and discharged on 40 units of insulin glargine at night, 12 units of insulin lispro with meals.
-""")
-```
-```scala
-val era_pipeline = new PretrainedPipeline("recognize_entities_posology", "en", "clinical/models")
-
-val result = era_pipeline.fullAnnotate("""A 28-year-old female with a history of gestational diabetes mellitus, used to take metformin 1000 mg two times a day, presented with a one-week history of polyuria , polydipsia , poor appetite , and vomiting .
-She was seen by the endocrinology service and discharged on 40 units of insulin glargine at night, 12 units of insulin lispro with meals.
-""")(0)
-```
-
-{:.nlu-block}
-```python
-import nlu
-nlu.load("en.recognize_entities.posology").predict("""A 28-year-old female with a history of gestational diabetes mellitus, used to take metformin 1000 mg two times a day, presented with a one-week history of polyuria , polydipsia , poor appetite , and vomiting .
-She was seen by the endocrinology service and discharged on 40 units of insulin glargine at night, 12 units of insulin lispro with meals.
-""")
-```
-
-
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-pipeline = PretrainedPipeline('recognize_entities_posology', 'en', 'clinical/models')
-
-res = pipeline.fullAnnotate("""A 28-year-old female with a history of gestational diabetes mellitus, used to take metformin 1000 mg two times a day, presented with a one-week history of polyuria , polydipsia , poor appetite , and vomiting .
-She was seen by the endocrinology service and discharged on 40 units of insulin glargine at night, 12 units of insulin lispro with meals.
-""")
-```
-```scala
-val era_pipeline = new PretrainedPipeline("recognize_entities_posology", "en", "clinical/models")
-val result = era_pipeline.fullAnnotate("""A 28-year-old female with a history of gestational diabetes mellitus, used to take metformin 1000 mg two times a day, presented with a one-week history of polyuria , polydipsia , poor appetite , and vomiting .
-She was seen by the endocrinology service and discharged on 40 units of insulin glargine at night, 12 units of insulin lispro with meals.
-""")(0)
-```
-
-{:.nlu-block}
-```python
-import nlu
-nlu.load("en.recognize_entities.posology").predict("""A 28-year-old female with a history of gestational diabetes mellitus, used to take metformin 1000 mg two times a day, presented with a one-week history of polyuria , polydipsia , poor appetite , and vomiting .
-She was seen by the endocrinology service and discharged on 40 units of insulin glargine at night, 12 units of insulin lispro with meals.
-""")
-```
-
## Results
```bash
-Results
-
-
-Results
-
-
| | chunk | begin | end | entity |
|---:|:-----------------|--------:|------:|:----------|
| 0 | metformin | 83 | 91 | DRUG |
@@ -133,13 +78,6 @@ Results
| 6 | 12 units | 309 | 316 | DOSAGE |
| 7 | insulin lispro | 321 | 334 | DRUG |
| 8 | with meals | 336 | 345 | FREQUENCY |
-
-
-
-{:.model-param}
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-17-rxnorm_mesh_mapping_en.md b/docs/_posts/C-K-Loan/2023-06-17-rxnorm_mesh_mapping_en.md
index 89ed6ee3bf..060aca2e3e 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-rxnorm_mesh_mapping_en.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-rxnorm_mesh_mapping_en.md
@@ -34,6 +34,7 @@ This pretrained pipeline maps RxNorm codes to MeSH codes without using any text
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
pipeline = PretrainedPipeline("rxnorm_mesh_mapping","en","clinical/models")
@@ -54,55 +55,10 @@ nlu.load("en.resolve.rxnorm.mesh").predict("""1191 6809 47613""")
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-pipeline = PretrainedPipeline("rxnorm_mesh_mapping","en","clinical/models")
-pipeline.annotate("1191 6809 47613")
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-val pipeline = new PretrainedPipeline("rxnorm_mesh_mapping","en","clinical/models")
-val result = pipeline.annotate("1191 6809 47613")
-```
-
-{:.nlu-block}
-```python
-import nlu
-nlu.load("en.resolve.rxnorm.mesh").predict("""1191 6809 47613""")
-```
-
-
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-pipeline = PretrainedPipeline("rxnorm_mesh_mapping","en","clinical/models")
-pipeline.annotate("1191 6809 47613")
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-val pipeline = new PretrainedPipeline("rxnorm_mesh_mapping","en","clinical/models")
-val result = pipeline.annotate("1191 6809 47613")
-```
-
-{:.nlu-block}
-```python
-import nlu
-nlu.load("en.resolve.rxnorm.mesh").predict("""1191 6809 47613""")
-```
-
## Results
```bash
-Results
-
-
-Results
-
-
{'rxnorm': ['1191', '6809', '47613'],
'mesh': ['D001241', 'D008687', 'D019355']}
@@ -120,12 +76,6 @@ Note:
| D001241 | Aspirin |
| D008687 | Metformin |
| D019355 | Calcium Citrate |
-
-
-{:.model-param}
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-17-rxnorm_ndc_mapping_en.md b/docs/_posts/C-K-Loan/2023-06-17-rxnorm_ndc_mapping_en.md
index b6c86981ef..e38f32c3f8 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-rxnorm_ndc_mapping_en.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-rxnorm_ndc_mapping_en.md
@@ -34,6 +34,7 @@ This pretrained pipeline maps RXNORM codes to NDC codes without using any text d
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -58,75 +59,14 @@ nlu.load("en.map_entity.rxnorm_to_ndc.pipe").predict("""Put your text here.""")
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("rxnorm_ndc_mapping", "en", "clinical/models")
-
-result = pipeline.fullAnnotate(1652674 259934)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("rxnorm_ndc_mapping", "en", "clinical/models")
-
-val result = pipeline.fullAnnotate(1652674 259934)
-```
-
-{:.nlu-block}
-```python
-import nlu
-nlu.load("en.map_entity.rxnorm_to_ndc.pipe").predict("""Put your text here.""")
-```
-
-
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("rxnorm_ndc_mapping", "en", "clinical/models")
-
-result = pipeline.fullAnnotate(1652674 259934)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("rxnorm_ndc_mapping", "en", "clinical/models")
-
-val result = pipeline.fullAnnotate(1652674 259934)
-```
-
-{:.nlu-block}
-```python
-import nlu
-nlu.load("en.map_entity.rxnorm_to_ndc.pipe").predict("""Put your text here.""")
-```
-
## Results
```bash
-Results
-
-
-Results
-
-
-
{'document': ['1652674 259934'],
'package_ndc': ['62135-0625-60', '13349-0010-39'],
'product_ndc': ['46708-0499', '13349-0010'],
'rxnorm_code': ['1652674', '259934']}
-
-
-
-{:.model-param}
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-17-rxnorm_umls_mapping_en.md b/docs/_posts/C-K-Loan/2023-06-17-rxnorm_umls_mapping_en.md
index 8953c68f21..c5bc8cd56b 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-rxnorm_umls_mapping_en.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-rxnorm_umls_mapping_en.md
@@ -34,6 +34,7 @@ This pretrained pipeline is built on the top of `rxnorm_umls_mapper` model.
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -58,74 +59,13 @@ nlu.load("en.rxnorm.umls.mapping").predict("""Put your text here.""")
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("rxnorm_umls_mapping", "en", "clinical/models")
-
-result = pipeline.fullAnnotate(1161611 315677)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("rxnorm_umls_mapping", "en", "clinical/models")
-
-val result = pipeline.fullAnnotate(1161611 315677)
-```
-
-{:.nlu-block}
-```python
-import nlu
-nlu.load("en.rxnorm.umls.mapping").predict("""Put your text here.""")
-```
-
-
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("rxnorm_umls_mapping", "en", "clinical/models")
-
-result = pipeline.fullAnnotate(1161611 315677)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("rxnorm_umls_mapping", "en", "clinical/models")
-
-val result = pipeline.fullAnnotate(1161611 315677)
-```
-
-{:.nlu-block}
-```python
-import nlu
-nlu.load("en.rxnorm.umls.mapping").predict("""Put your text here.""")
-```
-
## Results
```bash
-Results
-
-
-Results
-
-
-
| | rxnorm_code | umls_code |
|---:|:-----------------|:--------------------|
| 0 | 1161611 | 315677 | C3215948 | C0984912 |
-
-
-
-{:.model-param}
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-17-snomed_icd10cm_mapping_en.md b/docs/_posts/C-K-Loan/2023-06-17-snomed_icd10cm_mapping_en.md
index 4998e9bae6..a518dc2c87 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-snomed_icd10cm_mapping_en.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-snomed_icd10cm_mapping_en.md
@@ -34,6 +34,7 @@ This pretrained pipeline is built on the top of `snomed_icd10cm_mapper` model.
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -58,74 +59,13 @@ nlu.load("en.map_entity.snomed_to_icd10cm.pipe").predict("""Put your text here."
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("snomed_icd10cm_mapping", "en", "clinical/models")
-
-result = pipeline.fullAnnotate(128041000119107 292278006 293072005)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("snomed_icd10cm_mapping", "en", "clinical/models")
-
-val result = pipeline.fullAnnotate(128041000119107 292278006 293072005)
-```
-
-{:.nlu-block}
-```python
-import nlu
-nlu.load("en.map_entity.snomed_to_icd10cm.pipe").predict("""Put your text here.""")
-```
-
-
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("snomed_icd10cm_mapping", "en", "clinical/models")
-
-result = pipeline.fullAnnotate(128041000119107 292278006 293072005)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("snomed_icd10cm_mapping", "en", "clinical/models")
-
-val result = pipeline.fullAnnotate(128041000119107 292278006 293072005)
-```
-
-{:.nlu-block}
-```python
-import nlu
-nlu.load("en.map_entity.snomed_to_icd10cm.pipe").predict("""Put your text here.""")
-```
-
## Results
```bash
-Results
-
-
-Results
-
-
-
| | snomed_code | icd10cm_code |
|---:|:----------------------------------------|:---------------------------|
| 0 | 128041000119107 | 292278006 | 293072005 | K22.70 | T43.595 | T37.1X5 |
-
-
-
-{:.model-param}
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-17-snomed_icdo_mapping_en.md b/docs/_posts/C-K-Loan/2023-06-17-snomed_icdo_mapping_en.md
index 5ba38ca7f8..def188ec5c 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-snomed_icdo_mapping_en.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-snomed_icdo_mapping_en.md
@@ -34,6 +34,7 @@ This pretrained pipeline is built on the top of `snomed_icdo_mapper` model.
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -58,74 +59,14 @@ nlu.load("en.map_entity.snomed_to_icdo.pipe").predict("""Put your text here.""")
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("snomed_icdo_mapping", "en", "clinical/models")
-
-result = pipeline.fullAnnotate(10376009 2026006 26638004)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("snomed_icdo_mapping", "en", "clinical/models")
-
-val result = pipeline.fullAnnotate(10376009 2026006 26638004)
-```
-
-{:.nlu-block}
-```python
-import nlu
-nlu.load("en.map_entity.snomed_to_icdo.pipe").predict("""Put your text here.""")
-```
-
-
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-pipeline = PretrainedPipeline("snomed_icdo_mapping", "en", "clinical/models")
-
-result = pipeline.fullAnnotate(10376009 2026006 26638004)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("snomed_icdo_mapping", "en", "clinical/models")
-
-val result = pipeline.fullAnnotate(10376009 2026006 26638004)
-```
-
-{:.nlu-block}
-```python
-import nlu
-nlu.load("en.map_entity.snomed_to_icdo.pipe").predict("""Put your text here.""")
-```
-
## Results
```bash
-Results
-
-
-Results
-
-
-
| | snomed_code | icdo_code |
|---:|:------------------------------|:-------------------------|
| 0 | 10376009 | 2026006 | 26638004 | 8050/2 | 9014/0 | 8322/0 |
-
-
-
-{:.model-param}
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-17-snomed_umls_mapping_en.md b/docs/_posts/C-K-Loan/2023-06-17-snomed_umls_mapping_en.md
index e099a20db9..5fc8932f9b 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-snomed_umls_mapping_en.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-snomed_umls_mapping_en.md
@@ -34,32 +34,7 @@ This pretrained pipeline is built on the top of `snomed_umls_mapper` model.
{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("snomed_umls_mapping", "en", "clinical/models")
-
-result = pipeline.fullAnnotate(733187009 449433008 51264003)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("snomed_umls_mapping", "en", "clinical/models")
-
-val result = pipeline.fullAnnotate(733187009 449433008 51264003)
-```
-
-{:.nlu-block}
-```python
-import nlu
-nlu.load("en.snomed.umls.mapping").predict("""Put your text here.""")
-```
-
-
-
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -75,57 +50,21 @@ val pipeline = new PretrainedPipeline("snomed_umls_mapping", "en", "clinical/mod
val result = pipeline.fullAnnotate(733187009 449433008 51264003)
```
-{:.nlu-block}
-```python
-import nlu
-nlu.load("en.snomed.umls.mapping").predict("""Put your text here.""")
-```
-
-
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("snomed_umls_mapping", "en", "clinical/models")
-
-result = pipeline.fullAnnotate(733187009 449433008 51264003)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("snomed_umls_mapping", "en", "clinical/models")
-
-val result = pipeline.fullAnnotate(733187009 449433008 51264003)
-```
{:.nlu-block}
```python
import nlu
nlu.load("en.snomed.umls.mapping").predict("""Put your text here.""")
```
+
## Results
```bash
-Results
-
-
-Results
-
-
-
| | snomed_code | umls_code |
|---:|:---------------------------------|:-------------------------------|
| 0 | 733187009 | 449433008 | 51264003 | C4546029 | C3164619 | C0271267 |
-
-
-
-{:.model-param}
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-17-spellcheck_clinical_pipeline_en.md b/docs/_posts/C-K-Loan/2023-06-17-spellcheck_clinical_pipeline_en.md
index d4cc98649c..121bd2ea00 100644
--- a/docs/_posts/C-K-Loan/2023-06-17-spellcheck_clinical_pipeline_en.md
+++ b/docs/_posts/C-K-Loan/2023-06-17-spellcheck_clinical_pipeline_en.md
@@ -34,6 +34,7 @@ This pretrained medical spellchecker pipeline is built on the top of `spellcheck
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -66,44 +67,11 @@ nlu.load("en.spell.clinical.pipeline").predict("""Witth the hell of phisical ter
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("spellcheck_clinical_pipeline", "en", "clinical/models")
-example = ["Witth the hell of phisical terapy the patient was imbulated and on postoperative, the impatient tolerating a post curgical soft diet.",
- "With paint wel controlled on orall pain medications, she was discharged too reihabilitation facilitay.",
- "Abdomen is sort, nontender, and nonintended.",
- "Patient not showing pain or any wealth problems.",
- "No cute distress"]
-pipeline.fullAnnotate(example)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("spellcheck_clinical_pipeline", "en", "clinical/models")
-val example = Array("Witth the hell of phisical terapy the patient was imbulated and on postoperative, the impatient tolerating a post curgical soft diet.",
- "With paint wel controlled on orall pain medications, she was discharged too reihabilitation facilitay.",
- "Abdomen is sort, nontender, and nonintended.",
- "Patient not showing pain or any wealth problems.",
- "No cute distress")
-pipeline.fullAnnotate(example)
-```
-{:.nlu-block}
-```python
-import nlu
-nlu.load("en.spell.clinical.pipeline").predict("""Witth the hell of phisical terapy the patient was imbulated and on postoperative, the impatient tolerating a post curgical soft diet.""")
-```
-
## Results
```bash
-Results
-
-
[{'checked': ['With','the','cell','of','physical','therapy','the','patient','was','ambulated','and','on','postoperative',',','the','patient','tolerating','a','post','surgical','soft','diet','.'],
'document': ['Witth the hell of phisical terapy the patient was imbulated and on postoperative, the impatient tolerating a post curgical soft diet.'],
'token': ['Witth','the','hell','of','phisical','terapy','the','patient','was','imbulated','and','on','postoperative',',','the','impatient','tolerating','a','post','curgical','soft','diet','.']},
@@ -123,9 +91,6 @@ Results
{'checked': ['No', 'acute', 'distress'],
'document': ['No cute distress'],
'token': ['No', 'cute', 'distress']}]
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-19-ner_profiling_clinical_en.md b/docs/_posts/C-K-Loan/2023-06-19-ner_profiling_clinical_en.md
index e7e18ca88f..d71a64fdf8 100644
--- a/docs/_posts/C-K-Loan/2023-06-19-ner_profiling_clinical_en.md
+++ b/docs/_posts/C-K-Loan/2023-06-19-ner_profiling_clinical_en.md
@@ -38,6 +38,7 @@ Here are the NER models that this pretrained pipeline includes:
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -67,38 +68,11 @@ nlu.load("en.med_ner.profiling_clinical").predict("""A 28-year-old female with a
```
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-ner_profiling_pipeline = PretrainedPipeline("ner_profiling_clinical", "en", "clinical/models")
-
-result = ner_profiling_pipeline.annotate("""A 28-year-old female with a history of gestational diabetes mellitus diagnosed eight years prior to presentation and subsequent type two diabetes mellitus ( T2DM ), one prior episode of HTG-induced pancreatitis three years prior to presentation , associated with an acute hepatitis , and obesity with a body mass index ( BMI ) of 33.5 kg/m2 , presented with a one-week history of polyuria , polydipsia , poor appetite , and vomiting.""")
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val ner_profiling_pipeline = PretrainedPipeline("ner_profiling_clinical", "en", "clinical/models")
-
-val result = ner_profiling_pipeline.annotate("""A 28-year-old female with a history of gestational diabetes mellitus diagnosed eight years prior to presentation and subsequent type two diabetes mellitus ( T2DM ), one prior episode of HTG-induced pancreatitis three years prior to presentation , associated with an acute hepatitis , and obesity with a body mass index ( BMI ) of 33.5 kg/m2 , presented with a one-week history of polyuria , polydipsia , poor appetite , and vomiting.""")
-```
-
-{:.nlu-block}
-```python
-import nlu
-nlu.load("en.med_ner.profiling_clinical").predict("""A 28-year-old female with a history of gestational diabetes mellitus diagnosed eight years prior to presentation and subsequent type two diabetes mellitus ( T2DM ), one prior episode of HTG-induced pancreatitis three years prior to presentation , associated with an acute hepatitis , and obesity with a body mass index ( BMI ) of 33.5 kg/m2 , presented with a one-week history of polyuria , polydipsia , poor appetite , and vomiting.""")
-```
-
## Results
```bash
-Results
-
-
-
******************** ner_jsl Model Results ********************
[('28-year-old', 'Age'), ('female', 'Gender'), ('gestational diabetes mellitus', 'Diabetes'), ('eight years prior', 'RelativeDate'), ('subsequent', 'Modifier'), ('type two diabetes mellitus', 'Diabetes'), ('T2DM', 'Diabetes'), ('HTG-induced pancreatitis', 'Disease_Syndrome_Disorder'), ('three years prior', 'RelativeDate'), ('acute', 'Modifier'), ('hepatitis', 'Communicable_Disease'), ('obesity', 'Obesity'), ('body mass index', 'Symptom'), ('33.5 kg/m2', 'Weight'), ('one-week', 'Duration'), ('polyuria', 'Symptom'), ('polydipsia', 'Symptom'), ('poor appetite', 'Symptom'), ('vomiting', 'Symptom')]
@@ -122,12 +96,6 @@ Results
******************** ner_medmentions_coarse Model Results ********************
[('female', 'Organism_Attribute'), ('diabetes mellitus', 'Disease_or_Syndrome'), ('diabetes mellitus', 'Disease_or_Syndrome'), ('T2DM', 'Disease_or_Syndrome'), ('HTG-induced pancreatitis', 'Disease_or_Syndrome'), ('associated with', 'Qualitative_Concept'), ('acute hepatitis', 'Disease_or_Syndrome'), ('obesity', 'Disease_or_Syndrome'), ('body mass index', 'Clinical_Attribute'), ('BMI', 'Clinical_Attribute'), ('polyuria', 'Sign_or_Symptom'), ('polydipsia', 'Sign_or_Symptom'), ('poor appetite', 'Sign_or_Symptom'), ('vomiting', 'Sign_or_Symptom')]
-
-...
-
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-22-clinical_deidentification_ar.md b/docs/_posts/C-K-Loan/2023-06-22-clinical_deidentification_ar.md
index 0e7a95a6fa..7cfe8eeb09 100644
--- a/docs/_posts/C-K-Loan/2023-06-22-clinical_deidentification_ar.md
+++ b/docs/_posts/C-K-Loan/2023-06-22-clinical_deidentification_ar.md
@@ -34,92 +34,7 @@ This pipeline can be used to deidentify Arabic PHI information from medical text
{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-deid_pipeline = PretrainedPipeline("clinical_deidentification", "ar", "clinical/models")
-
-text = '''
-
-ملاحظات سريرية - مريض الربو:
-
-التاريخ: 30 مايو 2023
-اسم المريضة: ليلى حسن
-
-تم تسجيل المريض في النظام باستخدام رقم الضمان الاجتماعي 123456789012.
-
-العنوان: شارع المعرفة، مبنى رقم 789، حي الأمانة، جدة
-الرمز البريدي: 54321
-البلد: المملكة العربية السعودية
-اسم المستشفى: مستشفى النور
-اسم الطبيب: د. أميرة أحمد
-
-تفاصيل الحالة:
-المريضة ليلى حسن، البالغة من العمر 35 عامًا، تعاني من مرض الربو المزمن. تشكو من ضيق التنفس والسعال المتكرر والشهيق الشديد. تم تشخيصها بمرض الربو بناءً على تاريخها الطبي واختبارات وظائف الرئة.
-
-الخطة:
-
-تم وصف مضادات الالتهاب غير الستيرويدية والموسعات القصبية لتحسين التنفس وتقليل التهيج.
-يجب على المريضة حمل معها جهاز الاستنشاق في حالة حدوث نوبة ربو حادة.
-يتعين على المريضة تجنب التحسس من العوامل المسببة للربو، مثل الدخان والغبار والحيوانات الأليفة.
-يجب مراقبة وظائف الرئة بانتظام ومتابعة التعليمات الطبية المتعلقة بمرض الربو.
-تعليم المريضة بشأن كيفية استخدام جهاز الاستنشاق بشكل صحيح وتقنيات التنفس الصحيح
-
-'''
-result = deid_pipeline.annotate(text)
-print("\nMasked with entity labels")
-print("-"*30)
-print("\n".join(result['masked_with_entity']))
-print("\nMasked with chars")
-print("-"*30)
-print("\n".join(result['masked_with_chars']))
-print("\nMasked with fixed length chars")
-print("-"*30)
-print("\n".join(result['masked_fixed_length_chars']))
-print("\nObfuscated")
-print("-"*30)
-print("\n".join(result['obfuscated']))
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val deid_pipeline = new PretrainedPipeline("clinical_deidentification","ar","clinical/models")
-
-val text = '''
-
-ملاحظات سريرية - مريض الربو:
-
-التاريخ: 30 مايو 2023
-اسم المريضة: ليلى حسن
-
-تم تسجيل المريض في النظام باستخدام رقم الضمان الاجتماعي 123456789012.
-
-العنوان: شارع المعرفة، مبنى رقم 789، حي الأمانة، جدة
-الرمز البريدي: 54321
-البلد: المملكة العربية السعودية
-اسم المستشفى: مستشفى النور
-اسم الطبيب: د. أميرة أحمد
-
-تفاصيل الحالة:
-المريضة ليلى حسن، البالغة من العمر 35 عامًا، تعاني من مرض الربو المزمن. تشكو من ضيق التنفس والسعال المتكرر والشهيق الشديد. تم تشخيصها بمرض الربو بناءً على تاريخها الطبي واختبارات وظائف الرئة.
-
-الخطة:
-
-تم وصف مضادات الالتهاب غير الستيرويدية والموسعات القصبية لتحسين التنفس وتقليل التهيج.
-يجب على المريضة حمل معها جهاز الاستنشاق في حالة حدوث نوبة ربو حادة.
-يتعين على المريضة تجنب التحسس من العوامل المسببة للربو، مثل الدخان والغبار والحيوانات الأليفة.
-يجب مراقبة وظائف الرئة بانتظام ومتابعة التعليمات الطبية المتعلقة بمرض الربو.
-تعليم المريضة بشأن كيفية استخدام جهاز الاستنشاق بشكل صحيح وتقنيات التنفس الصحيح
-
-'''
-
-val result = deid_pipeline.annotate(text)
-```
-
-
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -207,10 +122,6 @@ val result = deid_pipeline.annotate(text)
## Results
```bash
-Results
-
-
-
Masked with entity labels
------------------------------
ملاحظات سريرية - مريض الربو:
@@ -306,9 +217,6 @@ Obfuscated
يتعين على المريضة تجنب التحسس من العوامل المسببة للربو، مثل الدخان والغبار والحيوانات الأليفة.
يجب مراقبة وظائف الرئة بانتظام ومتابعة التعليمات الطبية المتعلقة بمرض الربو.
تعليم المريضة بشأن كيفية استخدام جهاز الاستنشاق بشكل صحيح وتقنيات التنفس الصحيح
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-22-cvx_resolver_pipeline_en.md b/docs/_posts/C-K-Loan/2023-06-22-cvx_resolver_pipeline_en.md
index e8b6887790..1ec0b9f6b1 100644
--- a/docs/_posts/C-K-Loan/2023-06-22-cvx_resolver_pipeline_en.md
+++ b/docs/_posts/C-K-Loan/2023-06-22-cvx_resolver_pipeline_en.md
@@ -34,6 +34,7 @@ This pretrained pipeline maps entities with their corresponding CVX codes. You
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -60,38 +61,10 @@ nlu.load("en.resolve.cvx_pipeline").predict("""The patient has a history of infl
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-resolver_pipeline = PretrainedPipeline("cvx_resolver_pipeline", "en", "clinical/models")
-
-text= "The patient has a history of influenza vaccine, tetanus and DTaP"
-
-result = resolver_pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val resolver_pipeline = new PretrainedPipeline("cvx_resolver_pipeline", "en", "clinical/models")
-
-val result = resolver_pipeline.fullAnnotate("The patient has a history of influenza vaccine, tetanus and DTaP")
-```
-
-{:.nlu-block}
-```python
-import nlu
-nlu.load("en.resolve.cvx_pipeline").predict("""The patient has a history of influenza vaccine, tetanus and DTaP""")
-```
-
## Results
```bash
-Results
-
-
+-----------------+---------+--------+
|chunk |ner_chunk|cvx_code|
+-----------------+---------+--------+
@@ -99,9 +72,6 @@ Results
|tetanus |Vaccine |35 |
|DTaP |Vaccine |20 |
+-----------------+---------+--------+
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-22-icd10cm_resolver_pipeline_en.md b/docs/_posts/C-K-Loan/2023-06-22-icd10cm_resolver_pipeline_en.md
index 47e7287927..4d3bb161b6 100644
--- a/docs/_posts/C-K-Loan/2023-06-22-icd10cm_resolver_pipeline_en.md
+++ b/docs/_posts/C-K-Loan/2023-06-22-icd10cm_resolver_pipeline_en.md
@@ -34,6 +34,7 @@ This pretrained pipeline maps entities with their corresponding ICD-10-CM codes.
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -60,38 +61,10 @@ nlu.load("en.icd10cm_resolver.pipeline").predict("""A 28-year-old female with a
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-resolver_pipeline = PretrainedPipeline("icd10cm_resolver_pipeline", "en", "clinical/models")
-
-text = """A 28-year-old female with a history of gestational diabetes mellitus diagnosed eight years and anisakiasis. Also, it was reported that fetal and neonatal hemorrhage"""
-
-result = resolver_pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val resolver_pipeline = new PretrainedPipeline("icd10cm_resolver_pipeline", "en", "clinical/models")
-
-val result = resolver_pipeline.fullAnnotate("""A 28-year-old female with a history of gestational diabetes mellitus diagnosed eight years and anisakiasis. Also, it was reported that fetal and neonatal hemorrhage""")
-```
-
-{:.nlu-block}
-```python
-import nlu
-nlu.load("en.icd10cm_resolver.pipeline").predict("""A 28-year-old female with a history of gestational diabetes mellitus diagnosed eight years and anisakiasis. Also, it was reported that fetal and neonatal hemorrhage""")
-```
-
## Results
```bash
-Results
-
-
+-----------------------------+---------+------------+
|chunk |ner_chunk|icd10cm_code|
+-----------------------------+---------+------------+
@@ -99,9 +72,6 @@ Results
|anisakiasis |PROBLEM |B81.0 |
|fetal and neonatal hemorrhage|PROBLEM |P545 |
+-----------------------------+---------+------------+
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-22-icd9_resolver_pipeline_en.md b/docs/_posts/C-K-Loan/2023-06-22-icd9_resolver_pipeline_en.md
index f79d49e719..e6cd6988bf 100644
--- a/docs/_posts/C-K-Loan/2023-06-22-icd9_resolver_pipeline_en.md
+++ b/docs/_posts/C-K-Loan/2023-06-22-icd9_resolver_pipeline_en.md
@@ -34,6 +34,7 @@ This pretrained pipeline maps entities with their corresponding ICD-9-CM codes.
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -60,39 +61,10 @@ nlu.load("en.resolve.icd9.pipeline").predict("""Put your text here.""")
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("icd9_resolver_pipeline", "en", "clinical/models")
-
-text= A 28-year-old female with a history of gestational diabetes mellitus diagnosed eight years and anisakiasis. Also, it was reported that fetal and neonatal hemorrhage
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("icd9_resolver_pipeline", "en", "clinical/models")
-
-val result = pipeline.fullAnnotate(A 28-year-old female with a history of gestational diabetes mellitus diagnosed eight years and anisakiasis. Also, it was reported that fetal and neonatal hemorrhage)
-```
-
-{:.nlu-block}
-```python
-import nlu
-nlu.load("en.resolve.icd9.pipeline").predict("""Put your text here.""")
-```
-
## Results
```bash
-Results
-
-
-
+-----------------------------+---------+---------+
|chunk |ner_chunk|icd9_code|
+-----------------------------+---------+---------+
@@ -100,10 +72,6 @@ Results
|anisakiasis |PROBLEM |127.1 |
|fetal and neonatal hemorrhage|PROBLEM |772 |
+-----------------------------+---------+---------+
-
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-22-rct_binary_classifier_biobert_pipeline_en.md b/docs/_posts/C-K-Loan/2023-06-22-rct_binary_classifier_biobert_pipeline_en.md
index aa79348892..273549e252 100644
--- a/docs/_posts/C-K-Loan/2023-06-22-rct_binary_classifier_biobert_pipeline_en.md
+++ b/docs/_posts/C-K-Loan/2023-06-22-rct_binary_classifier_biobert_pipeline_en.md
@@ -60,49 +60,16 @@ nlu.load("en.classify.rct_binary_biobert.pipeline").predict("""Abstract:Based on
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-
-pipeline = PretrainedPipeline("rct_binary_classifier_biobert_pipeline", "en", "clinical/models")
-
-result = pipeline.annotate("""Abstract:Based on the American Society of Anesthesiologists' Practice Guidelines for Sedation and Analgesia by Non-Anesthesiologists (ASA-SED), a sedation training course aimed at improving medical safety was developed by the Japanese Association for Medical Simulation in 2011. This study evaluated the effect of debriefing on participants' perceptions of the essential points of the ASA-SED. A total of 38 novice doctors participated in the sedation training course during the research period. Of these doctors, 18 participated in the debriefing group, and 20 participated in non-debriefing group. Scoring of participants' guideline perceptions was conducted using an evaluation sheet (nine items, 16 points) created based on the ASA-SED. The debriefing group showed a greater perception of the ASA-SED, as reflected in the significantly higher scores on the evaluation sheet (median, 16 points) than the control group (median, 13 points; p < 0.05). No significant differences were identified before or during sedation, but the difference after sedation was significant (p < 0.05). Debriefing after sedation training courses may contribute to better perception of the ASA-SED, and may lead to enhanced attitudes toward medical safety during sedation and analgesia. """)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("rct_binary_classifier_biobert_pipeline", "en", "clinical/models")
-
-val result = pipeline.annotate("""Abstract:Based on the American Society of Anesthesiologists' Practice Guidelines for Sedation and Analgesia by Non-Anesthesiologists (ASA-SED), a sedation training course aimed at improving medical safety was developed by the Japanese Association for Medical Simulation in 2011. This study evaluated the effect of debriefing on participants' perceptions of the essential points of the ASA-SED. A total of 38 novice doctors participated in the sedation training course during the research period. Of these doctors, 18 participated in the debriefing group, and 20 participated in non-debriefing group. Scoring of participants' guideline perceptions was conducted using an evaluation sheet (nine items, 16 points) created based on the ASA-SED. The debriefing group showed a greater perception of the ASA-SED, as reflected in the significantly higher scores on the evaluation sheet (median, 16 points) than the control group (median, 13 points; p < 0.05). No significant differences were identified before or during sedation, but the difference after sedation was significant (p < 0.05). Debriefing after sedation training courses may contribute to better perception of the ASA-SED, and may lead to enhanced attitudes toward medical safety during sedation and analgesia. """)
-```
-{:.nlu-block}
-```python
-import nlu
-nlu.load("en.classify.rct_binary_biobert.pipeline").predict("""Abstract:Based on the American Society of Anesthesiologists' Practice Guidelines for Sedation and Analgesia by Non-Anesthesiologists (ASA-SED), a sedation training course aimed at improving medical safety was developed by the Japanese Association for Medical Simulation in 2011. This study evaluated the effect of debriefing on participants' perceptions of the essential points of the ASA-SED. A total of 38 novice doctors participated in the sedation training course during the research period. Of these doctors, 18 participated in the debriefing group, and 20 participated in non-debriefing group. Scoring of participants' guideline perceptions was conducted using an evaluation sheet (nine items, 16 points) created based on the ASA-SED. The debriefing group showed a greater perception of the ASA-SED, as reflected in the significantly higher scores on the evaluation sheet (median, 16 points) than the control group (median, 13 points; p < 0.05). No significant differences were identified before or during sedation, but the difference after sedation was significant (p < 0.05). Debriefing after sedation training courses may contribute to better perception of the ASA-SED, and may lead to enhanced attitudes toward medical safety during sedation and analgesia. """)
-```
-
## Results
```bash
-Results
-
-
-
+----+-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
|rct |text |
+----+-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
|true|Abstract:Based on the American Society of Anesthesiologists' Practice Guidelines for Sedation and Analgesia by Non-Anesthesiologists (ASA-SED), a sedation training course aimed at improving medical safety was developed by the Japanese Association for Medical Simulation in 2011. This study evaluated the effect of debriefing on participants' perceptions of the essential points of the ASA-SED. A total of 38 novice doctors participated in the sedation training course during the research period. Of these doctors, 18 participated in the debriefing group, and 20 participated in non-debriefing group. Scoring of participants' guideline perceptions was conducted using an evaluation sheet (nine items, 16 points) created based on the ASA-SED. The debriefing group showed a greater perception of the ASA-SED, as reflected in the significantly higher scores on the evaluation sheet (median, 16 points) than the control group (median, 13 points; p < 0.05). No significant differences were identified before or during sedation, but the difference after sedation was significant (p < 0.05). Debriefing after sedation training courses may contribute to better perception of the ASA-SED, and may lead to enhanced attitudes toward medical safety during sedation and analgesia. |
+----+-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
-
-
-
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-22-rct_binary_classifier_use_pipeline_en.md b/docs/_posts/C-K-Loan/2023-06-22-rct_binary_classifier_use_pipeline_en.md
index e2dba72bb0..f1e257ce50 100644
--- a/docs/_posts/C-K-Loan/2023-06-22-rct_binary_classifier_use_pipeline_en.md
+++ b/docs/_posts/C-K-Loan/2023-06-22-rct_binary_classifier_use_pipeline_en.md
@@ -59,48 +59,15 @@ nlu.load("en.classify.rct_binary_use.pipeline").predict("""Abstract:Based on the
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("rct_binary_classifier_use_pipeline", "en", "clinical/models")
-
-result = pipeline.annotate("""Abstract:Based on the American Society of Anesthesiologists' Practice Guidelines for Sedation and Analgesia by Non-Anesthesiologists (ASA-SED), a sedation training course aimed at improving medical safety was developed by the Japanese Association for Medical Simulation in 2011. This study evaluated the effect of debriefing on participants' perceptions of the essential points of the ASA-SED. A total of 38 novice doctors participated in the sedation training course during the research period. Of these doctors, 18 participated in the debriefing group, and 20 participated in non-debriefing group. Scoring of participants' guideline perceptions was conducted using an evaluation sheet (nine items, 16 points) created based on the ASA-SED. The debriefing group showed a greater perception of the ASA-SED, as reflected in the significantly higher scores on the evaluation sheet (median, 16 points) than the control group (median, 13 points; p < 0.05). No significant differences were identified before or during sedation, but the difference after sedation was significant (p < 0.05). Debriefing after sedation training courses may contribute to better perception of the ASA-SED, and may lead to enhanced attitudes toward medical safety during sedation and analgesia. """)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("rct_binary_classifier_use_pipeline", "en", "clinical/models")
-
-val result = pipeline.annotate("""Abstract:Based on the American Society of Anesthesiologists' Practice Guidelines for Sedation and Analgesia by Non-Anesthesiologists (ASA-SED), a sedation training course aimed at improving medical safety was developed by the Japanese Association for Medical Simulation in 2011. This study evaluated the effect of debriefing on participants' perceptions of the essential points of the ASA-SED. A total of 38 novice doctors participated in the sedation training course during the research period. Of these doctors, 18 participated in the debriefing group, and 20 participated in non-debriefing group. Scoring of participants' guideline perceptions was conducted using an evaluation sheet (nine items, 16 points) created based on the ASA-SED. The debriefing group showed a greater perception of the ASA-SED, as reflected in the significantly higher scores on the evaluation sheet (median, 16 points) than the control group (median, 13 points; p < 0.05). No significant differences were identified before or during sedation, but the difference after sedation was significant (p < 0.05). Debriefing after sedation training courses may contribute to better perception of the ASA-SED, and may lead to enhanced attitudes toward medical safety during sedation and analgesia. """)
-```
-
-{:.nlu-block}
-```python
-import nlu
-nlu.load("en.classify.rct_binary_use.pipeline").predict("""Abstract:Based on the American Society of Anesthesiologists' Practice Guidelines for Sedation and Analgesia by Non-Anesthesiologists (ASA-SED), a sedation training course aimed at improving medical safety was developed by the Japanese Association for Medical Simulation in 2011. This study evaluated the effect of debriefing on participants' perceptions of the essential points of the ASA-SED. A total of 38 novice doctors participated in the sedation training course during the research period. Of these doctors, 18 participated in the debriefing group, and 20 participated in non-debriefing group. Scoring of participants' guideline perceptions was conducted using an evaluation sheet (nine items, 16 points) created based on the ASA-SED. The debriefing group showed a greater perception of the ASA-SED, as reflected in the significantly higher scores on the evaluation sheet (median, 16 points) than the control group (median, 13 points; p < 0.05). No significant differences were identified before or during sedation, but the difference after sedation was significant (p < 0.05). Debriefing after sedation training courses may contribute to better perception of the ASA-SED, and may lead to enhanced attitudes toward medical safety during sedation and analgesia. """)
-```
-
## Results
```bash
-Results
-
-
-
+----+-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
|rct |text |
+----+-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
|true|Abstract:Based on the American Society of Anesthesiologists' Practice Guidelines for Sedation and Analgesia by Non-Anesthesiologists (ASA-SED), a sedation training course aimed at improving medical safety was developed by the Japanese Association for Medical Simulation in 2011. This study evaluated the effect of debriefing on participants' perceptions of the essential points of the ASA-SED. A total of 38 novice doctors participated in the sedation training course during the research period. Of these doctors, 18 participated in the debriefing group, and 20 participated in non-debriefing group. Scoring of participants' guideline perceptions was conducted using an evaluation sheet (nine items, 16 points) created based on the ASA-SED. The debriefing group showed a greater perception of the ASA-SED, as reflected in the significantly higher scores on the evaluation sheet (median, 16 points) than the control group (median, 13 points; p < 0.05). No significant differences were identified before or during sedation, but the difference after sedation was significant (p < 0.05). Debriefing after sedation training courses may contribute to better perception of the ASA-SED, and may lead to enhanced attitudes toward medical safety during sedation and analgesia. |
+----+-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
-
-
-
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-22-summarizer_biomedical_pubmed_pipeline_en.md b/docs/_posts/C-K-Loan/2023-06-22-summarizer_biomedical_pubmed_pipeline_en.md
index 051c74f3d6..0a6678187b 100644
--- a/docs/_posts/C-K-Loan/2023-06-22-summarizer_biomedical_pubmed_pipeline_en.md
+++ b/docs/_posts/C-K-Loan/2023-06-22-summarizer_biomedical_pubmed_pipeline_en.md
@@ -32,30 +32,11 @@ This pretrained pipeline is built on the top of [summarizer_biomedical_pubmed](h
## How to use
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("summarizer_biomedical_pubmed_pipeline", "en", "clinical/models")
-
-text = """Residual disease after initial surgery for ovarian cancer is the strongest prognostic factor for survival. However, the extent of surgical resection required to achieve optimal cytoreduction is controversial. Our goal was to estimate the effect of aggressive surgical resection on ovarian cancer patient survival.\n A retrospective cohort study of consecutive patients with International Federation of Gynecology and Obstetrics stage IIIC ovarian cancer undergoing primary surgery was conducted between January 1, 1994, and December 31, 1998. The main outcome measures were residual disease after cytoreduction, frequency of radical surgical resection, and 5-year disease-specific survival.\n The study comprised 194 patients, including 144 with carcinomatosis. The mean patient age and follow-up time were 64.4 and 3.5 years, respectively. After surgery, 131 (67.5%) of the 194 patients had less than 1 cm of residual disease (definition of optimal cytoreduction). Considering all patients, residual disease was the only independent predictor of survival; the need to perform radical procedures to achieve optimal cytoreduction was not associated with a decrease in survival. For the subgroup of patients with carcinomatosis, residual disease and the performance of radical surgical procedures were the only independent predictors. Disease-specific survival was markedly improved for patients with carcinomatosis operated on by surgeons who most frequently used radical procedures compared with those least likely to use radical procedures (44% versus 17%, P < .001).\n Overall, residual disease was the only independent predictor of survival. Minimizing residual disease through aggressive surgical resection was beneficial, especially in patients with carcinomatosis."""
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("summarizer_biomedical_pubmed_pipeline", "en", "clinical/models")
-val text = """Residual disease after initial surgery for ovarian cancer is the strongest prognostic factor for survival. However, the extent of surgical resection required to achieve optimal cytoreduction is controversial. Our goal was to estimate the effect of aggressive surgical resection on ovarian cancer patient survival.\n A retrospective cohort study of consecutive patients with International Federation of Gynecology and Obstetrics stage IIIC ovarian cancer undergoing primary surgery was conducted between January 1, 1994, and December 31, 1998. The main outcome measures were residual disease after cytoreduction, frequency of radical surgical resection, and 5-year disease-specific survival.\n The study comprised 194 patients, including 144 with carcinomatosis. The mean patient age and follow-up time were 64.4 and 3.5 years, respectively. After surgery, 131 (67.5%) of the 194 patients had less than 1 cm of residual disease (definition of optimal cytoreduction). Considering all patients, residual disease was the only independent predictor of survival; the need to perform radical procedures to achieve optimal cytoreduction was not associated with a decrease in survival. For the subgroup of patients with carcinomatosis, residual disease and the performance of radical surgical procedures were the only independent predictors. Disease-specific survival was markedly improved for patients with carcinomatosis operated on by surgeons who most frequently used radical procedures compared with those least likely to use radical procedures (44% versus 17%, P < .001).\n Overall, residual disease was the only independent predictor of survival. Minimizing residual disease through aggressive surgical resection was beneficial, especially in patients with carcinomatosis."""
-
-val result = pipeline.fullAnnotate(text)
-```
-
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -79,15 +60,7 @@ val result = pipeline.fullAnnotate(text)
## Results
```bash
-Results
-
-
-
The results of this review suggest that aggressive ovarian cancer surgery is associated with a significant reduction in the risk of recurrence and a reduction in the number of radical versus conservative surgical resections. However, the results of this review are based on only one small trial. Further research is needed to determine the role of aggressive ovarian cancer surgery in women with stage IIIC ovarian cancer.
-
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-22-summarizer_clinical_guidelines_large_pipeline_en.md b/docs/_posts/C-K-Loan/2023-06-22-summarizer_clinical_guidelines_large_pipeline_en.md
index f152ea71c7..caec4abf56 100644
--- a/docs/_posts/C-K-Loan/2023-06-22-summarizer_clinical_guidelines_large_pipeline_en.md
+++ b/docs/_posts/C-K-Loan/2023-06-22-summarizer_clinical_guidelines_large_pipeline_en.md
@@ -34,6 +34,7 @@ This pretrained pipeline is built on the top of [summarizer_clinical_guidelines_
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -110,91 +111,11 @@ val result = pipeline.fullAnnotate(text)
```
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("summarizer_clinical_guidelines_large_pipeline", "en", "clinical/models")
-
-text = """Clinical Guidelines for Breast Cancer:
-
-Breast cancer is the most common type of cancer among women. It occurs when the cells in the breast start growing abnormally, forming a lump or mass. This can result in the spread of cancerous cells to other parts of the body. Breast cancer may occur in both men and women but is more prevalent in women.
-
-The exact cause of breast cancer is unknown. However, several risk factors can increase your likelihood of developing breast cancer, such as:
-- A personal or family history of breast cancer
-- A genetic mutation, such as BRCA1 or BRCA2
-- Exposure to radiation
-- Age (most commonly occurring in women over 50)
-- Early onset of menstruation or late menopause
-- Obesity
-- Hormonal factors, such as taking hormone replacement therapy
-
-Breast cancer may not present symptoms during its early stages. Symptoms typically manifest as the disease progresses. Some notable symptoms include:
-- A lump or thickening in the breast or underarm area
-- Changes in the size or shape of the breast
-- Nipple discharge
-- Nipple changes in appearance, such as inversion or flattening
-- Redness or swelling in the breast
-
-Treatment for breast cancer depends on several factors, including the stage of the cancer, the location of the tumor, and the individual's overall health. Common treatment options include:
-- Surgery (such as lumpectomy or mastectomy)
-- Radiation therapy
-- Chemotherapy
-- Hormone therapy
-- Targeted therapy
-
-Early detection is crucial for the successful treatment of breast cancer. Women are advised to routinely perform self-examinations and undergo regular mammogram testing starting at age 40. If you notice any changes in your breast tissue, consult with your healthcare provider immediately.
-"""
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("summarizer_clinical_guidelines_large_pipeline", "en", "clinical/models")
-
-val text = """Clinical Guidelines for Breast Cancer:
-
-Breast cancer is the most common type of cancer among women. It occurs when the cells in the breast start growing abnormally, forming a lump or mass. This can result in the spread of cancerous cells to other parts of the body. Breast cancer may occur in both men and women but is more prevalent in women.
-
-The exact cause of breast cancer is unknown. However, several risk factors can increase your likelihood of developing breast cancer, such as:
-- A personal or family history of breast cancer
-- A genetic mutation, such as BRCA1 or BRCA2
-- Exposure to radiation
-- Age (most commonly occurring in women over 50)
-- Early onset of menstruation or late menopause
-- Obesity
-- Hormonal factors, such as taking hormone replacement therapy
-
-Breast cancer may not present symptoms during its early stages. Symptoms typically manifest as the disease progresses. Some notable symptoms include:
-- A lump or thickening in the breast or underarm area
-- Changes in the size or shape of the breast
-- Nipple discharge
-- Nipple changes in appearance, such as inversion or flattening
-- Redness or swelling in the breast
-
-Treatment for breast cancer depends on several factors, including the stage of the cancer, the location of the tumor, and the individual's overall health. Common treatment options include:
-- Surgery (such as lumpectomy or mastectomy)
-- Radiation therapy
-- Chemotherapy
-- Hormone therapy
-- Targeted therapy
-Early detection is crucial for the successful treatment of breast cancer. Women are advised to routinely perform self-examinations and undergo regular mammogram testing starting at age 40. If you notice any changes in your breast tissue, consult with your healthcare provider immediately.
-"""
-
-val result = pipeline.fullAnnotate(text)
-```
-
## Results
```bash
-Results
-
-
-
Overview of the disease: Breast cancer is the most common type of cancer among women, occurring when the cells in the breast start growing abnormally, forming a lump or mass. It can result in the spread of cancerous cells to other parts of the body.
Causes: The exact cause of breast cancer is unknown, but several risk factors can increase the likelihood of developing it, such as a personal or family history, a genetic mutation, exposure to radiation, age, early onset of menstruation or late menopause, obesity, and hormonal factors.
@@ -202,10 +123,6 @@ Causes: The exact cause of breast cancer is unknown, but several risk factors ca
Symptoms: Symptoms of breast cancer typically manifest as the disease progresses, including a lump or thickening in the breast or underarm area, changes in the size or shape of the breast, nipple discharge, nipple changes in appearance, and redness or swelling in the breast.
Treatment recommendations: Treatment for breast cancer depends on several factors, including the stage of the cancer, the location of the tumor, and the individual's overall health. Common treatment options include surgery, radiation therapy, chemotherapy, hormone therapy, and targeted therapy. Early detection is crucial for successful treatment of breast cancer. Women are advised to routinely perform self-examinations and undergo regular mammogram testing starting at age 40.
-
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-22-summarizer_clinical_jsl_augmented_pipeline_en.md b/docs/_posts/C-K-Loan/2023-06-22-summarizer_clinical_jsl_augmented_pipeline_en.md
index 8f5f2d8c69..2559623d77 100644
--- a/docs/_posts/C-K-Loan/2023-06-22-summarizer_clinical_jsl_augmented_pipeline_en.md
+++ b/docs/_posts/C-K-Loan/2023-06-22-summarizer_clinical_jsl_augmented_pipeline_en.md
@@ -34,44 +34,7 @@ This pretrained pipeline is built on the top of [summarizer_clinical_jsl_augment
{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("summarizer_clinical_jsl_augmented_pipeline", "en", "clinical/models")
-
-text = """Patient with hypertension, syncope, and spinal stenosis - for recheck.
-(Medical Transcription Sample Report)
-SUBJECTIVE:
-The patient is a 78-year-old female who returns for recheck. She has hypertension. She denies difficulty with chest pain, palpations, orthopnea, nocturnal dyspnea, or edema.
-PAST MEDICAL HISTORY / SURGERY / HOSPITALIZATIONS:
-Reviewed and unchanged from the dictation on 12/03/2003.
-MEDICATIONS:
-Atenolol 50 mg daily, Premarin 0.625 mg daily, calcium with vitamin D two to three pills daily, multivitamin daily, aspirin as needed, and TriViFlor 25 mg two pills daily. She also has Elocon cream 0.1% and Synalar cream 0.01% that she uses as needed for rash.
-"""
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("summarizer_clinical_jsl_augmented_pipeline", "en", "clinical/models")
-
-val text = """Patient with hypertension, syncope, and spinal stenosis - for recheck.
-(Medical Transcription Sample Report)
-SUBJECTIVE:
-The patient is a 78-year-old female who returns for recheck. She has hypertension. She denies difficulty with chest pain, palpations, orthopnea, nocturnal dyspnea, or edema.
-PAST MEDICAL HISTORY / SURGERY / HOSPITALIZATIONS:
-Reviewed and unchanged from the dictation on 12/03/2003.
-MEDICATIONS:
-Atenolol 50 mg daily, Premarin 0.625 mg daily, calcium with vitamin D two to three pills daily, multivitamin daily, aspirin as needed, and TriViFlor 25 mg two pills daily. She also has Elocon cream 0.1% and Synalar cream 0.01% that she uses as needed for rash.
-"""
-
-val result = pipeline.fullAnnotate(text)
-```
-
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -111,15 +74,7 @@ val result = pipeline.fullAnnotate(text)
## Results
```bash
-Results
-
-
-
A 78-year-old female with hypertension, syncope, and spinal stenosis returns for a recheck. She denies difficulty with chest pain, palpations, orthopnea, nocturnal dyspnea, or edema. Her medications include Atenolol, Premarin, calcium with vitamin D, multivitamin, aspirin, and TriViFlor. She also has Elocon cream and Synalar cream for rash.
-
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-22-summarizer_clinical_jsl_pipeline_en.md b/docs/_posts/C-K-Loan/2023-06-22-summarizer_clinical_jsl_pipeline_en.md
index 202104f747..ada2107bb1 100644
--- a/docs/_posts/C-K-Loan/2023-06-22-summarizer_clinical_jsl_pipeline_en.md
+++ b/docs/_posts/C-K-Loan/2023-06-22-summarizer_clinical_jsl_pipeline_en.md
@@ -34,44 +34,7 @@ This pretrained pipeline is built on the top of [summarizer_clinical_jsl](https:
{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("summarizer_clinical_jsl_pipeline", "en", "clinical/models")
-text = """Patient with hypertension, syncope, and spinal stenosis - for recheck.
-(Medical Transcription Sample Report)
-SUBJECTIVE:
-The patient is a 78-year-old female who returns for recheck. She has hypertension. She denies difficulty with chest pain, palpations, orthopnea, nocturnal dyspnea, or edema.
-PAST MEDICAL HISTORY / SURGERY / HOSPITALIZATIONS:
-Reviewed and unchanged from the dictation on 12/03/2003.
-MEDICATIONS:
-Atenolol 50 mg daily, Premarin 0.625 mg daily, calcium with vitamin D two to three pills daily, multivitamin daily, aspirin as needed, and TriViFlor 25 mg two pills daily. She also has Elocon cream 0.1% and Synalar cream 0.01% that she uses as needed for rash.
-"""
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("summarizer_clinical_jsl_pipeline", "en", "clinical/models")
-
-val text = """Patient with hypertension, syncope, and spinal stenosis - for recheck.
-(Medical Transcription Sample Report)
-SUBJECTIVE:
-The patient is a 78-year-old female who returns for recheck. She has hypertension. She denies difficulty with chest pain, palpations, orthopnea, nocturnal dyspnea, or edema.
-PAST MEDICAL HISTORY / SURGERY / HOSPITALIZATIONS:
-Reviewed and unchanged from the dictation on 12/03/2003.
-MEDICATIONS:
-Atenolol 50 mg daily, Premarin 0.625 mg daily, calcium with vitamin D two to three pills daily, multivitamin daily, aspirin as needed, and TriViFlor 25 mg two pills daily. She also has Elocon cream 0.1% and Synalar cream 0.01% that she uses as needed for rash.
-"""
-
-val result = pipeline.fullAnnotate(text)
-```
-
-
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -108,18 +71,11 @@ val result = pipeline.fullAnnotate(text)
```
+
## Results
```bash
-Results
-
-
-
A 78-year-old female with hypertension, syncope, and spinal stenosis returns for recheck. She denies chest pain, palpations, orthopnea, nocturnal dyspnea, or edema. She is on multiple medications and has Elocon cream and Synalar cream for rash.
-
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-22-summarizer_clinical_laymen_pipeline_en.md b/docs/_posts/C-K-Loan/2023-06-22-summarizer_clinical_laymen_pipeline_en.md
index 49730cb7b3..40ba276fb7 100644
--- a/docs/_posts/C-K-Loan/2023-06-22-summarizer_clinical_laymen_pipeline_en.md
+++ b/docs/_posts/C-K-Loan/2023-06-22-summarizer_clinical_laymen_pipeline_en.md
@@ -34,72 +34,7 @@ This pretrained pipeline is built on the top of [summarizer_clinical_laymen](htt
{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("summarizer_clinical_laymen_pipeline", "en", "clinical/models")
-
-text = """
-Olivia Smith was seen in my office for evaluation for elective surgical weight loss on October 6, 2008. Olivia Smith is a 34-year-old female with a BMI of 43. She is 5'6" tall and weighs 267 pounds. She is motivated to attempt surgical weight loss because she has been overweight for over 20 years and wants to have more energy and improve her self-image. She is not only affected physically, but also socially by her weight. When she loses weight she always regains it and she always gains back more weight than she has lost. At one time, she lost 100 pounds and gained the weight back within a year. She has tried numerous commercial weight loss programs including Weight Watcher's for four months in 1992 with 15-pound weight loss, RS for two months in 1990 with six-pound weight loss, Slim Fast for six weeks in 2004 with eight-pound weight loss, an exercise program for two months in 2007 with a five-pound weight loss, Atkin's Diet for three months in 2008 with a ten-pound weight loss, and Dexatrim for one month in 2005 with a five-pound weight loss. She has also tried numerous fat reduction or fad diets. She was on Redux for nine months with a 100-pound weight loss.
-
-PAST MEDICAL HISTORY: She has a history of hypertension and shortness of breath.
-
-PAST SURGICAL HISTORY: Pertinent for cholecystectomy.
-
-PSYCHOLOGICAL HISTORY: Negative.
-
-SOCIAL HISTORY: She is single. She drinks alcohol once a week. She does not smoke.
-
-FAMILY HISTORY: Pertinent for obesity and hypertension.
-
-MEDICATIONS: Include Topamax 100 mg twice daily, Zoloft 100 mg twice daily, Abilify 5 mg daily, Motrin 800 mg daily, and a multivitamin.
-ALLERGIES: She has no known drug allergies.
-
-REVIEW OF SYSTEMS: Negative.
-
-PHYSICAL EXAM: This is a pleasant female in no acute distress. Alert and oriented x 3. HEENT: Normocephalic, atraumatic. Extraocular muscles intact, nonicteric sclerae. Chest is clear to auscultation bilaterally. Cardiovascular is normal sinus rhythm. Abdomen is obese, soft, nontender and nondistended. Extremities show no edema, clubbing or cyanosis.
-
-ASSESSMENT/PLAN: This is a 34-year-old female with a BMI of 43 who is interested in surgical weight via the gastric bypass as opposed to Lap-Band. Olivia Smith will be asking for a letter of medical necessity from Dr. Andrew Johnson. She will also see my nutritionist and social worker and have an upper endoscopy. Once this is completed, we will submit her to her insurance company for approval.
-"""
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("summarizer_clinical_laymen_pipeline", "en", "clinical/models")
-
-val text = """
-Olivia Smith was seen in my office for evaluation for elective surgical weight loss on October 6, 2008. Olivia Smith is a 34-year-old female with a BMI of 43. She is 5'6" tall and weighs 267 pounds. She is motivated to attempt surgical weight loss because she has been overweight for over 20 years and wants to have more energy and improve her self-image. She is not only affected physically, but also socially by her weight. When she loses weight she always regains it and she always gains back more weight than she has lost. At one time, she lost 100 pounds and gained the weight back within a year. She has tried numerous commercial weight loss programs including Weight Watcher's for four months in 1992 with 15-pound weight loss, RS for two months in 1990 with six-pound weight loss, Slim Fast for six weeks in 2004 with eight-pound weight loss, an exercise program for two months in 2007 with a five-pound weight loss, Atkin's Diet for three months in 2008 with a ten-pound weight loss, and Dexatrim for one month in 2005 with a five-pound weight loss. She has also tried numerous fat reduction or fad diets. She was on Redux for nine months with a 100-pound weight loss.
-
-PAST MEDICAL HISTORY: She has a history of hypertension and shortness of breath.
-
-PAST SURGICAL HISTORY: Pertinent for cholecystectomy.
-
-PSYCHOLOGICAL HISTORY: Negative.
-
-SOCIAL HISTORY: She is single. She drinks alcohol once a week. She does not smoke.
-
-FAMILY HISTORY: Pertinent for obesity and hypertension.
-
-MEDICATIONS: Include Topamax 100 mg twice daily, Zoloft 100 mg twice daily, Abilify 5 mg daily, Motrin 800 mg daily, and a multivitamin.
-
-ALLERGIES: She has no known drug allergies.
-
-REVIEW OF SYSTEMS: Negative.
-
-PHYSICAL EXAM: This is a pleasant female in no acute distress. Alert and oriented x 3. HEENT: Normocephalic, atraumatic. Extraocular muscles intact, nonicteric sclerae. Chest is clear to auscultation bilaterally. Cardiovascular is normal sinus rhythm. Abdomen is obese, soft, nontender and nondistended. Extremities show no edema, clubbing or cyanosis.
-
-ASSESSMENT/PLAN: This is a 34-year-old female with a BMI of 43 who is interested in surgical weight via the gastric bypass as opposed to Lap-Band. Olivia Smith will be asking for a letter of medical necessity from Dr. Andrew Johnson. She will also see my nutritionist and social worker and have an upper endoscopy. Once this is completed, we will submit her to her insurance company for approval.
-"""
-
-val result = pipeline.fullAnnotate(text)
-```
-
-
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -164,18 +99,11 @@ val result = pipeline.fullAnnotate(text)
```
+
## Results
```bash
-Results
-
-
-
This is a clinical note about a 34-year-old woman who is interested in having weight loss surgery. She has been overweight for over 20 years and wants to have more energy and improve her self-image. She has tried many diets and weight loss programs, but has not been successful in keeping the weight off. She has a history of hypertension and shortness of breath, but is not allergic to any medications. She will have an upper endoscopy and will be contacted by a nutritionist and social worker. The plan is to have her weight loss surgery through the gastric bypass, rather than Lap-Band.
-
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-22-summarizer_clinical_questions_pipeline_en.md b/docs/_posts/C-K-Loan/2023-06-22-summarizer_clinical_questions_pipeline_en.md
index e86676c7f3..426676a128 100644
--- a/docs/_posts/C-K-Loan/2023-06-22-summarizer_clinical_questions_pipeline_en.md
+++ b/docs/_posts/C-K-Loan/2023-06-22-summarizer_clinical_questions_pipeline_en.md
@@ -34,32 +34,7 @@ This pretrained pipeline is built on the top of [summarizer_clinical_questions](
{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-pipeline = PretrainedPipeline("summarizer_clinical_questions_pipeline", "en", "clinical/models")
-
-text = """
-Hello,I'm 20 year old girl. I'm diagnosed with hyperthyroid 1 month ago. I was feeling weak, light headed,poor digestion, panic attacks, depression, left chest pain, increased heart rate, rapidly weight loss, from 4 months. Because of this, I stayed in the hospital and just discharged from hospital. I had many other blood tests, brain mri, ultrasound scan, endoscopy because of some dumb doctors bcs they were not able to diagnose actual problem. Finally I got an appointment with a homeopathy doctor finally he find that i was suffering from hyperthyroid and my TSH was 0.15 T3 and T4 is normal . Also i have b12 deficiency and vitamin D deficiency so I'm taking weekly supplement of vitamin D and 1000 mcg b12 daily. I'm taking homeopathy medicine for 40 days and took 2nd test after 30 days. My TSH is 0.5 now. I feel a little bit relief from weakness and depression but I'm facing with 2 new problem from last week that is breathtaking problem and very rapid heartrate. I just want to know if i should start allopathy medicine or homeopathy is okay? Bcs i heard that thyroid take time to start recover. So please let me know if both of medicines take same time. Because some of my friends advising me to start allopathy and never take a chance as i can develop some serious problems.Sorry for my poor english😐Thank you.
-"""
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("summarizer_clinical_questions_pipeline", "en", "clinical/models")
-
-val text = """
-Hello,I'm 20 year old girl. I'm diagnosed with hyperthyroid 1 month ago. I was feeling weak, light headed,poor digestion, panic attacks, depression, left chest pain, increased heart rate, rapidly weight loss, from 4 months. Because of this, I stayed in the hospital and just discharged from hospital. I had many other blood tests, brain mri, ultrasound scan, endoscopy because of some dumb doctors bcs they were not able to diagnose actual problem. Finally I got an appointment with a homeopathy doctor finally he find that i was suffering from hyperthyroid and my TSH was 0.15 T3 and T4 is normal . Also i have b12 deficiency and vitamin D deficiency so I'm taking weekly supplement of vitamin D and 1000 mcg b12 daily. I'm taking homeopathy medicine for 40 days and took 2nd test after 30 days. My TSH is 0.5 now. I feel a little bit relief from weakness and depression but I'm facing with 2 new problem from last week that is breathtaking problem and very rapid heartrate. I just want to know if i should start allopathy medicine or homeopathy is okay? Bcs i heard that thyroid take time to start recover. So please let me know if both of medicines take same time. Because some of my friends advising me to start allopathy and never take a chance as i can develop some serious problems.Sorry for my poor english😐Thank you.
-"""
-
-val result = pipeline.fullAnnotate(text)
-```
-
-
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -84,18 +59,11 @@ val result = pipeline.fullAnnotate(text)
```
+
## Results
```bash
-Results
-
-
-
What are the treatments for hyperthyroidism?
-
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-22-summarizer_generic_jsl_pipeline_en.md b/docs/_posts/C-K-Loan/2023-06-22-summarizer_generic_jsl_pipeline_en.md
index 1edcf920d6..7b8043865b 100644
--- a/docs/_posts/C-K-Loan/2023-06-22-summarizer_generic_jsl_pipeline_en.md
+++ b/docs/_posts/C-K-Loan/2023-06-22-summarizer_generic_jsl_pipeline_en.md
@@ -34,44 +34,7 @@ This pretrained pipeline is built on the top of [summarizer_generic_jsl](https:/
{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("summarizer_generic_jsl_pipeline", "en", "clinical/models")
-text = """Patient with hypertension, syncope, and spinal stenosis - for recheck.
-(Medical Transcription Sample Report)
-SUBJECTIVE:
-The patient is a 78-year-old female who returns for recheck. She has hypertension. She denies difficulty with chest pain, palpations, orthopnea, nocturnal dyspnea, or edema.
-PAST MEDICAL HISTORY / SURGERY / HOSPITALIZATIONS:
-Reviewed and unchanged from the dictation on 12/03/2003.
-MEDICATIONS:
-Atenolol 50 mg daily, Premarin 0.625 mg daily, calcium with vitamin D two to three pills daily, multivitamin daily, aspirin as needed, and TriViFlor 25 mg two pills daily. She also has Elocon cream 0.1% and Synalar cream 0.01% that she uses as needed for rash.
-"""
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("summarizer_generic_jsl_pipeline", "en", "clinical/models")
-
-val text = """Patient with hypertension, syncope, and spinal stenosis - for recheck.
-(Medical Transcription Sample Report)
-SUBJECTIVE:
-The patient is a 78-year-old female who returns for recheck. She has hypertension. She denies difficulty with chest pain, palpations, orthopnea, nocturnal dyspnea, or edema.
-PAST MEDICAL HISTORY / SURGERY / HOSPITALIZATIONS:
-Reviewed and unchanged from the dictation on 12/03/2003.
-MEDICATIONS:
-Atenolol 50 mg daily, Premarin 0.625 mg daily, calcium with vitamin D two to three pills daily, multivitamin daily, aspirin as needed, and TriViFlor 25 mg two pills daily. She also has Elocon cream 0.1% and Synalar cream 0.01% that she uses as needed for rash.
-"""
-
-val result = pipeline.fullAnnotate(text)
-```
-
-
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -108,18 +71,11 @@ val result = pipeline.fullAnnotate(text)
```
+
## Results
```bash
-Results
-
-
-
The patient is 78 years old and has hypertension. She has a history of chest pain, palpations, orthopedics, and spinal stenosis. She has a prescription of Atenolol 50 mg daily, Premarin 0.625 mg daily, calcium with vitamin D two to three pills daily, multivitamin daily, aspirin, and TriViFlor 25 mg two pills daily.
-
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-22-summarizer_radiology_pipeline_en.md b/docs/_posts/C-K-Loan/2023-06-22-summarizer_radiology_pipeline_en.md
index 54563ed8f0..be36671c8d 100644
--- a/docs/_posts/C-K-Loan/2023-06-22-summarizer_radiology_pipeline_en.md
+++ b/docs/_posts/C-K-Loan/2023-06-22-summarizer_radiology_pipeline_en.md
@@ -34,6 +34,7 @@ This pretrained pipeline is built on the top of [summarizer_radiology](https://n
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -86,72 +87,12 @@ val result = pipeline.fullAnnotate(text)
```
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("summarizer_radiology_pipeline", "en", "clinical/models")
-
-text = """INDICATIONS: Peripheral vascular disease with claudication.
-
-RIGHT:
-1. Normal arterial imaging of right lower extremity.
-2. Peak systolic velocity is normal.
-3. Arterial waveform is triphasic.
-4. Ankle brachial index is 0.96.
-
-LEFT:
-1. Normal arterial imaging of left lower extremity.
-2. Peak systolic velocity is normal.
-3. Arterial waveform is triphasic throughout except in posterior tibial artery where it is biphasic.
-4. Ankle brachial index is 1.06.
-
-IMPRESSION:
-Normal arterial imaging of both lower lobes.
-"""
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("summarizer_radiology_pipeline", "en", "clinical/models")
-
-val text = """INDICATIONS: Peripheral vascular disease with claudication.
-
-RIGHT:
-1. Normal arterial imaging of right lower extremity.
-2. Peak systolic velocity is normal.
-3. Arterial waveform is triphasic.
-4. Ankle brachial index is 0.96.
-
-LEFT:
-1. Normal arterial imaging of left lower extremity.
-2. Peak systolic velocity is normal.
-3. Arterial waveform is triphasic throughout except in posterior tibial artery where it is biphasic.
-4. Ankle brachial index is 1.06.
-
-IMPRESSION:
-Normal arterial imaging of both lower lobes.
-"""
-val result = pipeline.fullAnnotate(text)
-```
-
## Results
```bash
-Results
-
-
-
The patient has peripheral vascular disease with claudication. The right lower extremity shows normal arterial imaging, but the peak systolic velocity is normal. The arterial waveform is triphasic throughout, except for the posterior tibial artery, which is biphasic. The ankle brachial index is 0.96. The impression is normal arterial imaging of both lower lobes.
-
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-23-umls_disease_syndrome_resolver_pipeline_en.md b/docs/_posts/C-K-Loan/2023-06-23-umls_disease_syndrome_resolver_pipeline_en.md
index 84f440f6e2..cd5fed3eae 100644
--- a/docs/_posts/C-K-Loan/2023-06-23-umls_disease_syndrome_resolver_pipeline_en.md
+++ b/docs/_posts/C-K-Loan/2023-06-23-umls_disease_syndrome_resolver_pipeline_en.md
@@ -34,6 +34,7 @@ This pretrained pipeline maps entities (Diseases and Syndromes) with their corre
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -58,34 +59,11 @@ nlu.load("en.map_entity.umls_disease_syndrome_resolver").predict("""A 34-year-ol
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline= PretrainedPipeline("umls_disease_syndrome_resolver_pipeline", "en", "clinical/models")
-pipeline.annotate("A 34-year-old female with a history of poor appetite, gestational diabetes mellitus, acyclovir allergy and polyuria")
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-val pipeline= PretrainedPipeline("umls_disease_syndrome_resolver_pipeline", "en", "clinical/models")
-val pipeline.annotate("A 34-year-old female with a history of poor appetite, gestational diabetes mellitus, acyclovir allergy and polyuria")
-```
-
-{:.nlu-block}
-```python
-import nlu
-nlu.load("en.map_entity.umls_disease_syndrome_resolver").predict("""A 34-year-old female with a history of poor appetite, gestational diabetes mellitus, acyclovir allergy and polyuria""")
-```
-
## Results
```bash
-Results
-
-
+-----------------------------+---------+---------+
|chunk |ner_label|umls_code|
+-----------------------------+---------+---------+
@@ -94,10 +72,6 @@ Results
|acyclovir allergy |PROBLEM |C0571297 |
|polyuria |PROBLEM |C0018965 |
+-----------------------------+---------+---------+
-
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-23-umls_drug_resolver_pipeline_en.md b/docs/_posts/C-K-Loan/2023-06-23-umls_drug_resolver_pipeline_en.md
index 1179bfe809..9c3be1d80d 100644
--- a/docs/_posts/C-K-Loan/2023-06-23-umls_drug_resolver_pipeline_en.md
+++ b/docs/_posts/C-K-Loan/2023-06-23-umls_drug_resolver_pipeline_en.md
@@ -34,6 +34,7 @@ This pretrained pipeline maps entities (Clinical Drugs) with their corresponding
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -56,43 +57,16 @@ nlu.load("en.map_entity.umls_drug_resolver").predict("""The patient was given Ad
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline= PretrainedPipeline("umls_drug_resolver_pipeline", "en", "clinical/models")
-pipeline.annotate("The patient was given Adapin 10 MG, coumadn 5 mg")
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline= PretrainedPipeline("umls_drug_resolver_pipeline", "en", "clinical/models")
-val pipeline.annotate("The patient was given Adapin 10 MG, coumadn 5 mg")
-```
-
-{:.nlu-block}
-```python
-import nlu
-nlu.load("en.map_entity.umls_drug_resolver").predict("""The patient was given Adapin 10 MG, coumadn 5 mg""")
-```
-
## Results
```bash
-Results
-
-
+------------+---------+---------+
|chunk |ner_label|umls_code|
+------------+---------+---------+
|Adapin 10 MG|DRUG |C2930083 |
|coumadn 5 mg|DRUG |C2723075 |
+------------+---------+---------+
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-23-umls_major_concepts_resolver_pipeline_en.md b/docs/_posts/C-K-Loan/2023-06-23-umls_major_concepts_resolver_pipeline_en.md
index 8c1bfb16e8..78719f6f2c 100644
--- a/docs/_posts/C-K-Loan/2023-06-23-umls_major_concepts_resolver_pipeline_en.md
+++ b/docs/_posts/C-K-Loan/2023-06-23-umls_major_concepts_resolver_pipeline_en.md
@@ -34,6 +34,7 @@ This pretrained pipeline maps entities (Clinical Major Concepts) with their corr
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -56,34 +57,10 @@ nlu.load("en.map_entity.umls_major_concepts_resolver").predict("""The patient co
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline= PretrainedPipeline("umls_major_concepts_resolver_pipeline", "en", "clinical/models")
-pipeline.annotate("The patient complains of pustules after falling from stairs. She has been advised Arthroscopy by her primary care pyhsician")
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline= PretrainedPipeline("umls_major_concepts_resolver_pipeline", "en", "clinical/models")
-val pipeline.annotate("The patient complains of pustules after falling from stairs. She has been advised Arthroscopy by her primary care pyhsician")
-```
-
-{:.nlu-block}
-```python
-import nlu
-nlu.load("en.map_entity.umls_major_concepts_resolver").predict("""The patient complains of pustules after falling from stairs. She has been advised Arthroscopy by her primary care pyhsician""")
-```
-
## Results
```bash
-Results
-
-
+-----------+-----------------------------------+---------+
|chunk |ner_label |umls_code|
+-----------+-----------------------------------+---------+
@@ -91,9 +68,6 @@ Results
|stairs |Daily_or_Recreational_Activity |C4300351 |
|Arthroscopy|Therapeutic_or_Preventive_Procedure|C0179144 |
+-----------+-----------------------------------+---------+
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-26-ner_oncology_anatomy_granular_pipeline_en.md b/docs/_posts/C-K-Loan/2023-06-26-ner_oncology_anatomy_granular_pipeline_en.md
index 862e0ea47c..b9952227a7 100644
--- a/docs/_posts/C-K-Loan/2023-06-26-ner_oncology_anatomy_granular_pipeline_en.md
+++ b/docs/_posts/C-K-Loan/2023-06-26-ner_oncology_anatomy_granular_pipeline_en.md
@@ -34,28 +34,7 @@ This pretrained pipeline is built on the top of [ner_oncology_anatomy_granular](
{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_oncology_anatomy_granular_pipeline", "en", "clinical/models")
-
-text = '''The patient presented a mass in her left breast, and a possible metastasis in her lungs and in her liver.'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("ner_oncology_anatomy_granular_pipeline", "en", "clinical/models")
-val text = "The patient presented a mass in her left breast, and a possible metastasis in her lungs and in her liver."
-
-val result = pipeline.fullAnnotate(text)
-```
-
-
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -79,18 +58,12 @@ val result = pipeline.fullAnnotate(text)
## Results
```bash
-Results
-
-
| | ner_chunks | begin | end | ner_label | confidence |
|---:|:-------------|--------:|------:|:------------|-------------:|
| 0 | left | 36 | 39 | Direction | 0.9981 |
| 1 | breast | 41 | 46 | Site_Breast | 0.9969 |
| 2 | lungs | 82 | 86 | Site_Lung | 0.9978 |
| 3 | liver | 99 | 103 | Site_Liver | 0.9999 |
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-26-ner_oncology_pipeline_en.md b/docs/_posts/C-K-Loan/2023-06-26-ner_oncology_pipeline_en.md
index d026ba9709..4fc4ceab40 100644
--- a/docs/_posts/C-K-Loan/2023-06-26-ner_oncology_pipeline_en.md
+++ b/docs/_posts/C-K-Loan/2023-06-26-ner_oncology_pipeline_en.md
@@ -34,6 +34,7 @@ This pretrained pipeline is built on the top of [ner_oncology](https://nlp.johns
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -58,38 +59,11 @@ val result = pipeline.fullAnnotate(text)
```
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("ner_oncology_pipeline", "en", "clinical/models")
-
-text = '''The had previously undergone a left mastectomy and an axillary lymph node dissection for a left breast cancer twenty years ago.
-The tumor was positive for ER and PR. Postoperatively, radiotherapy was administered to the residual breast.
-The cancer recurred as a right lung metastasis 13 years later. The patient underwent a regimen consisting of adriamycin (60 mg/m2) and cyclophosphamide (600 mg/m2) over six courses, as first line therapy.'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("ner_oncology_pipeline", "en", "clinical/models")
-val text = "The had previously undergone a left mastectomy and an axillary lymph node dissection for a left breast cancer twenty years ago.
-The tumor was positive for ER and PR. Postoperatively, radiotherapy was administered to the residual breast.
-The cancer recurred as a right lung metastasis 13 years later. The patient underwent a regimen consisting of adriamycin (60 mg/m2) and cyclophosphamide (600 mg/m2) over six courses, as first line therapy."
-
-val result = pipeline.fullAnnotate(text)
-```
-
## Results
```bash
-Results
-
-
| | ner_chunks | begin | end | ner_label | confidence |
|---:|:-------------------------------|--------:|------:|:----------------------|-------------:|
| 0 | left | 31 | 34 | Direction | 0.9913 |
@@ -116,9 +90,6 @@ Results
| 21 | 600 mg/m2 | 390 | 398 | Dosage | 0.9647 |
| 22 | six courses | 406 | 416 | Cycle_Count | 0.6798 |
| 23 | first line | 422 | 431 | Line_Of_Therapy | 0.9792 |
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/C-K-Loan/2023-06-26-oncology_diagnosis_pipeline_en.md b/docs/_posts/C-K-Loan/2023-06-26-oncology_diagnosis_pipeline_en.md
index 95ad5f389a..275c159a97 100644
--- a/docs/_posts/C-K-Loan/2023-06-26-oncology_diagnosis_pipeline_en.md
+++ b/docs/_posts/C-K-Loan/2023-06-26-oncology_diagnosis_pipeline_en.md
@@ -34,6 +34,7 @@ This pipeline includes Named-Entity Recognition, Assertion Status, Relation Extr
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -65,44 +66,10 @@ According to her last CT, she has no lung metastases.""")
-
-{% include programmingLanguageSelectScalaPythonNLU.html %}
-```python
-from sparknlp.pretrained import PretrainedPipeline
-
-pipeline = PretrainedPipeline("oncology_diagnosis_pipeline", "en", "clinical/models")
-
-text = '''Two years ago, the patient presented with a 4-cm tumor in her left breast. She was diagnosed with ductal carcinoma.
-According to her last CT, she has no lung metastases.'''
-
-result = pipeline.fullAnnotate(text)
-```
-```scala
-import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
-
-val pipeline = new PretrainedPipeline("oncology_diagnosis_pipeline", "en", "clinical/models")
-
-val text = "Two years ago, the patient presented with a 4-cm tumor in her left breast. She was diagnosed with ductal carcinoma.
-According to her last CT, she has no lung metastases."
-
-val result = pipeline.fullAnnotate(text)
-```
-
-{:.nlu-block}
-```python
-import nlu
-nlu.load("en.oncology_diagnosis.pipeline").predict("""Two years ago, the patient presented with a 4-cm tumor in her left breast. She was diagnosed with ductal carcinoma.
-According to her last CT, she has no lung metastases.""")
-```
-
## Results
```bash
-Results
-
-
-"
******************** ner_oncology_wip results ********************
| chunk | ner_label |
@@ -199,10 +166,6 @@ Results
| carcinoma | Cancer_Dx | 8010/3 | carcinoma |
| lung | Site_Lung | C34.9 | lung |
| metastases | Metastasis | 8000/6 | tumor, metastatic |
-
-
-
-{:.model-param}
```
{:.model-param}
diff --git a/docs/_posts/Cabir40/2022-03-01-sbiobertresolve_atc_en_2_4.md b/docs/_posts/Cabir40/2022-03-01-sbiobertresolve_atc_en_2_4.md
index 7372c50a45..7337ec7696 100644
--- a/docs/_posts/Cabir40/2022-03-01-sbiobertresolve_atc_en_2_4.md
+++ b/docs/_posts/Cabir40/2022-03-01-sbiobertresolve_atc_en_2_4.md
@@ -37,6 +37,7 @@ This model maps drugs entities to ATC (Anatomic Therapeutic Chemical) codes usin
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
document_assembler = DocumentAssembler()\
.setInputCol("text")\
diff --git a/docs/_posts/Cabir40/2022-03-01-sbiobertresolve_atc_en_3_0.md b/docs/_posts/Cabir40/2022-03-01-sbiobertresolve_atc_en_3_0.md
index d5dbacdab6..1f8eafaaad 100644
--- a/docs/_posts/Cabir40/2022-03-01-sbiobertresolve_atc_en_3_0.md
+++ b/docs/_posts/Cabir40/2022-03-01-sbiobertresolve_atc_en_3_0.md
@@ -37,6 +37,7 @@ This model maps drugs entities to ATC (Anatomic Therapeutic Chemical) codes usin
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
document_assembler = DocumentAssembler()\
.setInputCol("text")\
diff --git a/docs/_posts/Cabir40/2022-03-03-clinical_deidentification_en_2_4.md b/docs/_posts/Cabir40/2022-03-03-clinical_deidentification_en_2_4.md
index d6f16772dd..2a94eacd4b 100644
--- a/docs/_posts/Cabir40/2022-03-03-clinical_deidentification_en_2_4.md
+++ b/docs/_posts/Cabir40/2022-03-03-clinical_deidentification_en_2_4.md
@@ -33,6 +33,7 @@ This pipeline can be used to deidentify PHI information from medical texts. The
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
diff --git a/docs/_posts/Cabir40/2022-03-03-clinical_deidentification_en_3_0.md b/docs/_posts/Cabir40/2022-03-03-clinical_deidentification_en_3_0.md
index 61b2f23044..7a71d6173d 100644
--- a/docs/_posts/Cabir40/2022-03-03-clinical_deidentification_en_3_0.md
+++ b/docs/_posts/Cabir40/2022-03-03-clinical_deidentification_en_3_0.md
@@ -41,6 +41,7 @@ This pipeline can be used to deidentify PHI information from medical texts. The
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -169,6 +170,3 @@ Phone 74 617 042, 1407 west stassney lane, Edmonton, E-MAIL: Carliss@hotmail.com
- DeIdentificationModel
- DeIdentificationModel
- Finisher
-
diff --git a/docs/_posts/Cabir40/2022-03-23-assertion_dl_biobert_scope_L10R10_en_3_0.md b/docs/_posts/Cabir40/2022-03-23-assertion_dl_biobert_scope_L10R10_en_3_0.md
index 1e5f989972..79539f98fd 100644
--- a/docs/_posts/Cabir40/2022-03-23-assertion_dl_biobert_scope_L10R10_en_3_0.md
+++ b/docs/_posts/Cabir40/2022-03-23-assertion_dl_biobert_scope_L10R10_en_3_0.md
@@ -46,6 +46,7 @@ This model is trained using `biobert_pubmed_base_cased` BERT token embeddings. I
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
document = DocumentAssembler()\
.setInputCol("text")\
@@ -215,6 +216,3 @@ possible 126 36 75 0.7777778 0.6268657 0.6942149
Macro-average 3633 328 328 0.7967971 0.8105832 0.8036310
Micro-average 3633 328 328 0.9171926 0.9171926 0.9171926
```
-
\ No newline at end of file
diff --git a/docs/_posts/Cabir40/2022-03-24-assertion_dl_biobert_scope_L10R10_en_2_4.md b/docs/_posts/Cabir40/2022-03-24-assertion_dl_biobert_scope_L10R10_en_2_4.md
index aee1d18518..a2119b6618 100644
--- a/docs/_posts/Cabir40/2022-03-24-assertion_dl_biobert_scope_L10R10_en_2_4.md
+++ b/docs/_posts/Cabir40/2022-03-24-assertion_dl_biobert_scope_L10R10_en_2_4.md
@@ -46,6 +46,7 @@ This model is trained using `biobert_pubmed_base_cased` BERT token embeddings. I
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
document = DocumentAssembler()\
.setInputCol("text")\
@@ -210,7 +211,3 @@ possible 126 36 75 0.7777778 0.6268657 0.6942149
Macro-average 3633 328 328 0.7967971 0.8105832 0.8036310
Micro-average 3633 328 328 0.9171926 0.9171926 0.9171926
```
-
\ No newline at end of file
diff --git a/docs/_posts/Cabir40/2022-03-31-explain_clinical_doc_radiology_en_3_0.md b/docs/_posts/Cabir40/2022-03-31-explain_clinical_doc_radiology_en_3_0.md
index 38d9b6fbd1..aa3f323c57 100644
--- a/docs/_posts/Cabir40/2022-03-31-explain_clinical_doc_radiology_en_3_0.md
+++ b/docs/_posts/Cabir40/2022-03-31-explain_clinical_doc_radiology_en_3_0.md
@@ -33,6 +33,7 @@ A pipeline for detecting radiology entities with the `ner_radiology` NER model,
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
diff --git a/docs/_posts/Cabir40/2022-04-01-explain_clinical_doc_medication_en_3_0.md b/docs/_posts/Cabir40/2022-04-01-explain_clinical_doc_medication_en_3_0.md
index 602d127ca3..ef27e13913 100644
--- a/docs/_posts/Cabir40/2022-04-01-explain_clinical_doc_medication_en_3_0.md
+++ b/docs/_posts/Cabir40/2022-04-01-explain_clinical_doc_medication_en_3_0.md
@@ -33,6 +33,7 @@ A pipeline for detecting posology entities with the `ner_posology_large` NER mod
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
diff --git a/docs/_posts/Cabir40/2022-04-25-sbiobertresolve_rxnorm_action_treatment_en_2_4.md b/docs/_posts/Cabir40/2022-04-25-sbiobertresolve_rxnorm_action_treatment_en_2_4.md
index 38dfe597d2..16dc31aff2 100644
--- a/docs/_posts/Cabir40/2022-04-25-sbiobertresolve_rxnorm_action_treatment_en_2_4.md
+++ b/docs/_posts/Cabir40/2022-04-25-sbiobertresolve_rxnorm_action_treatment_en_2_4.md
@@ -37,6 +37,7 @@ This model maps clinical entities and concepts (like drugs/ingredients) to RxNor
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
documentAssembler = DocumentAssembler()\
.setInputCol("text")\
diff --git a/docs/_posts/Cabir40/2022-05-11-sbiobertresolve_icd10cm_slim_billable_hcc_en_3_0.md b/docs/_posts/Cabir40/2022-05-11-sbiobertresolve_icd10cm_slim_billable_hcc_en_3_0.md
index 527e9a0c6c..f30efa509a 100644
--- a/docs/_posts/Cabir40/2022-05-11-sbiobertresolve_icd10cm_slim_billable_hcc_en_3_0.md
+++ b/docs/_posts/Cabir40/2022-05-11-sbiobertresolve_icd10cm_slim_billable_hcc_en_3_0.md
@@ -202,8 +202,6 @@ nlu.load("en.resolve.icd10cm.slim_billable_hcc").predict("""A 28-year-old female
| vomiting|PROBLEM| R11.1|vomiting [Vomiting]:::vomiting [Vomiting, unspecified]:::intermi...|R11.1:::R11.10:::R11:::G43.A0:::G43.A:::R11.0::...| 0||0||0:::1||0||0:::0||0||0:::1||0||0:::0||0||0:::1...|
| a respiratory tract infection|PROBLEM| J06.9|upper respiratory tract infection [Acute upper respiratory infec...|J06.9:::T17.9:::T17:::J04.10:::J22:::J98.8:::J9...| 1||0||0:::0||0||0:::0||0||0:::1||0||0:::1||0||0:::1...|
+-------------------------------------+-------+--------+----------------------------------------------------------------------------------------------------+--------------------------------------------------+-------------------------------------------------------+
-
-
```
@@ -222,7 +220,3 @@ nlu.load("en.resolve.icd10cm.slim_billable_hcc").predict("""A 28-year-old female
|Language:|en|
|Size:|846.6 MB|
|Case sensitive:|false|
-
\ No newline at end of file
diff --git a/docs/_posts/Cabir40/2022-05-12-sbiobertresolve_icd10cm_slim_normalized_en_3_0.md b/docs/_posts/Cabir40/2022-05-12-sbiobertresolve_icd10cm_slim_normalized_en_3_0.md
index 3bbaee1217..99e5fc0e5c 100644
--- a/docs/_posts/Cabir40/2022-05-12-sbiobertresolve_icd10cm_slim_normalized_en_3_0.md
+++ b/docs/_posts/Cabir40/2022-05-12-sbiobertresolve_icd10cm_slim_normalized_en_3_0.md
@@ -220,6 +220,3 @@ nlu.load("en.resolve.icd10cm.slim_normalized").predict("""A 28-year-old female w
|Language:|en|
|Size:|846.3 MB|
|Case sensitive:|false|
-
\ No newline at end of file
diff --git a/docs/_posts/Cabir40/2022-06-22-ner_biomedical_bc2gm_pipeline_en_3_0.md b/docs/_posts/Cabir40/2022-06-22-ner_biomedical_bc2gm_pipeline_en_3_0.md
index 604c5a47ea..b11467b797 100644
--- a/docs/_posts/Cabir40/2022-06-22-ner_biomedical_bc2gm_pipeline_en_3_0.md
+++ b/docs/_posts/Cabir40/2022-06-22-ner_biomedical_bc2gm_pipeline_en_3_0.md
@@ -33,6 +33,7 @@ This pretrained pipeline is built on the top of [ner_biomedical_bc2gm](https://n
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
diff --git a/docs/_posts/Cabir40/2022-06-27-ner_clinical_trials_abstracts_pipeline_en_3_0.md b/docs/_posts/Cabir40/2022-06-27-ner_clinical_trials_abstracts_pipeline_en_3_0.md
index f353032dcf..0958f37ca4 100644
--- a/docs/_posts/Cabir40/2022-06-27-ner_clinical_trials_abstracts_pipeline_en_3_0.md
+++ b/docs/_posts/Cabir40/2022-06-27-ner_clinical_trials_abstracts_pipeline_en_3_0.md
@@ -33,6 +33,7 @@ This pretrained pipeline is built on the top of [ner_clinical_trials_abstracts](
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
diff --git a/docs/_posts/Cabir40/2022-07-29-ner_living_species_300_es_3_0.md b/docs/_posts/Cabir40/2022-07-29-ner_living_species_300_es_3_0.md
index 0367af5818..3185760efc 100644
--- a/docs/_posts/Cabir40/2022-07-29-ner_living_species_300_es_3_0.md
+++ b/docs/_posts/Cabir40/2022-07-29-ner_living_species_300_es_3_0.md
@@ -38,6 +38,7 @@ It is trained on the [LivingNER](https://temu.bsc.es/livingner/) corpus that is
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
document_assembler = DocumentAssembler()\
.setInputCol("text")\
diff --git a/docs/_posts/Cabir40/2022-08-12-ner_clinical_bert_ro_3_0.md b/docs/_posts/Cabir40/2022-08-12-ner_clinical_bert_ro_3_0.md
index 0d9fd98820..f70a6457eb 100644
--- a/docs/_posts/Cabir40/2022-08-12-ner_clinical_bert_ro_3_0.md
+++ b/docs/_posts/Cabir40/2022-08-12-ner_clinical_bert_ro_3_0.md
@@ -37,6 +37,7 @@ Extract clinical entities from Romanian clinical texts. This model is trained us
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
documentAssembler = DocumentAssembler()\
.setInputCol("text")\
diff --git a/docs/_posts/Cabir40/2022-08-15-ner_deid_generic_bert_ro_3_0.md b/docs/_posts/Cabir40/2022-08-15-ner_deid_generic_bert_ro_3_0.md
index 61395a355b..ff000832bc 100644
--- a/docs/_posts/Cabir40/2022-08-15-ner_deid_generic_bert_ro_3_0.md
+++ b/docs/_posts/Cabir40/2022-08-15-ner_deid_generic_bert_ro_3_0.md
@@ -41,6 +41,7 @@ This NER model is trained with a combination of custom datasets with several dat
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
documentAssembler = DocumentAssembler()\
.setInputCol("text")\
diff --git a/docs/_posts/Cabir40/2022-09-14-clinical_deidentification_en.md b/docs/_posts/Cabir40/2022-09-14-clinical_deidentification_en.md
index dc6322cc9a..183f6f8244 100644
--- a/docs/_posts/Cabir40/2022-09-14-clinical_deidentification_en.md
+++ b/docs/_posts/Cabir40/2022-09-14-clinical_deidentification_en.md
@@ -33,6 +33,7 @@ This pipeline can be used to deidentify PHI information from medical texts. The
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
diff --git a/docs/_posts/Cabir40/2022-09-16-clinical_deidentification_glove_augmented_en.md b/docs/_posts/Cabir40/2022-09-16-clinical_deidentification_glove_augmented_en.md
index 9a8b893725..6fd83c327b 100644
--- a/docs/_posts/Cabir40/2022-09-16-clinical_deidentification_glove_augmented_en.md
+++ b/docs/_posts/Cabir40/2022-09-16-clinical_deidentification_glove_augmented_en.md
@@ -35,6 +35,7 @@ It's different to `clinical_deidentification_glove` in the way it manages PHONE
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
diff --git a/docs/_posts/Cabir40/2022-11-22-ner_clinical_bert_ro.md b/docs/_posts/Cabir40/2022-11-22-ner_clinical_bert_ro.md
index 82ac81aeb4..2c4a6cb70e 100644
--- a/docs/_posts/Cabir40/2022-11-22-ner_clinical_bert_ro.md
+++ b/docs/_posts/Cabir40/2022-11-22-ner_clinical_bert_ro.md
@@ -36,6 +36,7 @@ Extract clinical entities from Romanian clinical texts. This model is trained us
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
documentAssembler = DocumentAssembler()\
.setInputCol("text")\
diff --git a/docs/_posts/Cabir40/2022-11-22-ner_deid_generic_bert_ro.md b/docs/_posts/Cabir40/2022-11-22-ner_deid_generic_bert_ro.md
index 4790696d26..5f4600f36c 100644
--- a/docs/_posts/Cabir40/2022-11-22-ner_deid_generic_bert_ro.md
+++ b/docs/_posts/Cabir40/2022-11-22-ner_deid_generic_bert_ro.md
@@ -38,6 +38,7 @@ This NER model is trained with a combination of custom datasets with several dat
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
documentAssembler = DocumentAssembler()\
.setInputCol("text")\
diff --git a/docs/_posts/Cabir40/2022-11-22-ner_living_species_300_es.md b/docs/_posts/Cabir40/2022-11-22-ner_living_species_300_es.md
index 364bb3c226..3b4c2dd5ce 100644
--- a/docs/_posts/Cabir40/2022-11-22-ner_living_species_300_es.md
+++ b/docs/_posts/Cabir40/2022-11-22-ner_living_species_300_es.md
@@ -38,6 +38,7 @@ It is trained on the [LivingNER](https://temu.bsc.es/livingner/) corpus that is
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
document_assembler = DocumentAssembler()\
.setInputCol("text")\
diff --git a/docs/_posts/Cabir40/2023-01-06-redl_clinical_biobert_en.md b/docs/_posts/Cabir40/2023-01-06-redl_clinical_biobert_en.md
index 6b555618d3..b3f81c6397 100644
--- a/docs/_posts/Cabir40/2023-01-06-redl_clinical_biobert_en.md
+++ b/docs/_posts/Cabir40/2023-01-06-redl_clinical_biobert_en.md
@@ -37,6 +37,7 @@ Extract relations like `TrIP` : a certain treatment has improved a medical probl
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
documenter = DocumentAssembler()\
.setInputCol("text")\
diff --git a/docs/_posts/Cabir40/2023-02-26-biogpt_pubmed_qa_en.md b/docs/_posts/Cabir40/2023-02-26-biogpt_pubmed_qa_en.md
index 80d0d613ce..ac69872167 100644
--- a/docs/_posts/Cabir40/2023-02-26-biogpt_pubmed_qa_en.md
+++ b/docs/_posts/Cabir40/2023-02-26-biogpt_pubmed_qa_en.md
@@ -39,6 +39,7 @@ Types of questions are supported: `"short"` (producing yes/no/maybe) answers and
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
document_assembler = MultiDocumentAssembler()\
.setInputCols("question", "context")\
@@ -114,7 +115,6 @@ val result = pipeline.fit(data).transform(data)
+------------------------------------------------------------------------------------------------------------------------------------------------------+
|[the results of the two experiments suggest that the visual indexeing theory does not fully explain the effects that spatial attention has on memory.]|
+------------------------------------------------------------------------------------------------------------------------------------------------------+
-
```
{:.model-param}
diff --git a/docs/_posts/Cabir40/2023-03-07-ner_eu_clinical_condition_pipeline_en.md b/docs/_posts/Cabir40/2023-03-07-ner_eu_clinical_condition_pipeline_en.md
index 2ef78ce5b3..8a6237346f 100644
--- a/docs/_posts/Cabir40/2023-03-07-ner_eu_clinical_condition_pipeline_en.md
+++ b/docs/_posts/Cabir40/2023-03-07-ner_eu_clinical_condition_pipeline_en.md
@@ -32,6 +32,7 @@ This pretrained pipeline is built on the top of [ner_eu_clinical_condition](http
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
diff --git a/docs/_posts/Cabir40/2023-03-07-ner_eu_clinical_condition_pipeline_eu.md b/docs/_posts/Cabir40/2023-03-07-ner_eu_clinical_condition_pipeline_eu.md
index e1a3b2827a..47e228e7d2 100644
--- a/docs/_posts/Cabir40/2023-03-07-ner_eu_clinical_condition_pipeline_eu.md
+++ b/docs/_posts/Cabir40/2023-03-07-ner_eu_clinical_condition_pipeline_eu.md
@@ -32,6 +32,7 @@ This pretrained pipeline is built on the top of [ner_eu_clinical_condition](http
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
diff --git a/docs/_posts/Cabir40/2023-03-07-ner_jsl_slim_pipeline_en.md b/docs/_posts/Cabir40/2023-03-07-ner_jsl_slim_pipeline_en.md
index c241d723ec..cb45f0d819 100644
--- a/docs/_posts/Cabir40/2023-03-07-ner_jsl_slim_pipeline_en.md
+++ b/docs/_posts/Cabir40/2023-03-07-ner_jsl_slim_pipeline_en.md
@@ -32,6 +32,7 @@ This pretrained pipeline is built on the top of [ner_jsl_slim](https://nlp.johns
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -50,8 +51,6 @@ val pipeline = new PretrainedPipeline("ner_jsl_slim_pipeline", "en", "clinical/m
val text = "Hyperparathyroidism was considered upon the fourth occasion. The history of weakness and generalized joint pains were present. He also had history of epigastric pain diagnosed informally as gastritis. He had previously had open reduction and internal fixation for the initial two fractures under general anesthesia. He sustained mandibular fracture."
val result = pipeline.fullAnnotate(text)
-
-
```
diff --git a/docs/_posts/Cabir40/2023-03-08-ner_eu_clinical_case_pipeline_en.md b/docs/_posts/Cabir40/2023-03-08-ner_eu_clinical_case_pipeline_en.md
index cf156d984f..2132537899 100644
--- a/docs/_posts/Cabir40/2023-03-08-ner_eu_clinical_case_pipeline_en.md
+++ b/docs/_posts/Cabir40/2023-03-08-ner_eu_clinical_case_pipeline_en.md
@@ -32,6 +32,7 @@ This pretrained pipeline is built on the top of [ner_eu_clinical_case](https://n
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
diff --git a/docs/_posts/Cabir40/2023-03-08-ner_eu_clinical_case_pipeline_es.md b/docs/_posts/Cabir40/2023-03-08-ner_eu_clinical_case_pipeline_es.md
index 489bfda50a..1ae7775096 100644
--- a/docs/_posts/Cabir40/2023-03-08-ner_eu_clinical_case_pipeline_es.md
+++ b/docs/_posts/Cabir40/2023-03-08-ner_eu_clinical_case_pipeline_es.md
@@ -32,6 +32,7 @@ This pretrained pipeline is built on the top of [ner_eu_clinical_case](https://n
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
diff --git a/docs/_posts/Cabir40/2023-03-08-ner_eu_clinical_case_pipeline_eu.md b/docs/_posts/Cabir40/2023-03-08-ner_eu_clinical_case_pipeline_eu.md
index bd21aab10f..89c317d44b 100644
--- a/docs/_posts/Cabir40/2023-03-08-ner_eu_clinical_case_pipeline_eu.md
+++ b/docs/_posts/Cabir40/2023-03-08-ner_eu_clinical_case_pipeline_eu.md
@@ -32,6 +32,7 @@ This pretrained pipeline is built on the top of [ner_eu_clinical_case](https://n
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
diff --git a/docs/_posts/Cabir40/2023-03-08-ner_eu_clinical_case_pipeline_fr.md b/docs/_posts/Cabir40/2023-03-08-ner_eu_clinical_case_pipeline_fr.md
index a59311de3d..be8645aa6c 100644
--- a/docs/_posts/Cabir40/2023-03-08-ner_eu_clinical_case_pipeline_fr.md
+++ b/docs/_posts/Cabir40/2023-03-08-ner_eu_clinical_case_pipeline_fr.md
@@ -32,6 +32,7 @@ This pretrained pipeline is built on the top of [ner_eu_clinical_case](https://n
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
diff --git a/docs/_posts/Cabir40/2023-03-08-ner_eu_clinical_condition_pipeline_es.md b/docs/_posts/Cabir40/2023-03-08-ner_eu_clinical_condition_pipeline_es.md
index 054ca7fff1..3453cc91a6 100644
--- a/docs/_posts/Cabir40/2023-03-08-ner_eu_clinical_condition_pipeline_es.md
+++ b/docs/_posts/Cabir40/2023-03-08-ner_eu_clinical_condition_pipeline_es.md
@@ -32,6 +32,7 @@ This pretrained pipeline is built on the top of [ner_eu_clinical_condition](http
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
diff --git a/docs/_posts/Cabir40/2023-03-08-ner_eu_clinical_condition_pipeline_fr.md b/docs/_posts/Cabir40/2023-03-08-ner_eu_clinical_condition_pipeline_fr.md
index e318020792..8463df54e1 100644
--- a/docs/_posts/Cabir40/2023-03-08-ner_eu_clinical_condition_pipeline_fr.md
+++ b/docs/_posts/Cabir40/2023-03-08-ner_eu_clinical_condition_pipeline_fr.md
@@ -32,6 +32,7 @@ This pretrained pipeline is built on the top of [ner_eu_clinical_condition](http
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
diff --git a/docs/_posts/Cabir40/2023-03-08-ner_eu_clinical_condition_pipeline_it.md b/docs/_posts/Cabir40/2023-03-08-ner_eu_clinical_condition_pipeline_it.md
index ffb085ca4b..b522946c8a 100644
--- a/docs/_posts/Cabir40/2023-03-08-ner_eu_clinical_condition_pipeline_it.md
+++ b/docs/_posts/Cabir40/2023-03-08-ner_eu_clinical_condition_pipeline_it.md
@@ -32,6 +32,7 @@ This pretrained pipeline is built on the top of [ner_eu_clinical_condition](http
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
diff --git a/docs/_posts/Cabir40/2023-03-08-ner_oncology_anatomy_general_healthcare_pipeline_en.md b/docs/_posts/Cabir40/2023-03-08-ner_oncology_anatomy_general_healthcare_pipeline_en.md
index afa0ea6d0d..5e26f29588 100644
--- a/docs/_posts/Cabir40/2023-03-08-ner_oncology_anatomy_general_healthcare_pipeline_en.md
+++ b/docs/_posts/Cabir40/2023-03-08-ner_oncology_anatomy_general_healthcare_pipeline_en.md
@@ -32,6 +32,7 @@ This pretrained pipeline is built on the top of [ner_oncology_anatomy_general_he
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
diff --git a/docs/_posts/Cabir40/2023-03-08-ner_oncology_anatomy_general_pipeline_en.md b/docs/_posts/Cabir40/2023-03-08-ner_oncology_anatomy_general_pipeline_en.md
index ecf9b83cd6..88102c099b 100644
--- a/docs/_posts/Cabir40/2023-03-08-ner_oncology_anatomy_general_pipeline_en.md
+++ b/docs/_posts/Cabir40/2023-03-08-ner_oncology_anatomy_general_pipeline_en.md
@@ -32,6 +32,7 @@ This pretrained pipeline is built on the top of [ner_oncology_anatomy_general](h
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
diff --git a/docs/_posts/Cabir40/2023-03-08-ner_oncology_anatomy_granular_pipeline_en.md b/docs/_posts/Cabir40/2023-03-08-ner_oncology_anatomy_granular_pipeline_en.md
index 4c213ed9cf..bc1eccfeaf 100644
--- a/docs/_posts/Cabir40/2023-03-08-ner_oncology_anatomy_granular_pipeline_en.md
+++ b/docs/_posts/Cabir40/2023-03-08-ner_oncology_anatomy_granular_pipeline_en.md
@@ -32,6 +32,7 @@ This pretrained pipeline is built on the top of [ner_oncology_anatomy_granular](
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
diff --git a/docs/_posts/Cabir40/2023-03-08-ner_oncology_biomarker_healthcare_pipeline_en.md b/docs/_posts/Cabir40/2023-03-08-ner_oncology_biomarker_healthcare_pipeline_en.md
index 77e226b1fc..d65dd4ef97 100644
--- a/docs/_posts/Cabir40/2023-03-08-ner_oncology_biomarker_healthcare_pipeline_en.md
+++ b/docs/_posts/Cabir40/2023-03-08-ner_oncology_biomarker_healthcare_pipeline_en.md
@@ -32,6 +32,7 @@ This pretrained pipeline is built on the top of [ner_oncology_biomarker_healthca
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
diff --git a/docs/_posts/Cabir40/2023-03-08-ner_oncology_pipeline_en.md b/docs/_posts/Cabir40/2023-03-08-ner_oncology_pipeline_en.md
index e3506ed782..b4bc1a77d8 100644
--- a/docs/_posts/Cabir40/2023-03-08-ner_oncology_pipeline_en.md
+++ b/docs/_posts/Cabir40/2023-03-08-ner_oncology_pipeline_en.md
@@ -32,6 +32,7 @@ This pretrained pipeline is built on the top of [ner_oncology](https://nlp.johns
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
diff --git a/docs/_posts/Cabir40/2023-03-08-ner_oncology_posology_pipeline_en.md b/docs/_posts/Cabir40/2023-03-08-ner_oncology_posology_pipeline_en.md
index 4034f71ab0..a2b9fd2275 100644
--- a/docs/_posts/Cabir40/2023-03-08-ner_oncology_posology_pipeline_en.md
+++ b/docs/_posts/Cabir40/2023-03-08-ner_oncology_posology_pipeline_en.md
@@ -32,6 +32,7 @@ This pretrained pipeline is built on the top of [ner_oncology_posology](https://
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
diff --git a/docs/_posts/Cabir40/2023-03-08-ner_oncology_unspecific_posology_healthcare_pipeline_en.md b/docs/_posts/Cabir40/2023-03-08-ner_oncology_unspecific_posology_healthcare_pipeline_en.md
index cbf21a4290..05b7812a39 100644
--- a/docs/_posts/Cabir40/2023-03-08-ner_oncology_unspecific_posology_healthcare_pipeline_en.md
+++ b/docs/_posts/Cabir40/2023-03-08-ner_oncology_unspecific_posology_healthcare_pipeline_en.md
@@ -32,6 +32,7 @@ This pretrained pipeline is built on the top of [ner_oncology_unspecific_posolog
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
diff --git a/docs/_posts/Cabir40/2023-03-09-biogpt_pubmed_qa_en.md b/docs/_posts/Cabir40/2023-03-09-biogpt_pubmed_qa_en.md
index 2767dd590e..ebf33c1775 100644
--- a/docs/_posts/Cabir40/2023-03-09-biogpt_pubmed_qa_en.md
+++ b/docs/_posts/Cabir40/2023-03-09-biogpt_pubmed_qa_en.md
@@ -38,6 +38,7 @@ Types of questions are supported: `"short"` (producing yes/no/maybe) answers and
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
document_assembler = MultiDocumentAssembler()\
.setInputCols("question", "context")\
diff --git a/docs/_posts/Cabir40/2023-03-09-medical_qa_biogpt_en.md b/docs/_posts/Cabir40/2023-03-09-medical_qa_biogpt_en.md
index 6f4e868005..da4f4989c5 100644
--- a/docs/_posts/Cabir40/2023-03-09-medical_qa_biogpt_en.md
+++ b/docs/_posts/Cabir40/2023-03-09-medical_qa_biogpt_en.md
@@ -39,6 +39,7 @@ It can generate two types of answers, short and long. Types of questions are sup
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
document_assembler = MultiDocumentAssembler()\
diff --git a/docs/_posts/Cabir40/2023-03-09-ner_clinical_bert_pipeline_ro.md b/docs/_posts/Cabir40/2023-03-09-ner_clinical_bert_pipeline_ro.md
index f6e91414b5..1bcc892c51 100644
--- a/docs/_posts/Cabir40/2023-03-09-ner_clinical_bert_pipeline_ro.md
+++ b/docs/_posts/Cabir40/2023-03-09-ner_clinical_bert_pipeline_ro.md
@@ -32,6 +32,7 @@ This pretrained pipeline is built on the top of [ner_clinical_bert](https://nlp.
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
diff --git a/docs/_posts/Cabir40/2023-03-09-ner_clinical_pipeline_ro.md b/docs/_posts/Cabir40/2023-03-09-ner_clinical_pipeline_ro.md
index b85028a80e..d218d5dce7 100644
--- a/docs/_posts/Cabir40/2023-03-09-ner_clinical_pipeline_ro.md
+++ b/docs/_posts/Cabir40/2023-03-09-ner_clinical_pipeline_ro.md
@@ -32,6 +32,7 @@ This pretrained pipeline is built on the top of [ner_clinical](https://nlp.johns
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
diff --git a/docs/_posts/Cabir40/2023-03-09-ner_clinical_trials_abstracts_pipeline_en.md b/docs/_posts/Cabir40/2023-03-09-ner_clinical_trials_abstracts_pipeline_en.md
index d78101b0a5..a1f25f4e54 100644
--- a/docs/_posts/Cabir40/2023-03-09-ner_clinical_trials_abstracts_pipeline_en.md
+++ b/docs/_posts/Cabir40/2023-03-09-ner_clinical_trials_abstracts_pipeline_en.md
@@ -32,6 +32,7 @@ This pretrained pipeline is built on the top of [ner_clinical_trials_abstracts](
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
diff --git a/docs/_posts/Cabir40/2023-03-09-ner_clinical_trials_abstracts_pipeline_es.md b/docs/_posts/Cabir40/2023-03-09-ner_clinical_trials_abstracts_pipeline_es.md
index 6a5a5a143b..03e1cbd242 100644
--- a/docs/_posts/Cabir40/2023-03-09-ner_clinical_trials_abstracts_pipeline_es.md
+++ b/docs/_posts/Cabir40/2023-03-09-ner_clinical_trials_abstracts_pipeline_es.md
@@ -32,6 +32,7 @@ This pretrained pipeline is built on the top of [ner_clinical_trials_abstracts](
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
diff --git a/docs/_posts/Cabir40/2023-03-09-ner_covid_trials_pipeline_en.md b/docs/_posts/Cabir40/2023-03-09-ner_covid_trials_pipeline_en.md
index f5b11db070..bdd5d6acf8 100644
--- a/docs/_posts/Cabir40/2023-03-09-ner_covid_trials_pipeline_en.md
+++ b/docs/_posts/Cabir40/2023-03-09-ner_covid_trials_pipeline_en.md
@@ -32,6 +32,7 @@ This pretrained pipeline is built on the top of [ner_covid_trials](https://nlp.j
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
diff --git a/docs/_posts/Cabir40/2023-03-09-ner_deid_generic_bert_pipeline_ro.md b/docs/_posts/Cabir40/2023-03-09-ner_deid_generic_bert_pipeline_ro.md
index 5b471a6ba7..057a84f1af 100644
--- a/docs/_posts/Cabir40/2023-03-09-ner_deid_generic_bert_pipeline_ro.md
+++ b/docs/_posts/Cabir40/2023-03-09-ner_deid_generic_bert_pipeline_ro.md
@@ -32,6 +32,7 @@ This pretrained pipeline is built on the top of [ner_deid_generic_bert](https://
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
diff --git a/docs/_posts/Cabir40/2023-03-09-ner_deid_generic_pipeline_ro.md b/docs/_posts/Cabir40/2023-03-09-ner_deid_generic_pipeline_ro.md
index e97ca81f35..2b1fb9389e 100644
--- a/docs/_posts/Cabir40/2023-03-09-ner_deid_generic_pipeline_ro.md
+++ b/docs/_posts/Cabir40/2023-03-09-ner_deid_generic_pipeline_ro.md
@@ -32,6 +32,7 @@ This pretrained pipeline is built on the top of [ner_deid_generic](https://nlp.j
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
diff --git a/docs/_posts/Cabir40/2023-03-09-ner_deid_subentity_bert_pipeline_ro.md b/docs/_posts/Cabir40/2023-03-09-ner_deid_subentity_bert_pipeline_ro.md
index 8474aed0a2..37523170b0 100644
--- a/docs/_posts/Cabir40/2023-03-09-ner_deid_subentity_bert_pipeline_ro.md
+++ b/docs/_posts/Cabir40/2023-03-09-ner_deid_subentity_bert_pipeline_ro.md
@@ -32,6 +32,7 @@ This pretrained pipeline is built on the top of [ner_deid_subentity_bert](https:
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
diff --git a/docs/_posts/Cabir40/2023-03-09-ner_deid_subentity_pipeline_ro.md b/docs/_posts/Cabir40/2023-03-09-ner_deid_subentity_pipeline_ro.md
index e46644b3e3..34b6311f9d 100644
--- a/docs/_posts/Cabir40/2023-03-09-ner_deid_subentity_pipeline_ro.md
+++ b/docs/_posts/Cabir40/2023-03-09-ner_deid_subentity_pipeline_ro.md
@@ -32,6 +32,7 @@ This pretrained pipeline is built on the top of [ner_deid_subentity](https://nlp
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
diff --git a/docs/_posts/Cabir40/2023-03-09-ner_jsl_pipeline_en.md b/docs/_posts/Cabir40/2023-03-09-ner_jsl_pipeline_en.md
index 571a15fd02..d2bfb56e7e 100644
--- a/docs/_posts/Cabir40/2023-03-09-ner_jsl_pipeline_en.md
+++ b/docs/_posts/Cabir40/2023-03-09-ner_jsl_pipeline_en.md
@@ -32,6 +32,7 @@ This pretrained pipeline is built on the top of [ner_jsl](https://nlp.johnsnowla
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
diff --git a/docs/_posts/Cabir40/2023-03-09-ner_living_species_300_pipeline_es.md b/docs/_posts/Cabir40/2023-03-09-ner_living_species_300_pipeline_es.md
index a3e927d6f9..3616edf641 100644
--- a/docs/_posts/Cabir40/2023-03-09-ner_living_species_300_pipeline_es.md
+++ b/docs/_posts/Cabir40/2023-03-09-ner_living_species_300_pipeline_es.md
@@ -32,6 +32,7 @@ This pretrained pipeline is built on the top of [ner_living_species_300](https:/
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
diff --git a/docs/_posts/Cabir40/2023-03-09-ner_negation_uncertainty_pipeline_es.md b/docs/_posts/Cabir40/2023-03-09-ner_negation_uncertainty_pipeline_es.md
index 05887be1d5..f59c5526c5 100644
--- a/docs/_posts/Cabir40/2023-03-09-ner_negation_uncertainty_pipeline_es.md
+++ b/docs/_posts/Cabir40/2023-03-09-ner_negation_uncertainty_pipeline_es.md
@@ -32,6 +32,7 @@ This pretrained pipeline is built on the top of [ner_negation_uncertainty](https
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
diff --git a/docs/_posts/Cabir40/2023-03-09-ner_oncology_biomarker_pipeline_en.md b/docs/_posts/Cabir40/2023-03-09-ner_oncology_biomarker_pipeline_en.md
index 02904d1157..edbe8fea19 100644
--- a/docs/_posts/Cabir40/2023-03-09-ner_oncology_biomarker_pipeline_en.md
+++ b/docs/_posts/Cabir40/2023-03-09-ner_oncology_biomarker_pipeline_en.md
@@ -32,6 +32,7 @@ This pretrained pipeline is built on the top of [ner_oncology_biomarker](https:/
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
diff --git a/docs/_posts/Cabir40/2023-03-09-ner_oncology_demographics_pipeline_en.md b/docs/_posts/Cabir40/2023-03-09-ner_oncology_demographics_pipeline_en.md
index a139dcc5de..e4c92b4aaa 100644
--- a/docs/_posts/Cabir40/2023-03-09-ner_oncology_demographics_pipeline_en.md
+++ b/docs/_posts/Cabir40/2023-03-09-ner_oncology_demographics_pipeline_en.md
@@ -32,6 +32,7 @@ This pretrained pipeline is built on the top of [ner_oncology_demographics](http
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
diff --git a/docs/_posts/Cabir40/2023-03-09-ner_oncology_diagnosis_pipeline_en.md b/docs/_posts/Cabir40/2023-03-09-ner_oncology_diagnosis_pipeline_en.md
index 0ed099a9b7..31481d153a 100644
--- a/docs/_posts/Cabir40/2023-03-09-ner_oncology_diagnosis_pipeline_en.md
+++ b/docs/_posts/Cabir40/2023-03-09-ner_oncology_diagnosis_pipeline_en.md
@@ -32,6 +32,7 @@ This pretrained pipeline is built on the top of [ner_oncology_diagnosis](https:/
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
diff --git a/docs/_posts/Cabir40/2023-03-09-ner_oncology_response_to_treatment_pipeline_en.md b/docs/_posts/Cabir40/2023-03-09-ner_oncology_response_to_treatment_pipeline_en.md
index ab0bdfee37..37039ab956 100644
--- a/docs/_posts/Cabir40/2023-03-09-ner_oncology_response_to_treatment_pipeline_en.md
+++ b/docs/_posts/Cabir40/2023-03-09-ner_oncology_response_to_treatment_pipeline_en.md
@@ -32,6 +32,7 @@ This pretrained pipeline is built on the top of [ner_oncology_response_to_treatm
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
diff --git a/docs/_posts/Cabir40/2023-03-09-ner_oncology_test_pipeline_en.md b/docs/_posts/Cabir40/2023-03-09-ner_oncology_test_pipeline_en.md
index 8733eac6da..7dfd297973 100644
--- a/docs/_posts/Cabir40/2023-03-09-ner_oncology_test_pipeline_en.md
+++ b/docs/_posts/Cabir40/2023-03-09-ner_oncology_test_pipeline_en.md
@@ -32,6 +32,7 @@ This pretrained pipeline is built on the top of [ner_oncology_test](https://nlp.
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
diff --git a/docs/_posts/Cabir40/2023-03-09-ner_oncology_therapy_pipeline_en.md b/docs/_posts/Cabir40/2023-03-09-ner_oncology_therapy_pipeline_en.md
index 792795855d..7a80ce8bef 100644
--- a/docs/_posts/Cabir40/2023-03-09-ner_oncology_therapy_pipeline_en.md
+++ b/docs/_posts/Cabir40/2023-03-09-ner_oncology_therapy_pipeline_en.md
@@ -32,6 +32,7 @@ This pretrained pipeline is built on the top of [ner_oncology_therapy](https://n
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
diff --git a/docs/_posts/Cabir40/2023-03-09-ner_oncology_tnm_pipeline_en.md b/docs/_posts/Cabir40/2023-03-09-ner_oncology_tnm_pipeline_en.md
index 42b2785b48..9f83e8923d 100644
--- a/docs/_posts/Cabir40/2023-03-09-ner_oncology_tnm_pipeline_en.md
+++ b/docs/_posts/Cabir40/2023-03-09-ner_oncology_tnm_pipeline_en.md
@@ -32,6 +32,7 @@ This pretrained pipeline is built on the top of [ner_oncology_tnm](https://nlp.j
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
diff --git a/docs/_posts/Cabir40/2023-03-09-ner_oncology_unspecific_posology_pipeline_en.md b/docs/_posts/Cabir40/2023-03-09-ner_oncology_unspecific_posology_pipeline_en.md
index b942841068..5e64ac4829 100644
--- a/docs/_posts/Cabir40/2023-03-09-ner_oncology_unspecific_posology_pipeline_en.md
+++ b/docs/_posts/Cabir40/2023-03-09-ner_oncology_unspecific_posology_pipeline_en.md
@@ -32,6 +32,7 @@ This pretrained pipeline is built on the top of [ner_oncology_unspecific_posolog
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
diff --git a/docs/_posts/Cabir40/2023-03-09-ner_pathogen_pipeline_en.md b/docs/_posts/Cabir40/2023-03-09-ner_pathogen_pipeline_en.md
index 94210302a5..a4de66eceb 100644
--- a/docs/_posts/Cabir40/2023-03-09-ner_pathogen_pipeline_en.md
+++ b/docs/_posts/Cabir40/2023-03-09-ner_pathogen_pipeline_en.md
@@ -32,6 +32,7 @@ This pretrained pipeline is built on the top of [ner_pathogen](https://nlp.johns
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
diff --git a/docs/_posts/Cabir40/2023-03-09-ner_pharmacology_pipeline_es.md b/docs/_posts/Cabir40/2023-03-09-ner_pharmacology_pipeline_es.md
index 11e1ea1cf3..3adc54d43b 100644
--- a/docs/_posts/Cabir40/2023-03-09-ner_pharmacology_pipeline_es.md
+++ b/docs/_posts/Cabir40/2023-03-09-ner_pharmacology_pipeline_es.md
@@ -28,10 +28,9 @@ This pretrained pipeline is built on the top of [ner_pharmacology](https://nlp.j
## How to use
-
-
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
diff --git a/docs/_posts/Cabir40/2023-03-10-umls_clinical_findings_resolver_pipeline_en.md b/docs/_posts/Cabir40/2023-03-10-umls_clinical_findings_resolver_pipeline_en.md
index 40d4b9a3b6..15d93e3526 100644
--- a/docs/_posts/Cabir40/2023-03-10-umls_clinical_findings_resolver_pipeline_en.md
+++ b/docs/_posts/Cabir40/2023-03-10-umls_clinical_findings_resolver_pipeline_en.md
@@ -32,6 +32,7 @@ This pretrained pipeline maps entities (Clinical Findings) with their correspond
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -99,4 +100,4 @@ nlu.load("en.map_entity.umls_clinical_findings_resolver").predict("""['HTG-induc
- Chunk2Doc
- BertSentenceEmbeddings
- SentenceEntityResolverModel
-- ResolverMerger
\ No newline at end of file
+- ResolverMerger
diff --git a/docs/_posts/Cabir40/2023-03-13-ner_deid_augmented_pipeline_en.md b/docs/_posts/Cabir40/2023-03-13-ner_deid_augmented_pipeline_en.md
index f64db700d1..2968af9172 100644
--- a/docs/_posts/Cabir40/2023-03-13-ner_deid_augmented_pipeline_en.md
+++ b/docs/_posts/Cabir40/2023-03-13-ner_deid_augmented_pipeline_en.md
@@ -32,6 +32,7 @@ This pretrained pipeline is built on the top of [ner_deid_augmented](https://nlp
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -99,4 +100,4 @@ nlu.load("en.deid.ner_augmented.pipeline").predict("""HISTORY OF PRESENT ILLNESS
- TokenizerModel
- WordEmbeddingsModel
- MedicalNerModel
-- NerConverterInternalModel
\ No newline at end of file
+- NerConverterInternalModel
diff --git a/docs/_posts/Cabir40/2023-03-13-ner_deid_enriched_pipeline_en.md b/docs/_posts/Cabir40/2023-03-13-ner_deid_enriched_pipeline_en.md
index 4d8c2abc8c..d14f6d4590 100644
--- a/docs/_posts/Cabir40/2023-03-13-ner_deid_enriched_pipeline_en.md
+++ b/docs/_posts/Cabir40/2023-03-13-ner_deid_enriched_pipeline_en.md
@@ -32,6 +32,7 @@ This pretrained pipeline is built on the top of [ner_deid_enriched](https://nlp.
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -97,4 +98,4 @@ nlu.load("en.med_ner.deid_enriched.pipeline").predict("""HISTORY OF PRESENT ILLN
- TokenizerModel
- WordEmbeddingsModel
- MedicalNerModel
-- NerConverterInternalModel
\ No newline at end of file
+- NerConverterInternalModel
diff --git a/docs/_posts/Cabir40/2023-03-13-ner_deid_generic_glove_pipeline_en.md b/docs/_posts/Cabir40/2023-03-13-ner_deid_generic_glove_pipeline_en.md
index 545fc256c7..379347ddfa 100644
--- a/docs/_posts/Cabir40/2023-03-13-ner_deid_generic_glove_pipeline_en.md
+++ b/docs/_posts/Cabir40/2023-03-13-ner_deid_generic_glove_pipeline_en.md
@@ -32,6 +32,7 @@ This pretrained pipeline is built on the top of [ner_deid_generic_glove](https:/
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
diff --git a/docs/_posts/Cabir40/2023-03-13-ner_deid_generic_pipeline_de.md b/docs/_posts/Cabir40/2023-03-13-ner_deid_generic_pipeline_de.md
index d68a6fb41a..4ab65609e4 100644
--- a/docs/_posts/Cabir40/2023-03-13-ner_deid_generic_pipeline_de.md
+++ b/docs/_posts/Cabir40/2023-03-13-ner_deid_generic_pipeline_de.md
@@ -32,6 +32,7 @@ This pretrained pipeline is built on the top of [ner_deid_generic](https://nlp.j
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
diff --git a/docs/_posts/Cabir40/2023-03-13-ner_deid_generic_pipeline_it.md b/docs/_posts/Cabir40/2023-03-13-ner_deid_generic_pipeline_it.md
index 1b257d4e39..dd9fed786d 100644
--- a/docs/_posts/Cabir40/2023-03-13-ner_deid_generic_pipeline_it.md
+++ b/docs/_posts/Cabir40/2023-03-13-ner_deid_generic_pipeline_it.md
@@ -32,6 +32,7 @@ This pretrained pipeline is built on the top of [ner_deid_generic](https://nlp.j
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
diff --git a/docs/_posts/Cabir40/2023-03-13-ner_deid_large_pipeline_en.md b/docs/_posts/Cabir40/2023-03-13-ner_deid_large_pipeline_en.md
index f9a70993ef..7bd7bc27e1 100644
--- a/docs/_posts/Cabir40/2023-03-13-ner_deid_large_pipeline_en.md
+++ b/docs/_posts/Cabir40/2023-03-13-ner_deid_large_pipeline_en.md
@@ -32,6 +32,7 @@ This pretrained pipeline is built on the top of [ner_deid_large](https://nlp.joh
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
diff --git a/docs/_posts/Cabir40/2023-03-13-ner_deid_sd_large_pipeline_en.md b/docs/_posts/Cabir40/2023-03-13-ner_deid_sd_large_pipeline_en.md
index d607ba776d..55d05e9d8c 100644
--- a/docs/_posts/Cabir40/2023-03-13-ner_deid_sd_large_pipeline_en.md
+++ b/docs/_posts/Cabir40/2023-03-13-ner_deid_sd_large_pipeline_en.md
@@ -32,6 +32,7 @@ This pretrained pipeline is built on the top of [ner_deid_sd_large](https://nlp.
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
diff --git a/docs/_posts/Cabir40/2023-03-13-ner_deid_sd_pipeline_en.md b/docs/_posts/Cabir40/2023-03-13-ner_deid_sd_pipeline_en.md
index d189da9db1..a861541ed3 100644
--- a/docs/_posts/Cabir40/2023-03-13-ner_deid_sd_pipeline_en.md
+++ b/docs/_posts/Cabir40/2023-03-13-ner_deid_sd_pipeline_en.md
@@ -32,6 +32,7 @@ This pretrained pipeline is built on the top of [ner_deid_sd](https://nlp.johnsn
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
@@ -98,4 +99,4 @@ nlu.load("en.deid.sd.pipeline").predict("""Record date : 2093-01-13 , David Hale
- TokenizerModel
- WordEmbeddingsModel
- MedicalNerModel
-- NerConverterInternalModel
\ No newline at end of file
+- NerConverterInternalModel
diff --git a/docs/_posts/Cabir40/2023-03-13-ner_deid_subentity_augmented_i2b2_pipeline_en.md b/docs/_posts/Cabir40/2023-03-13-ner_deid_subentity_augmented_i2b2_pipeline_en.md
index bd33140030..d23ce77e6f 100644
--- a/docs/_posts/Cabir40/2023-03-13-ner_deid_subentity_augmented_i2b2_pipeline_en.md
+++ b/docs/_posts/Cabir40/2023-03-13-ner_deid_subentity_augmented_i2b2_pipeline_en.md
@@ -32,6 +32,7 @@ This pretrained pipeline is built on the top of [ner_deid_subentity_augmented_i2
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
diff --git a/docs/_posts/Cabir40/2023-03-13-ner_deid_subentity_augmented_pipeline_en.md b/docs/_posts/Cabir40/2023-03-13-ner_deid_subentity_augmented_pipeline_en.md
index b24cbcd799..cc1710c3f7 100644
--- a/docs/_posts/Cabir40/2023-03-13-ner_deid_subentity_augmented_pipeline_en.md
+++ b/docs/_posts/Cabir40/2023-03-13-ner_deid_subentity_augmented_pipeline_en.md
@@ -32,6 +32,7 @@ This pretrained pipeline is built on the top of [ner_deid_subentity_augmented](h
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
diff --git a/docs/_posts/Cabir40/2023-03-13-ner_deid_subentity_glove_pipeline_en.md b/docs/_posts/Cabir40/2023-03-13-ner_deid_subentity_glove_pipeline_en.md
index 97387ef2e0..87b86f5fdc 100644
--- a/docs/_posts/Cabir40/2023-03-13-ner_deid_subentity_glove_pipeline_en.md
+++ b/docs/_posts/Cabir40/2023-03-13-ner_deid_subentity_glove_pipeline_en.md
@@ -32,6 +32,7 @@ This pretrained pipeline is built on the top of [ner_deid_subentity_glove](https
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
diff --git a/docs/_posts/Cabir40/2023-03-13-ner_deid_subentity_pipeline_de.md b/docs/_posts/Cabir40/2023-03-13-ner_deid_subentity_pipeline_de.md
index 7be1b374f1..ea07f1d225 100644
--- a/docs/_posts/Cabir40/2023-03-13-ner_deid_subentity_pipeline_de.md
+++ b/docs/_posts/Cabir40/2023-03-13-ner_deid_subentity_pipeline_de.md
@@ -32,6 +32,7 @@ This pretrained pipeline is built on the top of [ner_deid_subentity](https://nlp
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
diff --git a/docs/_posts/Cabir40/2023-03-13-ner_deid_subentity_pipeline_it.md b/docs/_posts/Cabir40/2023-03-13-ner_deid_subentity_pipeline_it.md
index 3c686f7676..bb90f0e02c 100644
--- a/docs/_posts/Cabir40/2023-03-13-ner_deid_subentity_pipeline_it.md
+++ b/docs/_posts/Cabir40/2023-03-13-ner_deid_subentity_pipeline_it.md
@@ -32,6 +32,7 @@ This pretrained pipeline is built on the top of [ner_deid_subentity](https://nlp
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
diff --git a/docs/_posts/Cabir40/2023-03-13-ner_deid_synthetic_pipeline_en.md b/docs/_posts/Cabir40/2023-03-13-ner_deid_synthetic_pipeline_en.md
index be8266c2e6..43458a96ca 100644
--- a/docs/_posts/Cabir40/2023-03-13-ner_deid_synthetic_pipeline_en.md
+++ b/docs/_posts/Cabir40/2023-03-13-ner_deid_synthetic_pipeline_en.md
@@ -32,6 +32,7 @@ This pretrained pipeline is built on the top of [ner_deid_synthetic](https://nlp
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
diff --git a/docs/_posts/Cabir40/2023-03-13-ner_deidentify_dl_pipeline_en.md b/docs/_posts/Cabir40/2023-03-13-ner_deidentify_dl_pipeline_en.md
index ada3ece3e7..c068d79c29 100644
--- a/docs/_posts/Cabir40/2023-03-13-ner_deidentify_dl_pipeline_en.md
+++ b/docs/_posts/Cabir40/2023-03-13-ner_deidentify_dl_pipeline_en.md
@@ -32,6 +32,7 @@ This pretrained pipeline is built on the top of [ner_deidentify_dl](https://nlp.
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
diff --git a/docs/_posts/Cabir40/2023-03-13-ner_living_species_bert_pipeline_es.md b/docs/_posts/Cabir40/2023-03-13-ner_living_species_bert_pipeline_es.md
index 21fc1d58b2..ae7044153f 100644
--- a/docs/_posts/Cabir40/2023-03-13-ner_living_species_bert_pipeline_es.md
+++ b/docs/_posts/Cabir40/2023-03-13-ner_living_species_bert_pipeline_es.md
@@ -32,6 +32,7 @@ This pretrained pipeline is built on the top of [ner_living_species_bert](https:
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
diff --git a/docs/_posts/Cabir40/2023-03-13-ner_living_species_bert_pipeline_fr.md b/docs/_posts/Cabir40/2023-03-13-ner_living_species_bert_pipeline_fr.md
index b957865ee9..e6dc2b51a8 100644
--- a/docs/_posts/Cabir40/2023-03-13-ner_living_species_bert_pipeline_fr.md
+++ b/docs/_posts/Cabir40/2023-03-13-ner_living_species_bert_pipeline_fr.md
@@ -32,6 +32,7 @@ This pretrained pipeline is built on the top of [ner_living_species_bert](https:
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
diff --git a/docs/_posts/Cabir40/2023-03-13-ner_living_species_bert_pipeline_it.md b/docs/_posts/Cabir40/2023-03-13-ner_living_species_bert_pipeline_it.md
index 5ae3681639..87a9aca1d7 100644
--- a/docs/_posts/Cabir40/2023-03-13-ner_living_species_bert_pipeline_it.md
+++ b/docs/_posts/Cabir40/2023-03-13-ner_living_species_bert_pipeline_it.md
@@ -32,6 +32,7 @@ This pretrained pipeline is built on the top of [ner_living_species_bert](https:
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
diff --git a/docs/_posts/Cabir40/2023-03-13-ner_living_species_bert_pipeline_pt.md b/docs/_posts/Cabir40/2023-03-13-ner_living_species_bert_pipeline_pt.md
index 847b2c9c1e..2dcfa7b56a 100644
--- a/docs/_posts/Cabir40/2023-03-13-ner_living_species_bert_pipeline_pt.md
+++ b/docs/_posts/Cabir40/2023-03-13-ner_living_species_bert_pipeline_pt.md
@@ -32,6 +32,7 @@ This pretrained pipeline is built on the top of [ner_living_species_bert](https:
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
diff --git a/docs/_posts/Cabir40/2023-03-13-ner_living_species_bert_pipeline_ro.md b/docs/_posts/Cabir40/2023-03-13-ner_living_species_bert_pipeline_ro.md
index 1f88012adb..43683048ba 100644
--- a/docs/_posts/Cabir40/2023-03-13-ner_living_species_bert_pipeline_ro.md
+++ b/docs/_posts/Cabir40/2023-03-13-ner_living_species_bert_pipeline_ro.md
@@ -32,6 +32,7 @@ This pretrained pipeline is built on the top of [ner_living_species_bert](https:
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
diff --git a/docs/_posts/Cabir40/2023-03-13-ner_living_species_pipeline_ca.md b/docs/_posts/Cabir40/2023-03-13-ner_living_species_pipeline_ca.md
index 4dba52e3d5..61d12430bf 100644
--- a/docs/_posts/Cabir40/2023-03-13-ner_living_species_pipeline_ca.md
+++ b/docs/_posts/Cabir40/2023-03-13-ner_living_species_pipeline_ca.md
@@ -32,6 +32,7 @@ This pretrained pipeline is built on the top of [ner_living_species](https://nlp
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
diff --git a/docs/_posts/Cabir40/2023-03-13-ner_living_species_pipeline_en.md b/docs/_posts/Cabir40/2023-03-13-ner_living_species_pipeline_en.md
index c5d51e2d29..57e6753aa9 100644
--- a/docs/_posts/Cabir40/2023-03-13-ner_living_species_pipeline_en.md
+++ b/docs/_posts/Cabir40/2023-03-13-ner_living_species_pipeline_en.md
@@ -32,6 +32,7 @@ This pretrained pipeline is built on the top of [ner_living_species](https://nlp
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
diff --git a/docs/_posts/Cabir40/2023-03-13-ner_living_species_pipeline_es.md b/docs/_posts/Cabir40/2023-03-13-ner_living_species_pipeline_es.md
index e4aa14e121..3a95029d55 100644
--- a/docs/_posts/Cabir40/2023-03-13-ner_living_species_pipeline_es.md
+++ b/docs/_posts/Cabir40/2023-03-13-ner_living_species_pipeline_es.md
@@ -32,6 +32,7 @@ This pretrained pipeline is built on the top of [ner_living_species](https://nlp
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
diff --git a/docs/_posts/Cabir40/2023-03-13-ner_living_species_pipeline_fr.md b/docs/_posts/Cabir40/2023-03-13-ner_living_species_pipeline_fr.md
index 5c7f54b2c2..19500cdc65 100644
--- a/docs/_posts/Cabir40/2023-03-13-ner_living_species_pipeline_fr.md
+++ b/docs/_posts/Cabir40/2023-03-13-ner_living_species_pipeline_fr.md
@@ -32,6 +32,7 @@ This pretrained pipeline is built on the top of [ner_living_species](https://nlp
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
diff --git a/docs/_posts/Cabir40/2023-03-13-ner_living_species_pipeline_gl.md b/docs/_posts/Cabir40/2023-03-13-ner_living_species_pipeline_gl.md
index a9283a8c7c..4bf248aac8 100644
--- a/docs/_posts/Cabir40/2023-03-13-ner_living_species_pipeline_gl.md
+++ b/docs/_posts/Cabir40/2023-03-13-ner_living_species_pipeline_gl.md
@@ -32,6 +32,7 @@ This pretrained pipeline is built on the top of [ner_living_species](https://nlp
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
diff --git a/docs/_posts/Cabir40/2023-03-13-ner_living_species_pipeline_it.md b/docs/_posts/Cabir40/2023-03-13-ner_living_species_pipeline_it.md
index 251a4c1d0c..8328be3916 100644
--- a/docs/_posts/Cabir40/2023-03-13-ner_living_species_pipeline_it.md
+++ b/docs/_posts/Cabir40/2023-03-13-ner_living_species_pipeline_it.md
@@ -32,6 +32,7 @@ This pretrained pipeline is built on the top of [ner_living_species](https://nlp
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
diff --git a/docs/_posts/Cabir40/2023-03-13-ner_living_species_pipeline_pt.md b/docs/_posts/Cabir40/2023-03-13-ner_living_species_pipeline_pt.md
index 108a817865..523f338e8d 100644
--- a/docs/_posts/Cabir40/2023-03-13-ner_living_species_pipeline_pt.md
+++ b/docs/_posts/Cabir40/2023-03-13-ner_living_species_pipeline_pt.md
@@ -32,6 +32,7 @@ This pretrained pipeline is built on the top of [ner_living_species](https://nlp
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
diff --git a/docs/_posts/Cabir40/2023-03-13-ner_living_species_roberta_pipeline_es.md b/docs/_posts/Cabir40/2023-03-13-ner_living_species_roberta_pipeline_es.md
index 524c46087c..77e63fb7bf 100644
--- a/docs/_posts/Cabir40/2023-03-13-ner_living_species_roberta_pipeline_es.md
+++ b/docs/_posts/Cabir40/2023-03-13-ner_living_species_roberta_pipeline_es.md
@@ -32,6 +32,7 @@ This pretrained pipeline is built on the top of [ner_living_species_roberta](htt
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
diff --git a/docs/_posts/Cabir40/2023-03-13-ner_living_species_roberta_pipeline_pt.md b/docs/_posts/Cabir40/2023-03-13-ner_living_species_roberta_pipeline_pt.md
index 97d01b0a24..d19eda8e74 100644
--- a/docs/_posts/Cabir40/2023-03-13-ner_living_species_roberta_pipeline_pt.md
+++ b/docs/_posts/Cabir40/2023-03-13-ner_living_species_roberta_pipeline_pt.md
@@ -32,6 +32,7 @@ This pretrained pipeline is built on the top of [ner_living_species_roberta](htt
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
diff --git a/docs/_posts/Cabir40/2023-03-14-jsl_ner_wip_greedy_clinical_pipeline_en.md b/docs/_posts/Cabir40/2023-03-14-jsl_ner_wip_greedy_clinical_pipeline_en.md
index b618ec1d8a..4b1b5e1edc 100644
--- a/docs/_posts/Cabir40/2023-03-14-jsl_ner_wip_greedy_clinical_pipeline_en.md
+++ b/docs/_posts/Cabir40/2023-03-14-jsl_ner_wip_greedy_clinical_pipeline_en.md
@@ -32,6 +32,7 @@ This pretrained pipeline is built on the top of [jsl_ner_wip_greedy_clinical](ht
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
diff --git a/docs/_posts/Cabir40/2023-03-14-jsl_ner_wip_modifier_clinical_pipeline_en.md b/docs/_posts/Cabir40/2023-03-14-jsl_ner_wip_modifier_clinical_pipeline_en.md
index 09b5e1499a..34ce32cd6a 100644
--- a/docs/_posts/Cabir40/2023-03-14-jsl_ner_wip_modifier_clinical_pipeline_en.md
+++ b/docs/_posts/Cabir40/2023-03-14-jsl_ner_wip_modifier_clinical_pipeline_en.md
@@ -32,6 +32,7 @@ This pretrained pipeline is built on the top of [jsl_ner_wip_modifier_clinical](
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
diff --git a/docs/_posts/Cabir40/2023-03-14-jsl_rd_ner_wip_greedy_clinical_pipeline_en.md b/docs/_posts/Cabir40/2023-03-14-jsl_rd_ner_wip_greedy_clinical_pipeline_en.md
index f3bbd6cc0a..2ccf10c275 100644
--- a/docs/_posts/Cabir40/2023-03-14-jsl_rd_ner_wip_greedy_clinical_pipeline_en.md
+++ b/docs/_posts/Cabir40/2023-03-14-jsl_rd_ner_wip_greedy_clinical_pipeline_en.md
@@ -32,6 +32,7 @@ This pretrained pipeline is built on the top of [jsl_rd_ner_wip_greedy_clinical]
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
diff --git a/docs/_posts/Cabir40/2023-03-14-ner_abbreviation_clinical_pipeline_en.md b/docs/_posts/Cabir40/2023-03-14-ner_abbreviation_clinical_pipeline_en.md
index 3ad0b21e99..1664f1ac41 100644
--- a/docs/_posts/Cabir40/2023-03-14-ner_abbreviation_clinical_pipeline_en.md
+++ b/docs/_posts/Cabir40/2023-03-14-ner_abbreviation_clinical_pipeline_en.md
@@ -32,6 +32,7 @@ This pretrained pipeline is built on the top of [ner_abbreviation_clinical](http
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
diff --git a/docs/_posts/Cabir40/2023-03-14-ner_ade_clinical_pipeline_en.md b/docs/_posts/Cabir40/2023-03-14-ner_ade_clinical_pipeline_en.md
index 076dff8078..b9b83331f2 100644
--- a/docs/_posts/Cabir40/2023-03-14-ner_ade_clinical_pipeline_en.md
+++ b/docs/_posts/Cabir40/2023-03-14-ner_ade_clinical_pipeline_en.md
@@ -32,6 +32,7 @@ This pretrained pipeline is built on the top of [ner_ade_clinical](https://nlp.j
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
diff --git a/docs/_posts/Cabir40/2023-03-14-ner_ade_clinicalbert_pipeline_en.md b/docs/_posts/Cabir40/2023-03-14-ner_ade_clinicalbert_pipeline_en.md
index 272a0c100f..3b7269ce7e 100644
--- a/docs/_posts/Cabir40/2023-03-14-ner_ade_clinicalbert_pipeline_en.md
+++ b/docs/_posts/Cabir40/2023-03-14-ner_ade_clinicalbert_pipeline_en.md
@@ -32,6 +32,7 @@ This pretrained pipeline is built on the top of [ner_ade_clinicalbert](https://n
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
diff --git a/docs/_posts/Cabir40/2023-03-14-ner_ade_healthcare_pipeline_en.md b/docs/_posts/Cabir40/2023-03-14-ner_ade_healthcare_pipeline_en.md
index d66cbd5f8c..15ebb695ae 100644
--- a/docs/_posts/Cabir40/2023-03-14-ner_ade_healthcare_pipeline_en.md
+++ b/docs/_posts/Cabir40/2023-03-14-ner_ade_healthcare_pipeline_en.md
@@ -32,6 +32,7 @@ This pretrained pipeline is built on the top of [ner_ade_healthcare](https://nlp
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
diff --git a/docs/_posts/Cabir40/2023-03-14-ner_bacterial_species_pipeline_en.md b/docs/_posts/Cabir40/2023-03-14-ner_bacterial_species_pipeline_en.md
index 057f861770..c098a6a1b5 100644
--- a/docs/_posts/Cabir40/2023-03-14-ner_bacterial_species_pipeline_en.md
+++ b/docs/_posts/Cabir40/2023-03-14-ner_bacterial_species_pipeline_en.md
@@ -32,6 +32,7 @@ This pretrained pipeline is built on the top of [ner_bacterial_species](https://
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
diff --git a/docs/_posts/Cabir40/2023-03-14-ner_biomarker_pipeline_en.md b/docs/_posts/Cabir40/2023-03-14-ner_biomarker_pipeline_en.md
index 104ed3de97..67e12fabab 100644
--- a/docs/_posts/Cabir40/2023-03-14-ner_biomarker_pipeline_en.md
+++ b/docs/_posts/Cabir40/2023-03-14-ner_biomarker_pipeline_en.md
@@ -32,6 +32,7 @@ This pretrained pipeline is built on the top of [ner_biomarker](https://nlp.john
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
diff --git a/docs/_posts/Cabir40/2023-03-14-ner_biomedical_bc2gm_pipeline_en.md b/docs/_posts/Cabir40/2023-03-14-ner_biomedical_bc2gm_pipeline_en.md
index 06739e67e7..7532af2b9c 100644
--- a/docs/_posts/Cabir40/2023-03-14-ner_biomedical_bc2gm_pipeline_en.md
+++ b/docs/_posts/Cabir40/2023-03-14-ner_biomedical_bc2gm_pipeline_en.md
@@ -32,6 +32,7 @@ This pretrained pipeline is built on the top of [ner_biomedical_bc2gm](https://n
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
diff --git a/docs/_posts/Cabir40/2023-03-14-ner_chemd_clinical_pipeline_en.md b/docs/_posts/Cabir40/2023-03-14-ner_chemd_clinical_pipeline_en.md
index 5525abd0d9..e430204361 100644
--- a/docs/_posts/Cabir40/2023-03-14-ner_chemd_clinical_pipeline_en.md
+++ b/docs/_posts/Cabir40/2023-03-14-ner_chemd_clinical_pipeline_en.md
@@ -32,6 +32,7 @@ This pretrained pipeline is built on the top of [ner_chemd_clinical](https://nlp
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
diff --git a/docs/_posts/Cabir40/2023-03-14-ner_chemicals_pipeline_en.md b/docs/_posts/Cabir40/2023-03-14-ner_chemicals_pipeline_en.md
index 98d48a71f3..1a2b1f7af3 100644
--- a/docs/_posts/Cabir40/2023-03-14-ner_chemicals_pipeline_en.md
+++ b/docs/_posts/Cabir40/2023-03-14-ner_chemicals_pipeline_en.md
@@ -32,6 +32,7 @@ This pretrained pipeline is built on the top of [ner_chemicals](https://nlp.john
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
diff --git a/docs/_posts/Cabir40/2023-03-14-ner_chexpert_pipeline_en.md b/docs/_posts/Cabir40/2023-03-14-ner_chexpert_pipeline_en.md
index 790cd8d1ad..bb6a741126 100644
--- a/docs/_posts/Cabir40/2023-03-14-ner_chexpert_pipeline_en.md
+++ b/docs/_posts/Cabir40/2023-03-14-ner_chexpert_pipeline_en.md
@@ -32,6 +32,7 @@ This pretrained pipeline is built on the top of [ner_chexpert](https://nlp.johns
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
diff --git a/docs/_posts/Cabir40/2023-03-14-ner_diseases_large_pipeline_en.md b/docs/_posts/Cabir40/2023-03-14-ner_diseases_large_pipeline_en.md
index 527ad101b4..6575eb18d2 100644
--- a/docs/_posts/Cabir40/2023-03-14-ner_diseases_large_pipeline_en.md
+++ b/docs/_posts/Cabir40/2023-03-14-ner_diseases_large_pipeline_en.md
@@ -32,6 +32,7 @@ This pretrained pipeline is built on the top of [ner_diseases_large](https://nlp
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
diff --git a/docs/_posts/Cabir40/2023-03-14-ner_drugprot_clinical_pipeline_en.md b/docs/_posts/Cabir40/2023-03-14-ner_drugprot_clinical_pipeline_en.md
index 67159256cb..83ba78ca68 100644
--- a/docs/_posts/Cabir40/2023-03-14-ner_drugprot_clinical_pipeline_en.md
+++ b/docs/_posts/Cabir40/2023-03-14-ner_drugprot_clinical_pipeline_en.md
@@ -32,6 +32,7 @@ This pretrained pipeline is built on the top of [ner_drugprot_clinical](https://
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
diff --git a/docs/_posts/Cabir40/2023-03-14-ner_events_healthcare_pipeline_en.md b/docs/_posts/Cabir40/2023-03-14-ner_events_healthcare_pipeline_en.md
index de4c6f9c17..a3a2fac952 100644
--- a/docs/_posts/Cabir40/2023-03-14-ner_events_healthcare_pipeline_en.md
+++ b/docs/_posts/Cabir40/2023-03-14-ner_events_healthcare_pipeline_en.md
@@ -32,6 +32,7 @@ This pretrained pipeline is built on the top of [ner_events_healthcare](https://
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
diff --git a/docs/_posts/Cabir40/2023-03-14-ner_genetic_variants_pipeline_en.md b/docs/_posts/Cabir40/2023-03-14-ner_genetic_variants_pipeline_en.md
index e18d680975..056d8c6715 100644
--- a/docs/_posts/Cabir40/2023-03-14-ner_genetic_variants_pipeline_en.md
+++ b/docs/_posts/Cabir40/2023-03-14-ner_genetic_variants_pipeline_en.md
@@ -32,6 +32,7 @@ This pretrained pipeline is built on the top of [ner_genetic_variants](https://n
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
diff --git a/docs/_posts/Cabir40/2023-03-14-ner_healthcare_pipeline_en.md b/docs/_posts/Cabir40/2023-03-14-ner_healthcare_pipeline_en.md
index 624a728e3b..eab62672b0 100644
--- a/docs/_posts/Cabir40/2023-03-14-ner_healthcare_pipeline_en.md
+++ b/docs/_posts/Cabir40/2023-03-14-ner_healthcare_pipeline_en.md
@@ -32,6 +32,7 @@ This pretrained pipeline is built on the top of [ner_healthcare](https://nlp.joh
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
diff --git a/docs/_posts/Cabir40/2023-03-14-ner_jsl_enriched_pipeline_en.md b/docs/_posts/Cabir40/2023-03-14-ner_jsl_enriched_pipeline_en.md
index 5fec3e10c5..3537455ee7 100644
--- a/docs/_posts/Cabir40/2023-03-14-ner_jsl_enriched_pipeline_en.md
+++ b/docs/_posts/Cabir40/2023-03-14-ner_jsl_enriched_pipeline_en.md
@@ -32,6 +32,7 @@ This pretrained pipeline is built on the top of [ner_jsl_enriched](https://nlp.j
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
diff --git a/docs/_posts/Cabir40/2023-03-14-ner_jsl_greedy_pipeline_en.md b/docs/_posts/Cabir40/2023-03-14-ner_jsl_greedy_pipeline_en.md
index 58b24917e9..526b5e7e2d 100644
--- a/docs/_posts/Cabir40/2023-03-14-ner_jsl_greedy_pipeline_en.md
+++ b/docs/_posts/Cabir40/2023-03-14-ner_jsl_greedy_pipeline_en.md
@@ -32,6 +32,7 @@ This pretrained pipeline is built on the top of [ner_jsl_greedy](https://nlp.joh
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
diff --git a/docs/_posts/Cabir40/2023-03-14-ner_measurements_clinical_pipeline_en.md b/docs/_posts/Cabir40/2023-03-14-ner_measurements_clinical_pipeline_en.md
index 9334db87fd..66adc3c830 100644
--- a/docs/_posts/Cabir40/2023-03-14-ner_measurements_clinical_pipeline_en.md
+++ b/docs/_posts/Cabir40/2023-03-14-ner_measurements_clinical_pipeline_en.md
@@ -32,6 +32,7 @@ This pretrained pipeline is built on the top of [ner_measurements_clinical](http
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
diff --git a/docs/_posts/Cabir40/2023-03-14-ner_medmentions_coarse_pipeline_en.md b/docs/_posts/Cabir40/2023-03-14-ner_medmentions_coarse_pipeline_en.md
index d34c05295c..c29f201410 100644
--- a/docs/_posts/Cabir40/2023-03-14-ner_medmentions_coarse_pipeline_en.md
+++ b/docs/_posts/Cabir40/2023-03-14-ner_medmentions_coarse_pipeline_en.md
@@ -32,6 +32,7 @@ This pretrained pipeline is built on the top of [ner_medmentions_coarse](https:/
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
diff --git a/docs/_posts/Cabir40/2023-03-14-ner_nature_nero_clinical_pipeline_en.md b/docs/_posts/Cabir40/2023-03-14-ner_nature_nero_clinical_pipeline_en.md
index 2ff999a486..6f976f61df 100644
--- a/docs/_posts/Cabir40/2023-03-14-ner_nature_nero_clinical_pipeline_en.md
+++ b/docs/_posts/Cabir40/2023-03-14-ner_nature_nero_clinical_pipeline_en.md
@@ -32,6 +32,7 @@ This pretrained pipeline is built on the top of [ner_nature_nero_clinical](https
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
diff --git a/docs/_posts/Cabir40/2023-03-14-ner_nihss_pipeline_en.md b/docs/_posts/Cabir40/2023-03-14-ner_nihss_pipeline_en.md
index 510a0d54a3..8d32b21fa1 100644
--- a/docs/_posts/Cabir40/2023-03-14-ner_nihss_pipeline_en.md
+++ b/docs/_posts/Cabir40/2023-03-14-ner_nihss_pipeline_en.md
@@ -32,6 +32,7 @@ This pretrained pipeline is built on the top of [ner_nihss](https://nlp.johnsnow
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
diff --git a/docs/_posts/Cabir40/2023-03-14-ner_radiology_wip_clinical_pipeline_en.md b/docs/_posts/Cabir40/2023-03-14-ner_radiology_wip_clinical_pipeline_en.md
index 628066eef8..200f25e4b0 100644
--- a/docs/_posts/Cabir40/2023-03-14-ner_radiology_wip_clinical_pipeline_en.md
+++ b/docs/_posts/Cabir40/2023-03-14-ner_radiology_wip_clinical_pipeline_en.md
@@ -32,6 +32,7 @@ This pretrained pipeline is built on the top of [ner_radiology_wip_clinical](htt
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
diff --git a/docs/_posts/Cabir40/2023-03-14-ner_supplement_clinical_pipeline_en.md b/docs/_posts/Cabir40/2023-03-14-ner_supplement_clinical_pipeline_en.md
index 0720f1a536..6045a541ef 100644
--- a/docs/_posts/Cabir40/2023-03-14-ner_supplement_clinical_pipeline_en.md
+++ b/docs/_posts/Cabir40/2023-03-14-ner_supplement_clinical_pipeline_en.md
@@ -32,6 +32,7 @@ This pretrained pipeline is built on the top of [ner_supplement_clinical](https:
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
diff --git a/docs/_posts/Cabir40/2023-03-14-nerdl_tumour_demo_pipeline_en.md b/docs/_posts/Cabir40/2023-03-14-nerdl_tumour_demo_pipeline_en.md
index d1e2701354..b0d8c9466b 100644
--- a/docs/_posts/Cabir40/2023-03-14-nerdl_tumour_demo_pipeline_en.md
+++ b/docs/_posts/Cabir40/2023-03-14-nerdl_tumour_demo_pipeline_en.md
@@ -32,6 +32,7 @@ This pretrained pipeline is built on the top of [nerdl_tumour_demo](https://nlp.
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
diff --git a/docs/_posts/Cabir40/2023-03-15-jsl_ner_wip_clinical_pipeline_en.md b/docs/_posts/Cabir40/2023-03-15-jsl_ner_wip_clinical_pipeline_en.md
index 82cd5ca56d..bd9a30f283 100644
--- a/docs/_posts/Cabir40/2023-03-15-jsl_ner_wip_clinical_pipeline_en.md
+++ b/docs/_posts/Cabir40/2023-03-15-jsl_ner_wip_clinical_pipeline_en.md
@@ -32,6 +32,7 @@ This pretrained pipeline is built on the top of [jsl_ner_wip_clinical](https://n
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
diff --git a/docs/_posts/Cabir40/2023-03-15-ner_anatomy_coarse_pipeline_en.md b/docs/_posts/Cabir40/2023-03-15-ner_anatomy_coarse_pipeline_en.md
index dfbc05cd76..56f5cb5820 100644
--- a/docs/_posts/Cabir40/2023-03-15-ner_anatomy_coarse_pipeline_en.md
+++ b/docs/_posts/Cabir40/2023-03-15-ner_anatomy_coarse_pipeline_en.md
@@ -32,6 +32,7 @@ This pretrained pipeline is built on the top of [ner_anatomy_coarse](https://nlp
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
diff --git a/docs/_posts/Cabir40/2023-03-15-ner_anatomy_pipeline_en.md b/docs/_posts/Cabir40/2023-03-15-ner_anatomy_pipeline_en.md
index 2268560788..63ce0f56a1 100644
--- a/docs/_posts/Cabir40/2023-03-15-ner_anatomy_pipeline_en.md
+++ b/docs/_posts/Cabir40/2023-03-15-ner_anatomy_pipeline_en.md
@@ -32,6 +32,7 @@ This pretrained pipeline is built on the top of [ner_anatomy](https://nlp.johnsn
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
diff --git a/docs/_posts/Cabir40/2023-03-15-ner_bionlp_pipeline_en.md b/docs/_posts/Cabir40/2023-03-15-ner_bionlp_pipeline_en.md
index 76d98950e9..1f006e1923 100644
--- a/docs/_posts/Cabir40/2023-03-15-ner_bionlp_pipeline_en.md
+++ b/docs/_posts/Cabir40/2023-03-15-ner_bionlp_pipeline_en.md
@@ -32,6 +32,7 @@ This pretrained pipeline is built on the top of [ner_bionlp](https://nlp.johnsno
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
diff --git a/docs/_posts/Cabir40/2023-03-15-ner_cancer_genetics_pipeline_en.md b/docs/_posts/Cabir40/2023-03-15-ner_cancer_genetics_pipeline_en.md
index 416bb1c5ba..933171597b 100644
--- a/docs/_posts/Cabir40/2023-03-15-ner_cancer_genetics_pipeline_en.md
+++ b/docs/_posts/Cabir40/2023-03-15-ner_cancer_genetics_pipeline_en.md
@@ -32,6 +32,7 @@ This pretrained pipeline is built on the top of [ner_cancer_genetics](https://nl
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
diff --git a/docs/_posts/Cabir40/2023-03-15-ner_cellular_pipeline_en.md b/docs/_posts/Cabir40/2023-03-15-ner_cellular_pipeline_en.md
index bf3a2759a4..dc9b4600cc 100644
--- a/docs/_posts/Cabir40/2023-03-15-ner_cellular_pipeline_en.md
+++ b/docs/_posts/Cabir40/2023-03-15-ner_cellular_pipeline_en.md
@@ -32,6 +32,7 @@ This pretrained pipeline is built on the top of [ner_cellular](https://nlp.johns
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
diff --git a/docs/_posts/Cabir40/2023-03-15-ner_chemprot_clinical_pipeline_en.md b/docs/_posts/Cabir40/2023-03-15-ner_chemprot_clinical_pipeline_en.md
index 3f32c30459..21844de1ca 100644
--- a/docs/_posts/Cabir40/2023-03-15-ner_chemprot_clinical_pipeline_en.md
+++ b/docs/_posts/Cabir40/2023-03-15-ner_chemprot_clinical_pipeline_en.md
@@ -32,6 +32,7 @@ This pretrained pipeline is built on the top of [ner_chemprot_clinical](https://
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
diff --git a/docs/_posts/Cabir40/2023-03-15-ner_clinical_large_pipeline_en.md b/docs/_posts/Cabir40/2023-03-15-ner_clinical_large_pipeline_en.md
index 4734d54cb2..f8edaa6688 100644
--- a/docs/_posts/Cabir40/2023-03-15-ner_clinical_large_pipeline_en.md
+++ b/docs/_posts/Cabir40/2023-03-15-ner_clinical_large_pipeline_en.md
@@ -32,6 +32,7 @@ This pretrained pipeline is built on the top of [ner_clinical_large](https://nlp
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
diff --git a/docs/_posts/Cabir40/2023-03-15-ner_clinical_pipeline_en.md b/docs/_posts/Cabir40/2023-03-15-ner_clinical_pipeline_en.md
index 48a5be652b..ba679b088a 100644
--- a/docs/_posts/Cabir40/2023-03-15-ner_clinical_pipeline_en.md
+++ b/docs/_posts/Cabir40/2023-03-15-ner_clinical_pipeline_en.md
@@ -32,6 +32,7 @@ This pretrained pipeline is built on the top of [ner_clinical](https://nlp.johns
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
diff --git a/docs/_posts/Cabir40/2023-03-15-ner_diag_proc_pipeline_es.md b/docs/_posts/Cabir40/2023-03-15-ner_diag_proc_pipeline_es.md
index 24dc6d73b3..db7ebe0bdb 100644
--- a/docs/_posts/Cabir40/2023-03-15-ner_diag_proc_pipeline_es.md
+++ b/docs/_posts/Cabir40/2023-03-15-ner_diag_proc_pipeline_es.md
@@ -32,6 +32,7 @@ This pretrained pipeline is built on the top of [ner_diag_proc](https://nlp.john
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
diff --git a/docs/_posts/Cabir40/2023-03-15-ner_diseases_pipeline_en.md b/docs/_posts/Cabir40/2023-03-15-ner_diseases_pipeline_en.md
index 7b8151c499..9e69fd2429 100644
--- a/docs/_posts/Cabir40/2023-03-15-ner_diseases_pipeline_en.md
+++ b/docs/_posts/Cabir40/2023-03-15-ner_diseases_pipeline_en.md
@@ -32,6 +32,7 @@ This pretrained pipeline is built on the top of [ner_diseases](https://nlp.johns
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
diff --git a/docs/_posts/Cabir40/2023-03-15-ner_drugs_greedy_pipeline_en.md b/docs/_posts/Cabir40/2023-03-15-ner_drugs_greedy_pipeline_en.md
index 9c42745c9e..dd64c5c96a 100644
--- a/docs/_posts/Cabir40/2023-03-15-ner_drugs_greedy_pipeline_en.md
+++ b/docs/_posts/Cabir40/2023-03-15-ner_drugs_greedy_pipeline_en.md
@@ -32,6 +32,7 @@ This pretrained pipeline is built on the top of [ner_drugs_greedy](https://nlp.j
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
diff --git a/docs/_posts/Cabir40/2023-03-15-ner_drugs_large_pipeline_en.md b/docs/_posts/Cabir40/2023-03-15-ner_drugs_large_pipeline_en.md
index 3653f21d6a..6560e6e0fd 100644
--- a/docs/_posts/Cabir40/2023-03-15-ner_drugs_large_pipeline_en.md
+++ b/docs/_posts/Cabir40/2023-03-15-ner_drugs_large_pipeline_en.md
@@ -32,6 +32,7 @@ This pretrained pipeline is built on the top of [ner_drugs_large](https://nlp.jo
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
diff --git a/docs/_posts/Cabir40/2023-03-15-ner_drugs_pipeline_en.md b/docs/_posts/Cabir40/2023-03-15-ner_drugs_pipeline_en.md
index a682c3ca50..004f4bcb31 100644
--- a/docs/_posts/Cabir40/2023-03-15-ner_drugs_pipeline_en.md
+++ b/docs/_posts/Cabir40/2023-03-15-ner_drugs_pipeline_en.md
@@ -32,6 +32,7 @@ This pretrained pipeline is built on the top of [ner_drugs](https://nlp.johnsnow
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
diff --git a/docs/_posts/Cabir40/2023-03-15-ner_events_admission_clinical_pipeline_en.md b/docs/_posts/Cabir40/2023-03-15-ner_events_admission_clinical_pipeline_en.md
index 6a976294e6..09faa39650 100644
--- a/docs/_posts/Cabir40/2023-03-15-ner_events_admission_clinical_pipeline_en.md
+++ b/docs/_posts/Cabir40/2023-03-15-ner_events_admission_clinical_pipeline_en.md
@@ -32,6 +32,7 @@ This pretrained pipeline is built on the top of [ner_events_admission_clinical](
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
diff --git a/docs/_posts/Cabir40/2023-03-15-ner_events_clinical_pipeline_en.md b/docs/_posts/Cabir40/2023-03-15-ner_events_clinical_pipeline_en.md
index 7e84bcc71a..157d279237 100644
--- a/docs/_posts/Cabir40/2023-03-15-ner_events_clinical_pipeline_en.md
+++ b/docs/_posts/Cabir40/2023-03-15-ner_events_clinical_pipeline_en.md
@@ -32,6 +32,7 @@ This pretrained pipeline is built on the top of [ner_events_clinical](https://nl
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
diff --git a/docs/_posts/Cabir40/2023-03-15-ner_healthcare_pipeline_de.md b/docs/_posts/Cabir40/2023-03-15-ner_healthcare_pipeline_de.md
index 7f66bbb1cb..0390423a49 100644
--- a/docs/_posts/Cabir40/2023-03-15-ner_healthcare_pipeline_de.md
+++ b/docs/_posts/Cabir40/2023-03-15-ner_healthcare_pipeline_de.md
@@ -32,6 +32,7 @@ This pretrained pipeline is built on the top of [ner_healthcare](https://nlp.joh
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
diff --git a/docs/_posts/Cabir40/2023-03-15-ner_healthcare_slim_pipeline_de.md b/docs/_posts/Cabir40/2023-03-15-ner_healthcare_slim_pipeline_de.md
index 5be5f8b69a..61477aefc6 100644
--- a/docs/_posts/Cabir40/2023-03-15-ner_healthcare_slim_pipeline_de.md
+++ b/docs/_posts/Cabir40/2023-03-15-ner_healthcare_slim_pipeline_de.md
@@ -32,6 +32,7 @@ This pretrained pipeline is built on the top of [ner_healthcare_slim](https://nl
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
diff --git a/docs/_posts/Cabir40/2023-03-15-ner_human_phenotype_gene_clinical_pipeline_en.md b/docs/_posts/Cabir40/2023-03-15-ner_human_phenotype_gene_clinical_pipeline_en.md
index a2621d9bb2..6321341e1f 100644
--- a/docs/_posts/Cabir40/2023-03-15-ner_human_phenotype_gene_clinical_pipeline_en.md
+++ b/docs/_posts/Cabir40/2023-03-15-ner_human_phenotype_gene_clinical_pipeline_en.md
@@ -32,6 +32,7 @@ This pretrained pipeline is built on the top of [ner_human_phenotype_gene_clinic
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
diff --git a/docs/_posts/Cabir40/2023-03-15-ner_human_phenotype_go_clinical_pipeline_en.md b/docs/_posts/Cabir40/2023-03-15-ner_human_phenotype_go_clinical_pipeline_en.md
index 199d8e37b2..41c082441f 100644
--- a/docs/_posts/Cabir40/2023-03-15-ner_human_phenotype_go_clinical_pipeline_en.md
+++ b/docs/_posts/Cabir40/2023-03-15-ner_human_phenotype_go_clinical_pipeline_en.md
@@ -32,6 +32,7 @@ This pretrained pipeline is built on the top of [ner_human_phenotype_go_clinical
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
diff --git a/docs/_posts/Cabir40/2023-03-15-ner_neoplasms_pipeline_es.md b/docs/_posts/Cabir40/2023-03-15-ner_neoplasms_pipeline_es.md
index 664afa4d32..7393d2fcb0 100644
--- a/docs/_posts/Cabir40/2023-03-15-ner_neoplasms_pipeline_es.md
+++ b/docs/_posts/Cabir40/2023-03-15-ner_neoplasms_pipeline_es.md
@@ -32,6 +32,7 @@ This pretrained pipeline is built on the top of [ner_neoplasms](https://nlp.john
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
diff --git a/docs/_posts/Cabir40/2023-03-15-ner_posology_experimental_pipeline_en.md b/docs/_posts/Cabir40/2023-03-15-ner_posology_experimental_pipeline_en.md
index 91ef07edb9..6227b62c79 100644
--- a/docs/_posts/Cabir40/2023-03-15-ner_posology_experimental_pipeline_en.md
+++ b/docs/_posts/Cabir40/2023-03-15-ner_posology_experimental_pipeline_en.md
@@ -32,6 +32,7 @@ This pretrained pipeline is built on the top of [ner_posology_experimental](http
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
diff --git a/docs/_posts/Cabir40/2023-03-15-ner_posology_greedy_pipeline_en.md b/docs/_posts/Cabir40/2023-03-15-ner_posology_greedy_pipeline_en.md
index c177ff0361..99880bdb70 100644
--- a/docs/_posts/Cabir40/2023-03-15-ner_posology_greedy_pipeline_en.md
+++ b/docs/_posts/Cabir40/2023-03-15-ner_posology_greedy_pipeline_en.md
@@ -32,6 +32,7 @@ This pretrained pipeline is built on the top of [ner_posology_greedy](https://nl
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
diff --git a/docs/_posts/Cabir40/2023-03-15-ner_posology_healthcare_pipeline_en.md b/docs/_posts/Cabir40/2023-03-15-ner_posology_healthcare_pipeline_en.md
index d426fafde0..f798fc7afe 100644
--- a/docs/_posts/Cabir40/2023-03-15-ner_posology_healthcare_pipeline_en.md
+++ b/docs/_posts/Cabir40/2023-03-15-ner_posology_healthcare_pipeline_en.md
@@ -32,6 +32,7 @@ This pretrained pipeline is built on the top of [ner_posology_healthcare](https:
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
diff --git a/docs/_posts/Cabir40/2023-03-15-ner_posology_large_pipeline_en.md b/docs/_posts/Cabir40/2023-03-15-ner_posology_large_pipeline_en.md
index e6190d882b..214dbc0a4a 100644
--- a/docs/_posts/Cabir40/2023-03-15-ner_posology_large_pipeline_en.md
+++ b/docs/_posts/Cabir40/2023-03-15-ner_posology_large_pipeline_en.md
@@ -32,6 +32,7 @@ This pretrained pipeline is built on the top of [ner_posology_large](https://nlp
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
diff --git a/docs/_posts/Cabir40/2023-03-15-ner_posology_pipeline_en.md b/docs/_posts/Cabir40/2023-03-15-ner_posology_pipeline_en.md
index e2fac60374..ffe38f029d 100644
--- a/docs/_posts/Cabir40/2023-03-15-ner_posology_pipeline_en.md
+++ b/docs/_posts/Cabir40/2023-03-15-ner_posology_pipeline_en.md
@@ -32,6 +32,7 @@ This pretrained pipeline is built on the top of [ner_posology](https://nlp.johns
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
diff --git a/docs/_posts/Cabir40/2023-03-15-ner_posology_small_pipeline_en.md b/docs/_posts/Cabir40/2023-03-15-ner_posology_small_pipeline_en.md
index 8755952b56..3b1027913e 100644
--- a/docs/_posts/Cabir40/2023-03-15-ner_posology_small_pipeline_en.md
+++ b/docs/_posts/Cabir40/2023-03-15-ner_posology_small_pipeline_en.md
@@ -32,6 +32,7 @@ This pretrained pipeline is built on the top of [ner_posology_small](https://nlp
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
diff --git a/docs/_posts/Cabir40/2023-03-15-ner_radiology_pipeline_en.md b/docs/_posts/Cabir40/2023-03-15-ner_radiology_pipeline_en.md
index 82cdeaa99c..2af6be47f2 100644
--- a/docs/_posts/Cabir40/2023-03-15-ner_radiology_pipeline_en.md
+++ b/docs/_posts/Cabir40/2023-03-15-ner_radiology_pipeline_en.md
@@ -32,6 +32,7 @@ This pretrained pipeline is built on the top of [ner_radiology](https://nlp.john
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
diff --git a/docs/_posts/Cabir40/2023-03-15-ner_risk_factors_pipeline_en.md b/docs/_posts/Cabir40/2023-03-15-ner_risk_factors_pipeline_en.md
index d7273ad10e..f42ef3b8e8 100644
--- a/docs/_posts/Cabir40/2023-03-15-ner_risk_factors_pipeline_en.md
+++ b/docs/_posts/Cabir40/2023-03-15-ner_risk_factors_pipeline_en.md
@@ -32,6 +32,7 @@ This pretrained pipeline is built on the top of [ner_risk_factors](https://nlp.j
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
diff --git a/docs/_posts/Cabir40/2023-03-20-bert_token_classifier_ade_tweet_binary_pipeline_en.md b/docs/_posts/Cabir40/2023-03-20-bert_token_classifier_ade_tweet_binary_pipeline_en.md
index c7c0bfb389..c0a26efc2d 100644
--- a/docs/_posts/Cabir40/2023-03-20-bert_token_classifier_ade_tweet_binary_pipeline_en.md
+++ b/docs/_posts/Cabir40/2023-03-20-bert_token_classifier_ade_tweet_binary_pipeline_en.md
@@ -32,6 +32,7 @@ This pretrained pipeline is built on the top of [bert_token_classifier_ade_tweet
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
diff --git a/docs/_posts/Cabir40/2023-03-20-bert_token_classifier_disease_mentions_tweet_pipeline_es.md b/docs/_posts/Cabir40/2023-03-20-bert_token_classifier_disease_mentions_tweet_pipeline_es.md
index eac265c795..f38ac8ed32 100644
--- a/docs/_posts/Cabir40/2023-03-20-bert_token_classifier_disease_mentions_tweet_pipeline_es.md
+++ b/docs/_posts/Cabir40/2023-03-20-bert_token_classifier_disease_mentions_tweet_pipeline_es.md
@@ -32,6 +32,7 @@ This pretrained pipeline is built on the top of [bert_token_classifier_disease_m
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
diff --git a/docs/_posts/Cabir40/2023-03-20-bert_token_classifier_drug_development_trials_pipeline_en.md b/docs/_posts/Cabir40/2023-03-20-bert_token_classifier_drug_development_trials_pipeline_en.md
index f863e597e7..27791cf515 100644
--- a/docs/_posts/Cabir40/2023-03-20-bert_token_classifier_drug_development_trials_pipeline_en.md
+++ b/docs/_posts/Cabir40/2023-03-20-bert_token_classifier_drug_development_trials_pipeline_en.md
@@ -32,6 +32,7 @@ This pretrained pipeline is built on the top of [bert_token_classifier_drug_deve
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
diff --git a/docs/_posts/Cabir40/2023-03-20-bert_token_classifier_negation_uncertainty_pipeline_es.md b/docs/_posts/Cabir40/2023-03-20-bert_token_classifier_negation_uncertainty_pipeline_es.md
index aa485fc809..17db1dd58a 100644
--- a/docs/_posts/Cabir40/2023-03-20-bert_token_classifier_negation_uncertainty_pipeline_es.md
+++ b/docs/_posts/Cabir40/2023-03-20-bert_token_classifier_negation_uncertainty_pipeline_es.md
@@ -32,6 +32,7 @@ This pretrained pipeline is built on the top of [bert_token_classifier_negation_
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
diff --git a/docs/_posts/Cabir40/2023-03-20-bert_token_classifier_ner_ade_binary_pipeline_en.md b/docs/_posts/Cabir40/2023-03-20-bert_token_classifier_ner_ade_binary_pipeline_en.md
index 7cd752b7d5..e54425cade 100644
--- a/docs/_posts/Cabir40/2023-03-20-bert_token_classifier_ner_ade_binary_pipeline_en.md
+++ b/docs/_posts/Cabir40/2023-03-20-bert_token_classifier_ner_ade_binary_pipeline_en.md
@@ -32,6 +32,7 @@ This pretrained pipeline is built on the top of [bert_token_classifier_ner_ade_b
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
diff --git a/docs/_posts/Cabir40/2023-03-20-bert_token_classifier_ner_ade_pipeline_en.md b/docs/_posts/Cabir40/2023-03-20-bert_token_classifier_ner_ade_pipeline_en.md
index 218fdccf24..5d68797530 100644
--- a/docs/_posts/Cabir40/2023-03-20-bert_token_classifier_ner_ade_pipeline_en.md
+++ b/docs/_posts/Cabir40/2023-03-20-bert_token_classifier_ner_ade_pipeline_en.md
@@ -32,6 +32,7 @@ This pretrained pipeline is built on the top of [bert_token_classifier_ner_ade](
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
diff --git a/docs/_posts/Cabir40/2023-03-20-bert_token_classifier_ner_anatem_pipeline_en.md b/docs/_posts/Cabir40/2023-03-20-bert_token_classifier_ner_anatem_pipeline_en.md
index 3d155402e9..76872e22c4 100644
--- a/docs/_posts/Cabir40/2023-03-20-bert_token_classifier_ner_anatem_pipeline_en.md
+++ b/docs/_posts/Cabir40/2023-03-20-bert_token_classifier_ner_anatem_pipeline_en.md
@@ -32,6 +32,7 @@ This pretrained pipeline is built on the top of [bert_token_classifier_ner_anate
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
diff --git a/docs/_posts/Cabir40/2023-03-20-bert_token_classifier_ner_anatomy_pipeline_en.md b/docs/_posts/Cabir40/2023-03-20-bert_token_classifier_ner_anatomy_pipeline_en.md
index 50721be5e3..4436b383af 100644
--- a/docs/_posts/Cabir40/2023-03-20-bert_token_classifier_ner_anatomy_pipeline_en.md
+++ b/docs/_posts/Cabir40/2023-03-20-bert_token_classifier_ner_anatomy_pipeline_en.md
@@ -32,6 +32,7 @@ This pretrained pipeline is built on the top of [bert_token_classifier_ner_anato
{% include programmingLanguageSelectScalaPythonNLU.html %}
+
```python
from sparknlp.pretrained import PretrainedPipeline
diff --git a/docs/_posts/Cabir40/2023-03-20-bert_token_classifier_ner_bacteria_pipeline_en.md b/docs/_posts/Cabir40/2023-03-20-bert_token_classifier_ner_bacteria_pipeline_en.md
index 3e3d92d880..30551b6feb 100644
--- a/docs/_posts/Cabir40/2023-03-20-bert_token_classifier_ner_bacteria_pipeline_en.md
+++ b/docs/_posts/Cabir40/2023-03-20-bert_token_classifier_ner_bacteria_pipeline_en.md
@@ -32,6 +32,7 @@ This pretrained pipeline is built on the top of [bert_token_classifier_ner_bacte