diff --git a/examples/colab/ocr/ocr_table_recognition_dl.ipynb b/examples/colab/ocr/ocr_table_recognition_dl.ipynb new file mode 100644 index 00000000..77fdffa5 --- /dev/null +++ b/examples/colab/ocr/ocr_table_recognition_dl.ipynb @@ -0,0 +1,765 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "_4a_bWUOIMGf" + }, + "source": [ + "![JohnSnowLabs](https://nlp.johnsnowlabs.com/assets/images/logo.png)\n", + "\n", + "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/JohnSnowLabs/nlu/blob/master/examples/colab/ocr/ocr_table_recognition_dl.ipynb)\n", + "\n", + "## Deep Learning based Table extraction\n", + "![Cascade R-CNN](https://production-media.paperswithcode.com/methods/Screen_Shot_2020-06-13_at_11.36.42_AM.png)\n", + "[Tutorial Notebook](https://colab.research.google.com/github/JohnSnowLabs/nlu/blob/master/examples/colab/ocr/ocr_table_recognition.ipynb \"https://colab.research.google.com/github/JohnSnowLabs/nlu/blob/master/examples/colab/ocr/ocr_table_recognition.ipynb\")\n", + "\n", + "You can now extract tables from images as pandas dataframe in 1 line of code, leveraging Spark OCR's ImageTableDetector, ImageTableCellDetector and ImageCellsToTextTable classes.\n", + "\n", + "\n", + "The ImageTableDetector is a deep-learning model designed to identify tables within images. It utilizes the CascadeTabNet architecture, which incorporates the Cascade mask Region-based Convolutional Neural Network High-Resolution Network (Cascade mask R-CNN HRNet).\n", + "\n", + "The ImageTableCellDetector, on the other hand, is engineered to pinpoint cells within a table image. Its foundation is an image processing algorithm that identifies both horizontal and vertical lines.\n", + "\n", + "The ImageCellsToTextTable applies Optical Character Recognition (OCR) to regions of cells within an image and returns the recognized text to the outputCol as a TableContainer structure.\n", + "\n", + "It’s important to note that these annotators do not need to be invoked individually in NLU. Instead, you can simply load the `image_table_cell2text_table` model using the command `nlp.load('image_table_cell2text_table')`, and then use `nlp.predict` to make predictions on any document.\n", + "\n", + "\n", + "Powered by Spark OCR's [ImageTableDetector](https://nlp.johnsnowlabs.com/models?task=OCR+Table+Detection \"https://nlp.johnsnowlabs.com/models?task=OCR+Table+Detection\"), [ImageTableCellDetector](https://nlp.johnsnowlabs.com/docs/en/ocr_table_recognition#imagetablecelldetector \"https://nlp.johnsnowlabs.com/docs/en/ocr_table_recognition#imagetablecelldetector\"), [ImageCellsToTextTable](https://nlp.johnsnowlabs.com/docs/en/ocr_table_recognition#imagecellstotexttable \"https://nlp.johnsnowlabs.com/docs/en/ocr_table_recognition#imagecellstotexttable\")\n", + "Reference: [Cascade R-CNN: High Quality Object Detection and Instance Segmentation](https://arxiv.org/pdf/1906.09756.pdf \"https://arxiv.org/pdf/1906.09756.pdf\")\n", + "\n", + "|**language**|**nlu.load() reference**|**Spark NLP Model Reference**|\n", + "|---|---|---|\n", + "|en|en.image_table_detector|[General Model for Table Detection](https://nlp.johnsnowlabs.com/2023/01/10/general_model_table_detection_v2_en_3_2.html \"https://nlp.johnsnowlabs.com/2023/01/10/general_model_table_detection_v2_en_3_2.html\")|\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "PIhGRXiLIMGh" + }, + "source": [ + "# Install NLU" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "ExecuteTime": { + "end_time": "2023-10-24T14:04:51.457946700Z", + "start_time": "2023-10-24T14:04:48.997465600Z" + }, + "id": "FTvfXPrjIMGi", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1000 + }, + "outputId": "15be3411-ac1e-4148-dc37-3eed4195d35f" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Collecting johnsnowlabs\n", + " Downloading johnsnowlabs-5.2.0-py3-none-any.whl (116 kB)\n", + "\u001B[2K \u001B[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[32m116.6/116.6 kB\u001B[0m \u001B[31m1.4 MB/s\u001B[0m eta \u001B[36m0:00:00\u001B[0m\n", + "\u001B[?25hCollecting boto3 (from johnsnowlabs)\n", + " Downloading boto3-1.34.14-py3-none-any.whl (139 kB)\n", + "\u001B[2K \u001B[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[32m139.3/139.3 kB\u001B[0m \u001B[31m1.9 MB/s\u001B[0m eta \u001B[36m0:00:00\u001B[0m\n", + "\u001B[?25hCollecting colorama (from johnsnowlabs)\n", + " Downloading colorama-0.4.6-py2.py3-none-any.whl (25 kB)\n", + "Collecting databricks-api (from johnsnowlabs)\n", + " Downloading databricks_api-0.9.0-py3-none-any.whl (7.4 kB)\n", + "Collecting dataclasses (from johnsnowlabs)\n", + " Downloading dataclasses-0.6-py3-none-any.whl (14 kB)\n", + "Collecting nlu==5.1.0 (from johnsnowlabs)\n", + " Downloading nlu-5.1.0-py3-none-any.whl (655 kB)\n", + "\u001B[2K \u001B[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[32m656.0/656.0 kB\u001B[0m \u001B[31m7.3 MB/s\u001B[0m eta \u001B[36m0:00:00\u001B[0m\n", + "\u001B[?25hRequirement already satisfied: numpy in /usr/local/lib/python3.10/dist-packages (from johnsnowlabs) (1.23.5)\n", + "Collecting pydantic==1.10.11 (from johnsnowlabs)\n", + " Downloading pydantic-1.10.11-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB)\n", + "\u001B[2K \u001B[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[32m3.1/3.1 MB\u001B[0m \u001B[31m12.1 MB/s\u001B[0m eta \u001B[36m0:00:00\u001B[0m\n", + "\u001B[?25hCollecting pyspark==3.1.2 (from johnsnowlabs)\n", + " Downloading pyspark-3.1.2.tar.gz (212.4 MB)\n", + "\u001B[2K \u001B[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[32m212.4/212.4 MB\u001B[0m \u001B[31m3.2 MB/s\u001B[0m eta \u001B[36m0:00:00\u001B[0m\n", + "\u001B[?25h Preparing metadata (setup.py) ... \u001B[?25l\u001B[?25hdone\n", + "Requirement already satisfied: requests in /usr/local/lib/python3.10/dist-packages (from johnsnowlabs) (2.31.0)\n", + "Collecting spark-nlp-display==4.1 (from johnsnowlabs)\n", + " Downloading spark_nlp_display-4.1-py3-none-any.whl (95 kB)\n", + "\u001B[2K \u001B[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[32m95.4/95.4 kB\u001B[0m \u001B[31m6.3 MB/s\u001B[0m eta \u001B[36m0:00:00\u001B[0m\n", + "\u001B[?25hCollecting spark-nlp==5.2.0 (from johnsnowlabs)\n", + " Downloading spark_nlp-5.2.0-py2.py3-none-any.whl (548 kB)\n", + "\u001B[2K \u001B[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[32m548.5/548.5 kB\u001B[0m \u001B[31m38.4 MB/s\u001B[0m eta \u001B[36m0:00:00\u001B[0m\n", + "\u001B[?25hRequirement already satisfied: pandas>=1.3.5 in /usr/local/lib/python3.10/dist-packages (from nlu==5.1.0->johnsnowlabs) (1.5.3)\n", + "Requirement already satisfied: pyarrow>=0.16.0 in /usr/local/lib/python3.10/dist-packages (from nlu==5.1.0->johnsnowlabs) (10.0.1)\n", + "Requirement already satisfied: typing-extensions>=4.2.0 in /usr/local/lib/python3.10/dist-packages (from pydantic==1.10.11->johnsnowlabs) (4.5.0)\n", + "Collecting py4j==0.10.9 (from pyspark==3.1.2->johnsnowlabs)\n", + " Downloading py4j-0.10.9-py2.py3-none-any.whl (198 kB)\n", + "\u001B[2K \u001B[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[32m198.6/198.6 kB\u001B[0m \u001B[31m13.7 MB/s\u001B[0m eta \u001B[36m0:00:00\u001B[0m\n", + "\u001B[?25hRequirement already satisfied: ipython in /usr/local/lib/python3.10/dist-packages (from spark-nlp-display==4.1->johnsnowlabs) (7.34.0)\n", + "Collecting svgwrite==1.4 (from spark-nlp-display==4.1->johnsnowlabs)\n", + " Downloading svgwrite-1.4-py3-none-any.whl (66 kB)\n", + "\u001B[2K \u001B[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[32m66.9/66.9 kB\u001B[0m \u001B[31m6.3 MB/s\u001B[0m eta \u001B[36m0:00:00\u001B[0m\n", + "\u001B[?25hCollecting botocore<1.35.0,>=1.34.14 (from boto3->johnsnowlabs)\n", + " Downloading botocore-1.34.14-py3-none-any.whl (11.9 MB)\n", + "\u001B[2K \u001B[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[32m11.9/11.9 MB\u001B[0m \u001B[31m29.5 MB/s\u001B[0m eta \u001B[36m0:00:00\u001B[0m\n", + "\u001B[?25hCollecting jmespath<2.0.0,>=0.7.1 (from boto3->johnsnowlabs)\n", + " Downloading jmespath-1.0.1-py3-none-any.whl (20 kB)\n", + "Collecting s3transfer<0.11.0,>=0.10.0 (from boto3->johnsnowlabs)\n", + " Downloading s3transfer-0.10.0-py3-none-any.whl (82 kB)\n", + "\u001B[2K \u001B[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[32m82.1/82.1 kB\u001B[0m \u001B[31m326.9 kB/s\u001B[0m eta \u001B[36m0:00:00\u001B[0m\n", + "\u001B[?25hCollecting databricks-cli (from databricks-api->johnsnowlabs)\n", + " Downloading databricks_cli-0.18.0-py2.py3-none-any.whl (150 kB)\n", + "\u001B[2K \u001B[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[32m150.3/150.3 kB\u001B[0m \u001B[31m10.3 MB/s\u001B[0m eta \u001B[36m0:00:00\u001B[0m\n", + "\u001B[?25hRequirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-packages (from requests->johnsnowlabs) (3.3.2)\n", + "Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages (from requests->johnsnowlabs) (3.6)\n", + "Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.10/dist-packages (from requests->johnsnowlabs) (2.0.7)\n", + "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.10/dist-packages (from requests->johnsnowlabs) (2023.11.17)\n", + "Requirement already satisfied: python-dateutil<3.0.0,>=2.1 in /usr/local/lib/python3.10/dist-packages (from botocore<1.35.0,>=1.34.14->boto3->johnsnowlabs) (2.8.2)\n", + "Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/dist-packages (from pandas>=1.3.5->nlu==5.1.0->johnsnowlabs) (2023.3.post1)\n", + "Requirement already satisfied: click>=7.0 in /usr/local/lib/python3.10/dist-packages (from databricks-cli->databricks-api->johnsnowlabs) (8.1.7)\n", + "Requirement already satisfied: pyjwt>=1.7.0 in /usr/lib/python3/dist-packages (from databricks-cli->databricks-api->johnsnowlabs) (2.3.0)\n", + "Requirement already satisfied: oauthlib>=3.1.0 in /usr/local/lib/python3.10/dist-packages (from databricks-cli->databricks-api->johnsnowlabs) (3.2.2)\n", + "Requirement already satisfied: tabulate>=0.7.7 in /usr/local/lib/python3.10/dist-packages (from databricks-cli->databricks-api->johnsnowlabs) (0.9.0)\n", + "Requirement already satisfied: six>=1.10.0 in /usr/local/lib/python3.10/dist-packages (from databricks-cli->databricks-api->johnsnowlabs) (1.16.0)\n", + "Requirement already satisfied: setuptools>=18.5 in /usr/local/lib/python3.10/dist-packages (from ipython->spark-nlp-display==4.1->johnsnowlabs) (67.7.2)\n", + "Collecting jedi>=0.16 (from ipython->spark-nlp-display==4.1->johnsnowlabs)\n", + " Downloading jedi-0.19.1-py2.py3-none-any.whl (1.6 MB)\n", + "\u001B[2K \u001B[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[32m1.6/1.6 MB\u001B[0m \u001B[31m40.8 MB/s\u001B[0m eta \u001B[36m0:00:00\u001B[0m\n", + "\u001B[?25hRequirement already satisfied: decorator in /usr/local/lib/python3.10/dist-packages (from ipython->spark-nlp-display==4.1->johnsnowlabs) (4.4.2)\n", + "Requirement already satisfied: pickleshare in /usr/local/lib/python3.10/dist-packages (from ipython->spark-nlp-display==4.1->johnsnowlabs) (0.7.5)\n", + "Requirement already satisfied: traitlets>=4.2 in /usr/local/lib/python3.10/dist-packages (from ipython->spark-nlp-display==4.1->johnsnowlabs) (5.7.1)\n", + "Requirement already satisfied: prompt-toolkit!=3.0.0,!=3.0.1,<3.1.0,>=2.0.0 in /usr/local/lib/python3.10/dist-packages (from ipython->spark-nlp-display==4.1->johnsnowlabs) (3.0.43)\n", + "Requirement already satisfied: pygments in /usr/local/lib/python3.10/dist-packages (from ipython->spark-nlp-display==4.1->johnsnowlabs) (2.16.1)\n", + "Requirement already satisfied: backcall in /usr/local/lib/python3.10/dist-packages (from ipython->spark-nlp-display==4.1->johnsnowlabs) (0.2.0)\n", + "Requirement already satisfied: matplotlib-inline in /usr/local/lib/python3.10/dist-packages (from ipython->spark-nlp-display==4.1->johnsnowlabs) (0.1.6)\n", + "Requirement already satisfied: pexpect>4.3 in /usr/local/lib/python3.10/dist-packages (from ipython->spark-nlp-display==4.1->johnsnowlabs) (4.9.0)\n", + "Requirement already satisfied: parso<0.9.0,>=0.8.3 in /usr/local/lib/python3.10/dist-packages (from jedi>=0.16->ipython->spark-nlp-display==4.1->johnsnowlabs) (0.8.3)\n", + "Requirement already satisfied: ptyprocess>=0.5 in /usr/local/lib/python3.10/dist-packages (from pexpect>4.3->ipython->spark-nlp-display==4.1->johnsnowlabs) (0.7.0)\n", + "Requirement already satisfied: wcwidth in /usr/local/lib/python3.10/dist-packages (from prompt-toolkit!=3.0.0,!=3.0.1,<3.1.0,>=2.0.0->ipython->spark-nlp-display==4.1->johnsnowlabs) (0.2.12)\n", + "Building wheels for collected packages: pyspark\n", + " Building wheel for pyspark (setup.py) ... \u001B[?25l\u001B[?25hdone\n", + " Created wheel for pyspark: filename=pyspark-3.1.2-py2.py3-none-any.whl size=212880747 sha256=d540e3251f56f370fbb810ba16a98326872c3070bcccec19df3501f7567ff022\n", + " Stored in directory: /root/.cache/pip/wheels/ef/70/50/7882e1bcb5693225f7cc86698f10953201b48b3f36317c2d18\n", + "Successfully built pyspark\n", + "Installing collected packages: spark-nlp, py4j, dataclasses, svgwrite, pyspark, pydantic, jmespath, jedi, colorama, databricks-cli, botocore, spark-nlp-display, s3transfer, nlu, databricks-api, boto3, johnsnowlabs\n", + " Attempting uninstall: py4j\n", + " Found existing installation: py4j 0.10.9.7\n", + " Uninstalling py4j-0.10.9.7:\n", + " Successfully uninstalled py4j-0.10.9.7\n", + " Attempting uninstall: pydantic\n", + " Found existing installation: pydantic 1.10.13\n", + " Uninstalling pydantic-1.10.13:\n", + " Successfully uninstalled pydantic-1.10.13\n", + "\u001B[31mERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.\n", + "lida 0.0.10 requires fastapi, which is not installed.\n", + "lida 0.0.10 requires kaleido, which is not installed.\n", + "lida 0.0.10 requires python-multipart, which is not installed.\n", + "lida 0.0.10 requires uvicorn, which is not installed.\n", + "llmx 0.0.15a0 requires cohere, which is not installed.\n", + "llmx 0.0.15a0 requires openai, which is not installed.\n", + "llmx 0.0.15a0 requires tiktoken, which is not installed.\u001B[0m\u001B[31m\n", + "\u001B[0mSuccessfully installed boto3-1.34.14 botocore-1.34.14 colorama-0.4.6 databricks-api-0.9.0 databricks-cli-0.18.0 dataclasses-0.6 jedi-0.19.1 jmespath-1.0.1 johnsnowlabs-5.2.0 nlu-5.1.0 py4j-0.10.9 pydantic-1.10.11 pyspark-3.1.2 s3transfer-0.10.0 spark-nlp-5.2.0 spark-nlp-display-4.1 svgwrite-1.4\n" + ] + }, + { + "output_type": "display_data", + "data": { + "application/vnd.colab-display-data+json": { + "pip_warning": { + "packages": [ + "dataclasses" + ] + } + } + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "" + ], + "application/javascript": [ + "\n", + " var a = document.createElement(\"a\");\n", + " a.id=\"auth-btn\"\n", + " a.setAttribute(\"target\", \"_blank\");\n", + " a.href=\"https://my.johnsnowlabs.com/oauth/authorize/?client_id=2hfGX0iZ5lvyxvLaK3IEzS9Bc9LGfTYCwVvKFfjY&response_type=code&code_challenge_method=S256&code_challenge=zj8f46Spo8Nb6sYUbiaR6qQFadIu2AyPXi2MlLBFH6A&redirect_uri=https%3A%2F%2F0kyjxrlszh1a-496ff2e9c6d22116-8000-colab.googleusercontent.com%2Flogin\";\n", + " a.style=\"padding:15px 20px;background-color:#0298d9;border-radius:7px;color:white;text-decoration:none;\"\n", + " a.innerText=\"Click here to Authorize on My.Johnsnowlabs.com\"\n", + " document.body.appendChild(a);\n", + " document.body.style = \"text-align:center;padding-top:15px;\"\n", + " a.click()\n", + " " + ] + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "127.0.0.1 - - [08/Jan/2024 00:22:24] \"GET /login?code=wIOv8ZpGOWRkzEprlYy3hJo2oBdTrL HTTP/1.1\" 200 -\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "" + ], + "application/javascript": [ + "document.body.removeChild(a);" + ] + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Downloading license...\n", + "Licenses extracted successfully\n", + "📋 Stored John Snow Labs License in /root/.johnsnowlabs/licenses/license_number_0_for_Spark-Healthcare_Spark-OCR.json\n", + "👷 Setting up John Snow Labs home in /root/.johnsnowlabs, this might take a few minutes.\n", + "Downloading 🐍+🚀 Python Library spark_nlp-5.2.0-py2.py3-none-any.whl\n", + "Downloading 🐍+💊 Python Library spark_nlp_jsl-5.2.0-py3-none-any.whl\n", + "Downloading 🐍+🕶 Python Library spark_ocr-5.1.2-py3-none-any.whl\n", + "Downloading 🫘+🚀 Java Library spark-nlp-assembly-5.2.0.jar\n", + "Downloading 🫘+💊 Java Library spark-nlp-jsl-5.2.0.jar\n", + "Downloading 🫘+🕶 Java Library spark-ocr-assembly-5.1.2.jar\n", + "🙆 JSL Home setup in /root/.johnsnowlabs\n", + "Installing /root/.johnsnowlabs/py_installs/spark_nlp_jsl-5.2.0-py3-none-any.whl to /usr/bin/python3\n", + "Installing /root/.johnsnowlabs/py_installs/spark_ocr-5.1.2-py3-none-any.whl to /usr/bin/python3\n", + "Installing /root/.johnsnowlabs/py_installs/spark_nlp-5.2.0-py2.py3-none-any.whl to /usr/bin/python3\n", + "Installed 3 products:\n", + "💊 Spark-Healthcare==5.2.0 installed! ✅ Heal the planet with NLP! \n", + "🕶 Spark-OCR==5.1.2 installed! ✅ Empower your NLP with a set of eyes \n", + "🚀 Spark-NLP==5.2.0 installed! ✅ State of the art NLP at scale \n", + "👌 Launched \u001B[92mcpu optimized\u001B[39m session with with: 🚀Spark-NLP==5.2.0, 💊Spark-Healthcare==5.2.0, 🕶Spark-OCR==5.1.2, running on ⚡ PySpark==3.1.2\n" + ] + }, + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ], + "text/html": [ + "\n", + "
\n", + "

SparkSession - in-memory

\n", + " \n", + "
\n", + "

SparkContext

\n", + "\n", + "

Spark UI

\n", + "\n", + "
\n", + "
Version
\n", + "
v3.1.2
\n", + "
Master
\n", + "
local[*]
\n", + "
AppName
\n", + "
John-Snow-Labs-Spark-Session 🚀 with Jars for: 🚀Spark-NLP==5.2.0, 💊Spark-Healthcare==5.2.0, 🕶Spark-OCR==5.1.2, running on ⚡ PySpark==3.1.2
\n", + "
\n", + "
\n", + " \n", + "
\n", + " " + ] + }, + "metadata": {}, + "execution_count": 1 + } + ], + "source": [ + "!pip install johnsnowlabs\n", + "from johnsnowlabs import nlp\n", + "nlp.install(visual=True,force_browser=True)\n", + "nlp.start(visual=True)" + ] + }, + { + "cell_type": "code", + "source": [ + "# install the nlu that comes with jsl-lib\n", + "! pip uninstall nlu -y\n", + "# Installsome nlu branch\n", + "!pip install git+https://github.com/JohnSnowLabs/nlu.git@release/511" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "bdlMvmyteR9j", + "outputId": "c1cbec61-7ab8-4f5b-82c3-30804a251e0e" + }, + "execution_count": 6, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Found existing installation: nlu 5.1.0\n", + "Uninstalling nlu-5.1.0:\n", + " Successfully uninstalled nlu-5.1.0\n" + ] + } + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "id": "ptUVgJjhIMGj", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 254 + }, + "outputId": "3b0b2fcb-c3b0-4551-b939-9c45ac5af349" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "📋 Loading license number 0 from /root/.johnsnowlabs/licenses/license_number_0_for_Spark-Healthcare_Spark-OCR.json\n", + "👌 Launched \u001B[92mcpu optimized\u001B[39m session with with: 🚀Spark-NLP==5.2.0, 💊Spark-Healthcare==5.2.0, 🕶Spark-OCR==5.1.2, running on ⚡ PySpark==3.1.2\n" + ] + }, + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ], + "text/html": [ + "\n", + "
\n", + "

SparkSession - in-memory

\n", + " \n", + "
\n", + "

SparkContext

\n", + "\n", + "

Spark UI

\n", + "\n", + "
\n", + "
Version
\n", + "
v3.1.2
\n", + "
Master
\n", + "
local[*]
\n", + "
AppName
\n", + "
John-Snow-Labs-Spark-Session 🚀 with Jars for: 🚀Spark-NLP==5.2.0, 💊Spark-Healthcare==5.2.0, 🕶Spark-OCR==5.1.2, running on ⚡ PySpark==3.1.2
\n", + "
\n", + "
\n", + " \n", + "
\n", + " " + ] + }, + "metadata": {}, + "execution_count": 2 + } + ], + "source": [ + "from johnsnowlabs import nlp,visual\n", + "import matplotlib.pyplot as plt\n", + "import matplotlib.image as mpimg\n", + "nlp.start(visual=True)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "3aHo6EhjIMGk" + }, + "source": [ + "## Table recognition and Text Extraction" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "ExecuteTime": { + "end_time": "2023-10-19T21:44:20.448827600Z", + "start_time": "2023-10-19T21:44:14.178026300Z" + }, + "jupyter": { + "outputs_hidden": false + }, + "scrolled": true, + "id": "PB2IE_lXIMGl", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "33e46129-8a92-4c56-faea-a680c1feaaea" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Warning::Spark Session already created, some configs may not take.\n", + "Warning::Spark Session already created, some configs may not take.\n", + "general_model_table_detection_v2 download started this may take some time.\n", + "Approximate size to download 264.7 MB\n" + ] + } + ], + "source": [ + "p = nlp.load('image_table_cell2text_table')" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "xM2YC8aXIMGl" + }, + "source": [ + "### Download and Display Image 🖼️" + ] + }, + { + "cell_type": "code", + "source": [ + "! wget https://raw.githubusercontent.com/JohnSnowLabs/nlu/release/511/tests/datasets/ocr/table_image.jpg\n", + "image_path = '/content/table_image.jpg'\n", + "img = mpimg.imread(image_path)\n", + "imgplot = plt.imshow(img)\n", + "plt.show()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 626 + }, + "id": "2435gn-SlxtU", + "outputId": "d9afe971-91ea-454e-f39f-58b88786798b" + }, + "execution_count": 9, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "--2024-01-08 01:12:40-- https://raw.githubusercontent.com/JohnSnowLabs/nlu/release/511/tests/datasets/ocr/table_image.jpg\n", + "Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 185.199.108.133, 185.199.109.133, 185.199.110.133, ...\n", + "Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|185.199.108.133|:443... connected.\n", + "HTTP request sent, awaiting response... 200 OK\n", + "Length: 385071 (376K) [image/jpeg]\n", + "Saving to: ‘table_image.jpg’\n", + "\n", + "\rtable_image.jpg 0%[ ] 0 --.-KB/s \rtable_image.jpg 100%[===================>] 376.05K --.-KB/s in 0.04s \n", + "\n", + "2024-01-08 01:12:40 (10.4 MB/s) - ‘table_image.jpg’ saved [385071/385071]\n", + "\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAVUAAAGiCAYAAABXm1WPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9eZwlx1WgDT95932pfV+7eqte1S2pF8myZVmyLK/YBo8N+AUbBmNsjBnAfmE8g4fBfHwvg/EwgOFlsD0fxkZgkCzJraXV6n2trn3f91t16+77zZuZ3x9ZN1XV6pZaUrW6Ws6nf/dXfTPjRp6MiDwZEefECUFRFAUdHR0dnQ3BcLsF0NHR0Xk7oStVHR0dnQ1EV6o6Ojo6G4iuVHV0dHQ2EF2p6ujo6GwgulLV0dHR2UB0paqjo6OzgehKVUdHR2cD0ZWqjo6OzgaiK1UdHR2dDWRTK9X/9b/+F01NTdhsNu69914uXbp0u0XS0dHReVU2rVL94Q9/yJe//GX+y3/5L1y9epW9e/fyyCOPsLy8fLtF09HR0bkhwmYNqHLvvfdy991385d/+ZcAyLJMfX09X/jCF/jKV75ym6XT0dHRuT6m2y3A9cjn83R0dPDVr35VO2YwGHjooYc4f/78dX+Ty+XI5XLad1mWCYfDlJaWIgjCLZdZR0fn7Y2iKCQSCWpqajAYbjzI35RKdWVlBUmSqKysXHe8srKSoaGh6/7mG9/4Bn/4h3/4Voino6PzU8zs7Cx1dXU3PL8pleob4atf/Spf/vKXte+xWIyGhgZmZ2fxeDy3UTIdHZ23A/F4nPr6etxu96um25RKtaysDKPRyNLS0rrjS0tLVFVVXfc3VqsVq9X6iuMej0dXqjo6OhvGa00nbkrrv8Vi4cCBAxw/flw7Jssyx48f5/Dhw7dRMh0dHZ1XZ1P2VAG+/OUv8+lPf5qDBw9yzz338M1vfpNUKsUv/dIv3W7RdHR0dG7IplWqP/dzP0cwGORrX/sagUCAffv2cezYsVcYr3R0dHQ2E5vWT/XNEo/H8Xq9xGIxfU5VR0fnTXOzOmVTzqnq6Ojo3KnoSlVHR0dnA9GVqo6Ojs4GoitVHR0dnQ1k01r/384oioIsy0iSdLtF0dHZVBiNRgwGwx0dr0NXqreJUCjE7Ozs7RZDR2dTUVFR8arr6u8EdKV6mygvL6e8vPx2i6Gjo7PB6Er1DiKVSpFOpXE4HaTTaWw2GwVRRFYUvD4f8VgMAIfDQSqVQpFlMBhwOBxYLRai0SiCIODz+cjn8iQSCUxmE06nE0VRiMfiOF1OZFlGEAScTiegTlfE43FEUcRqteJ0OtXfJxMYjUYEQcBus5NIJHC5Xdq0Rj6f1/JyOBxks1lkWcbv92MwGFAUhVgshiiK+H1+ENBkdDgc2j37/X4MRgOxSAzBIKAoCoVCAUEQsNlsiKKIyWTCbrcTj8cxm8xkc1lQFASDAZ/Ph9FoBNTlzvl8HqvNRj6XI5lM4vf7SafTmsyKomCz2nA4HeuGoflcnlg8htVqxW6zYTSZiEajKIqC3+cnXxBJxOOYTCYcDgcms5loJAIK2Ow2HA4HkiQRjUQwmc14PV7SmTTpdBqzyYzL5cJkVh/JTCaDzWYjn8+TTCaRZRmDwYDdbieVSmE0GtXrrpZlsayy2azaLgoFRLEAKJhMJkwmE5lMBrNZvY6iKESjUa2cZVnG5XKRiCfIi3nsdjsA2UwGRQHBIGCxWMhms3i8XjLpNFarlXQqDQLYbDbsDgfxWIyCWEAwCNjtdi3/nyZ0pXobeCPzRYqiMDY6xp//2Z/x3//kG/zn3/8D/uOv/RrdXV1EYzEefPeDLC4uYjaZ8XjcBFdWePqJJ3nsgx/E5/MyNjpGc0sLyVSSbDrDPYfu5f/+6lf5pV/6ZV48fpwv/OYX+YP/+/f5zGc+g9FsoqSkhK1bt2rXf+G55+m4epX77ruPQCDAgw8+yFe/8hV+9/d+j5HREQ4fOsRXfu8r/P4f/D6ZTAaP18vTTz2N0Whk/137sVos9PX1s7S0xO/87u9gMBh46cUTzMzOsGvXbv7Pd7/HZ37ls/yXr/0X3vnAA5w7f45P/+Kn+bM/+zN+80tfYvuO7Xzl936XD334w4RCIcbGxnjs/e8nkUgQWlnhuWPP8t+/8Q0uXrqovlQSSZ588kk+8MEPcu+he7VAPOPj4xx/4Tj/8df+I7FYjN/84hf5pV/6JapragB48YXjGAwGSktLcXvcvP8DH0QQIJlM8r/+51/ywQ9/iOHhYZqbmxno68fj9WC1WpmbneO973uUL3/pt/jlz/wyzx57lt//z3/AX/7Pv6SmuprRsVF+8Rc/zQvPP8/R++5jaHiIqopKKqsq+X/+v/8Pn/jEJ+js7tICsP/lt/4n/9cv/V/MzMwSCAT44Q9+wM994ueorqnhW9/8C375M7/McjDIux98EH9JCZlMhu9973u884EHGBkZRZIkFhcXSSTibNnSRm1tDf/v3/2/fPBDH2JkZJhf/dVf5T99+bf5T7/7O9jtdiKRCIVCgb7ePh588EF+9KMf0dDQQDqZ4oUXXuDhhx/G5Xbxg3/6Af/jz/+cjisd7Ny5k29+85vs3bOH/oF+/sMnP0l3VxejI6M89gG1bh588ME7en70jaBb/+8gnE4n8USC4HKQeDyOx+PGarNhNpkQ8yLf++53SSeTtLfv4j3veQ/ZXI6tW9tobGziySefZN/+fezbu5d/+qd/QpZlMunMut7ahz/8Yf75hz/EYDCwZcsW7bqCoPY6jAYDhw4d4ol//3fSqRTJZJKRkRGOHD5CXV09dx24i7NnzqIAra2tmE0mYtEoyUSSPXv3YrVYMK/2mkRR5Dvf+Qfa29tp39XOpUuXmJqaQpYkTCYTiUQSq93G4cOH+bcf/YjZmRlMJjNOl0vtFccTLCwscOjQIbZt205tXR3f/PP/gdft4fDhw2zdvo1cLsdDDz1EWVkZoL6YZmZmOPHicUIrK3g8Ht73vsf422//LYsLC/h8Psyrvcx77r2H7333e2Qyag/28qVLTE9NsW3bNh593/soLyvnhz/8Ifv27WPf/v386Ec/IpNOk81kEPMiiWQSg8GAcdXokklnGBwc5Ny5c+zatYs9u3fzne98B4vZovUwM6k0iqKwvLzM/Pw8Lzz/Au3t7ezfv490Os3997+Dti1t5HM5ZqZn2L59O+7VlT2SJHHxwkWefPLH7N27l/c++l48bjdWi4XH3v8YHo+X9Kp86XQGq81GIZ/H7Xbj8/nwuD189x++w9a2NlpbW/nZn/1Z7r//fppbmhFFkUfe+wjV1TXIkoTdYaeiogK3x40gQF4UiccTSJKEzWYjEY8zPz//Uxv8SFeqdxQKRqMRv9+PyWxCAVhdZdza2spv/uZv8qMf/YjBwUHMZjMAgmDA7rBjMBR7C4JqXUUdRj///PPs3LkTq9XKux58F3Nzc5SUlGjD5FdKoA4nDatW2pLSEhBALIh86EMf4tljxzCbTNpw22634/F4yGQyIGiZEAwGV4et6kGDQcCw2qMxmc38yZ98g5qaGu69917m5uaYmZ5RpyMUUACL1YLP6yOXzWE0Gvm1z/0a2UyW5557DrvdrvWOzGYzJpM6IIvH46RSKSoqKjl+/DiKorBr1y5+5Vd+hW/9xbcQ83mKa7YVBUxmk5aPIAjIigwKWMxm7Ha7OoWxegdFi7UCvHTiBE1NTbicLhBUZf77f/D77N69W81vtRwMBgMIqkJ89tgx7rrrLowGI0ODgxw6fIhnnn4aRZG14b3RZMRsMYMg4PX5MJvN2m4XRqORr3zl98hmM3z3e9/Vhu/FOhAEgUKhwLPHjnH33QcxGtRpG0VWUFanFijeowButxuH06HVj9liwWw2ISvKah0oWtmMjowQi0ZpampSy8dqxefzkc1mX0/jftugK9U7iGQyic/vw2AQ8Hp9xGNxdd5Skbly5TJms5kPfvhDVFRWkE6lsTscJBIJysrK+NjHf5auzk66u7v5xU9/GgTw+X186uc/RVdXFxMTE+RFkZKSEjLpNFcuX+Hv/vbvUBQFRVHI5XIoisLlS5f5xU//IjabDZ/fT2lpKS+++CKZTIbmlhbe8cADNDe3IEkSsqJgs9lQUDh//jx5UVR7VBcvcunSJT77K7/C0NAgvT293Hf//TQ0NmK1WnG5nJSVlZNIJEimU3zkIx+hqbkZk9lEMpkkl8vhcDhwupwcP36cYDCIKBb4yv/9Vaqqq0GBRDyBw27X5koB+vr6aG9v50Mf/jBnz5wlGAyytLzEgw+9m49//OOqq5uikEql6O7u4tc//3lNOd199z00N7dw6tQprly+DCj8wi/+At1d3XR2dvKJ//AJbFYbXq+Xj37sY0xPTdHd0w0IuFwuKquqaG1t5cEHH6Snu4f+/gE++yu/Qi6Xp7SslF/6zGd47vnnGBkZJpPJ8vAjj2B3OOju7iYWj+N2u0kmk2QyGVwuF16Ph66uLoLBIKDORV/t7OT9H/gAe3fvQZEVcmIeSVbnn1OpJKVlZXzms5/lqaeeJhqLcuS++7h8+RLj4xNUVJTzmc98hs7OLro6u+jt7UWRFZLJBDarlWwmS1VVNVXVVVy5coVMOo3RYMBkNLF//36279jB0089TTaXw+5w4HK51oXu/GlCD6hyh1BUbLlcDqvVSi6Xw2w2I0uS1qvK5XKYTKrhqVAokEmnMZst2Ow2bX8dQVAfclEUXzZqiAVMZhMGg0H9jcVCOpVifn6e3Xv2AJBOp5EKEmaLWTOgZLNZrRfldDoRBIF8Po/FYkFZVU6KoiCg9l5EUVQNV6vfLRZ16FsoFHC5XAiCQCqZwmRWjU75fJ5CoaAFH0+n05qBpmgAM5lMyLKMyWTCYrFo5ZPNZsnn86rByPSy8cdkMiFJEmJexGK1UCgUcDocSJKMgkI2m0VRFKyr8q2lIBaIJ+I4HA71ZaEoJJNJFEXB7XZTKBTIZjJYrVYKkoQgCEgFCcHwstFPlmUSCdXA53K5tDq12+1a/cmyrBmBzBazWq65HLbVHmcmnUYQDCgoOJ1ODAYDsiyTSqWQZRm3y41gEEilUlrd5HI5RFHEbrdr9S4IAvF4XDUyrb48UskUYkHE4/Go7SGToSCKOBxOjCajOk2RyeB2uzEYDJrRrDilU7xHQRAwm81Yrda3zZzqzeoUXaneJjZ7sUuShEEQEF5lgzMdnVuBALAJFfHN6hTd+n8bKBojpqenuS1Np6jPb3Dxa/W98Cppr5e1sPb3m+/Z+OngNep4Q68BKMLGXKqysor6hvo7utnoSvU2UV5erlmldXR0VN4OUwW6Ur1NCIKgfXR0dDb/lNjNoivV24CuSHV0Xsnb5bnQrRA6Ojo6G4iuVHV0dHQ2EF2p6ujo6GwgulLV0dHR2UB0paqjo6OzgejW/9vA63EdEQThuumLltK15661nr4RF5XXssC+2vV0dHR0pXpbkSQJRVHI5/NqmDijEVEUsVgs2nr1ohLL5XJkMhmcTqcWgapILqdGarr2eJFEIoGiKK9YB5/L5bSwfsX17jcrd3EduY6Oznp0pXqbkCSJSxcvsqWtjbGxMaxWKyUlJSwvL+N0OmlpadGUliLLfP8f/5GdO3dSUVlJbW3tarCOAiAwNjZGWXkZfr9fU8zFkHeKovC///f/pqy0FASBT33qUwCcPHmShfl56uvraWpuRipINDY1IgBWm01TuIIgIMsyRqMRo9FIbjX+6vz8PNu2bQPUqO/F9G+nABo6Om8EXaneJsbHx0kkEgwODJDL5bl08SJtbVvx+X1EwmHmrdaXA0ULAiaTmQsXLvJzn/g5vve979HQ0EDH5Sts27aNmdlZ3vvIIzz5xBOqkh4d4+GHH6apuYmCWGBqYhJZkrn7nru16w8MDGC329m6bRsnXjzBgQMH+Ob/+HOMRiOPvf8xrlzpQBAEjEYj0WiULVu2kMtlEQQ1clFrayvf/PNvYjQZed+j7+PC+fPkxDy/9mu/pvWGdXR+GtENVbeJeDxOVVUVE+MTWMxmspksM9PTlPj8rKyE1g2tV1ZWOHr0KKlkkrNnzpLNZGlubEIQBB5897tJJZNcunwZu91OY2MjsVgMl0sNNbe4uIjdYcdutyPLMqAO/edmZvnIhz9CZWUlCwsLxGIxNfxcPsepk6fIpNO4nE5mpqeRCgUMgsBA/wCH7r2X+bk5CqKIQRBIp9JIhYK6dca73qUFp9bR+WlFD/13G1AUhdDKCuFQGIPRgNvtJhyOYDAIeLxexkZHOXL0qBarNBaLsbi4iNFopLysnOnpKRqbmjTFPDo6SllpKSuhEOXl5YRDIVq3bMFsNrO4uMj83Dxej4emlmbMZjOJRIKBgQH279+PyWRicHAQv9+vbfBntVhXt1hRo7cLBgMl/hKmpqZobm4mEAjgL/Ej5kXiiTgz09MMDQ5x8O67uf8d9+vDf523JXo81U2uVAEtoPNaRFHUjFaAuu0Jm7uKgsEgmXSG8orydVuZ6Oi8ndDjqW5iikrnetb2a5UsqIp1M1NRUXG7RdDR2TToc6o6Ojo6G4iuVHV0dHQ2EF2p6ujo6GwgulLV0dHR2UB0paqjo6OzgWy4Uv3GN77B3XffjdvtpqKigg9/+MMMDw+vS5PNZvn85z9PaWkpLpeLj370oywtLa1LMzMzw2OPPYbD4aCiooLf+Z3foVAobLS4Ojo6OhvKhivVkydP8vnPf54LFy7w/PPPI4oiDz/8MKlUSkvzW7/1W/z4xz/m8ccfV9egLyzwMz/zM9p5SZJ47LHHyOfznDt3ju9+97t85zvf4Wtf+9pGi6ujo6OzsSi3mOXlZQVQTp48qSiKokSjUcVsNiuPP/64lmZwcFABlPPnzyuKoijPPPOMYjAYlEAgoKX567/+a8Xj8Si5XO6618lms0osFtM+s7OzCqDEYrFbeHe3HlmWr/t5tXQ3m8dGf25W5pu5n43iZmV+I799Pff4Vt3T6/ntzeR7s/fzZsrqTiEWi92UTrnlc6qxWAyAkpISADo6OhBFkYceekhLs337dhoaGjh//jwA58+fZ/fu3VRWVmppHnnkEeLxOP39/de9zje+8Q28Xq/2qa+vv1W3dFuQZZlsNqut379RmhshiiKSJK2bQpEkiWw2q4UfvN70Si6Xo1AooCgKuVwORVFQFEULW5jL5W54XVEUbyhP8bfFPG81hUJhnZyvJtu1yLL8irJZm1+xbCVJesVvX891Xg/5fP5V5Xs1ri2LtSiKQjabvW5+N7rHIqIoks1mX5GmUCiQy+W0kJFvd27piipZlvnSl77E0aNH2bVrFwCBQACLxYLP51uXtrKykkAgoKVZq1CL54vnrsdXv/pVvvzlL2vf4/H420axFgoFnnvuOVqaWxifGOc973kPBoNB+4D6MDz55JO8+93vxuVyIUnSutB9MzMz5HI58vk8+/btQ1EUBgYGuHz5Mu9+8EFm5+YQBIEjR45oK76y2SwXLlwgEAiwc8cOcrk8docdh8PB8vIydXV1LMzPYzSaOHDwwLrYr/F4nDOnz/DIex/B4XBo8hTl7erqIpNOIxYKbNu2jfLycgwGA7IsoyiKJruiKMiyjNlsRpKkdWmKeQHrykGWZAxGw7prdnZ24vV62bp1K4qiMDMzQ2lpKWazGbvNhmAwaPddVDjF+1kKBBgZGeX+++/HYFSvH4lEsFgsuFwunnnmGQ4ePIjdbl/XrmVZZnZ2lqamJi18oizLGK65VvF+i+eWlpaoqqpCkiTtN2tDMMqSzFNPPcVjjz2G1Wolk8kQi8WorKzUXniJRILS0lIkSdKihsmyzNLSEmNjYzQ0NNDQ0IAiK4CCYXVZ9NTUFFNTU1gsFo4cOUKhUMBoNCJJEqGQGujH6XS+IiwkwNjoGH19fRgMAu999FGcTieyLHPsJ8fw+X1UVlYyPv5y+y3W59p6Lcp6Jy91vqVK9fOf/zx9fX2cOXPmVl4GUJd83myQ5TuNlZUVlhYDPProo1y4cIEXjx8nk8lQXl7BffffB0A4HEbMi3RcuUJzcwuXLl1EWFW61dXVLC0tsWPHDnK5nJbvjh07SMTjmM1mLl++zP79+9c1ZovFwuHDhzl98hT9ff28+6GHOHHiBEeOHiGTyWCxWHjppZM88sjD6+SdmZlhZHiYZDLJs8eeZeu2rQQCAaxWK/fddx+yLHPypZP86n/8VSwWC3Nzc3R1dRGLRsms9pyNBgNWq5VgcAWTycT2HdtZCQZxOJ2MjY1hNpvZu3cvMzMzlJeXs2fPHgCGh4eZnpqivqGB/v5+nA4HVVXVLC8taZG/CoUC/X192Ox2ysvKCIcjbNu+jbq6OhRF4eyZM1RUVjIxPo7H7cFmszE6OspSIEDLllaMRiOKomC320nE44RCIRYXF7FarYyOjpKIJ5AVGYvFQjweRxAEhoaGqKioIBqJsGPnTmpqapBlmUuXLrGwsIDH4yGZTFJfX09nZyf3338/o6OjlJeXMzIywq72drWzUVWFmBcJhUKa0o9Fo0xNTXP+3HkQoL6+nsBigMrKCiRZprqqmuaWZrKZLM88/QzNzc1cvnSJ+fl5FEkmFAnz/ve/H4PBgMViofNqJ48++ih9fX2MjY3R2NjIyMgIVZVVVFZWshxcJpVK4fN68fn97Ny5EwCzyUQ0GiWff3n0IggCqWSSbDbLtq1bmZme5ol/f4L2Xe1MTEzQ2NhIV1cXra2tLAeW2Lt/Hw0NDbfoSXpruGXD/9/4jd/gqaee4sSJE9TV1WnHq6qqyOfzRKPRdemLb+dimmu9AYrfi2l+mnA4HMjaUFvCYXdQXl7BysqKlmZ8fJxt27bS3d2DKIqUlZZhMpkQRZFdu3aRSqW0oXuRpaUl3G43+bzI3r17WVxcJBaLrRv6jYyM0LplC06Xk1Q6hdvtBtReXDQa5ejRI0xMThKNRrUHyWq14nA4sVjMVFZUMDQ4iJgX1Z7Raq/M7XYRDAbJ5/PMzMxgtVqJRKIUxAJlpWW4XW7CoTCyJNG2ZQvLgSWSyRSLC4sokozNZsPr9TI7O6vJBBCNRgmFQqSSSbweD5FIhP6+Prw+nzYsNRqMJBNJ7FYbdruDgigyNjYGgACYzRYG+vpJJlOkUiky2QyNDQ04nU4sZgv9fX2IuTzLS8vMzy/gdDiRJZlUIkksGmNubpaCWGDnjp3kcjnGxsbw+XyUl5eTTqWZnpoC1OHyyMgIu3fvRipIVFVWEgmHcTldjI+NUV1VTYnfj8/rI5FI4vP5MRtNBBYXcTocWnkbDAaSySSSJOHz+shlczgcDsZGx6gor9BGdyaTCafTidFooLGhkdnZWaanp2lvb1/XLj760Y9y4sQJent62bZ1G1aLharKKjweN8vLSywtBti+dRs2q43e7h5NDhmFstJSfD6/9ryKosi9hw4hSxKTk1OUl5UjiiIrwRUi4QipZJKy0jKWlpZoaGzE5XS9+QfmNrPhPVVFUfjCF77Av/3bv/HSSy/R3Ny87vyBAwcwm80cP36cj370o4Dau5iZmeHw4cMAHD58mP/+3/87y8vLWrCO559/Ho/Ho70Vf5rweDw8/PDDjI2O8dB73oPRaCSdSlNSUqIN9zweD21b2hBFkUwmzUpohaP33af1aNrb23G5XNhsNi3fYDBILBqjurqG2tpatm7dytzcHOXl5VRUVJDP5wmHw6TTae67/36CwSBH7ztKPp+ntraW2tpaFEWhdcsWRkZGaG9vx+l0Ul5eTiKRoKSkBLvDTm19HfPz8zgcDq0n/PGPf5zRsTEUReGuu+5ifn6e+99xP6FQCIvFgiRJeP0+Ll++jMVmZe/+fYyPj2O1WpEkCYvFgtFoZNu2betetCUlJZhNJjxeLy63m8qqKpwOJ5FIWJtCkhWZnbvaqaysJJ1O07Z1K87V+LMKUF1TTW1dLaIoEolEqKmpIRwOq3YBBe67Xw1vaDKZCAaDSJJEaWkpACaLmdKyUnVLHLOJbdu2UV1dzejoKC6Xi53t7Xi8aoQji8XCXXfdhSRJtLS2IAgCZeXlVFVXU1paytTUFB6vl5bWFurq6ujv76e+sYGCVECSXh52W202GhobqKqu0qYk4vE4O3buIJvJsP+u/apsZhPtu9pV2YwmXB432XRmXVS0YlDy9z32PoxGI8vLy9TU1GBZHQlWVlXhcDoxWy2UV1ZQVl6mTb04nU5qamuxO9S4vsX8UqkkO9vbqa6pxma3ocgKFqsFm92Gy+XC7fGooSUnJ3E4HbfkGXor2fDQf7/+67/O97//fZ544gltuw0Ar9erDb8+97nP8cwzz/Cd73wHj8fDF77wBQDOnTsHqBPi+/bto6amhj/90z8lEAjwC7/wC3z2s5/lj//4j29Kjs0c+u/18EaqJxgMshIMsuMNvICK83ivl0KhsOER/2VZpqOjg927d697GRQJBoPE43FaW1s39Lo6t5/NOKd60zplAzwN1oH6sn/F5x/+4R+0NJlMRvn1X/91xe/3Kw6HQ/nIRz6iLC4urstnampKefTRRxW73a6UlZUpv/3bv62IonjTctys+8Pt4GZdTN6oq8xGuK5spAvNzfz29aR5ve5MrzftzZbJRv/2rXQ1ulX3/WbrfTNzszpFD1J9GygWefFv8a18vS2mlTWW8JvJ83q8kbf+tfm9mmzF79dLcz3Z197/q9372r9r87nRva49f23Z3qisX+0613I9udfK8lq/vVEZFX97s3X9Znmt8rte+qJs197DtTJfWx7Xu+61eWzGXun1uFmdoq/9v02Ew2H+5V/+hZdeeolkMgm83HjXfk6ePLnOP/RGH1ArvbOz8xXXeq3f3ig/gHQ6fd08EokES0tLpNNpxsfHNUMPqMaJVCrFiRMnrpt3NptlaWmJjo6OG8pYvJ8zp89w/vz5V5xLJBIsLi5e9z6z2SyPP/44Z8+eZXZ2FoCpySme+vFTnHzpJURRXJdXOp3m/PnzhMPhVy0vgIWFBXp6elbznOTChQv09vTy0ksvkc/nX7VMX3zxxXVGQEVRuHr1KoFAAFmWOfHiCc0n+FZ/ivUqSZLmEXKjtIFAgO7ubkDd86y4OlKSJF588UXNZ7mY7+joKOPj4ze87rlz54jH46/aPu9k9Mj/twmTyUQouIJRMHDuzFnq6urIZLNEY1H8fr+27fPS0hLHXzjOnr17CAQCq9b6PB6PBzGfZ2Z2lvvvvx+z2czc3Bznz51nx44dBBYWmZiYoLq2hrGxMbZu3UooFKK0tJRsNks2k0UsiORzOUxmMx6PB5fLxczMDH6/n+XlZW1Bxic/+UkALpy/gCxLNLe0aA7dzx57lt27djE8MkwsGuPg3Qe5fPkyBoOBiYkJRFHkrrvuYmxsjPLyclpbW3nmmWdobWmlp7uHVCrFllVDV0N9AyOjI3g8Ho4cUd22Oq9e5b3ve5Tl5WWGBoeoqa1haGiIhoYGzGYz0WiUYDBIdXU1hVWfV5PJxOLCAh6Xm+mpaerr65EVmXQ6zUowSKFQwGqzUV5ezvz8PD6fj1AoRDQapbu7m+rqamamZ7CYzdjsdvwlfhYXF2ltbWVqcoq8qDreLy0tq8bDhx6iv7+fF55/nrsOHGBubg6Hw8H87ByVVVWaop+fneP48y+wb98+lpaXyeayiKJILBYjtBJiYnycbVu3Mj4+TnllBePj45qP67Zt27BarSiKwsULF4jGYtTU1Ki+vmIBl9NJLBbDX1KCw+kgHA5jtVrxeDyEw2HsdjvLy8vksllat2zh6tWrfOxjH2NkZIS5uTlqa2tJJBLs3LkTh8PBqVOnMBqN1NfVkUgm6erqIplM4vF4UBSFyclJAGZnZnnu2ee4/x33Y7PZePzxx9m5cyfjY+NEo1E8Hg+zq200Ho/z3HPP4XQ4OHnyJLt27SIej5PJZBDzIul0mrvvuVtbKHSnovdUbyNiQeTIfUcpqygnFAmzsLjA8tIypSUlLC8t09LcrFqyVxtmKplkoH+Ahbl5hgaHuHTpMuXl5UiSRD6fZ2Fe9Xfs6elhdm4WWVZdj8S8SGhlBRSIhCNMT03j8XgIrYSw2+wYBIGRoWEuXbxEeVk50Uh0dSfVGew2m+YDHAqHmJqcYnxsHLPJTHB5GZvNhtVmo76unonxcQDNAu10OsnncnRc6UAqSJhNJgRBwGw243I5qayoYGF+gfNnz1FSUoIoisiSzNzsHIqi4HA4ePR97+OZZ57h3Nlz6gMtK8gFCb/Px9TkFN1d3ZT4S4jH43R3d2tuUwajkfLychYXF7TyzufzfOCDH0SSZBrq6+m4coWK8nLsNhslPj+XL16ivLxc3fSwxE86naa+vp6rHVcpLyvj/LlzVFRUaNbuLW1baG1t5cSLL2Ixm3G53MzNzpFMJBkeGmZlZQWf18v01BQetxuzxYLD4aCzs5N4PM787BzpVJrAYoDg8jIej4fLly/j9niQJRkUcLvcXL16lUwmoy1mCIXCtDQ3MzoyytzsHIsLC4TDYWrr6ojH4wz0D7C4sEg0EiW4vEwqobablWAQk9FEPBbD4XBgMBgwGU3YLFZ6unuwWW1MTExgNBrJ5/NMTkzQ3dWNx+WmtrqG2ZkZYtEoQ4NDZNIZ6mrrsNtsmM0mwuEwhlXfYpvVSn19PcNDQ1y+dJnysnJtAYfT6cRsMlNRXk5nx1Wmp6bwerysrASxWiws3WBxz52E3lO9TUiSREtzC+Xl5QiCQGdnJ6Wlpdjtdrw+H/FEnKXlZUpKSnE47EiyTCQcxuv1UllViSxJWK1W0uk0JpOJ5eVlWltb2bdvH5cvX8JhdxCJREgmk5SWldLc0qI5+AeDyxiNRsrKSnE4nRSkApVVlYBAKp3C5/ehKApmsxmb3UYqlcLlcnHw4EHEXB4FsFgteLxeTCYzkixhs9soqyhHURTVQXx5WbufivJyhodH2Lq1DYCGhgaSyRRenxer3UZpSSnBYJC2tjZ8Ph92u02bYohGo9x7z72UlPiZnJpi546dlJSVYjKbKSsvW13tU8Dn87F161ZAnX6oqqoiJ+bZs3cvoPpyNjY1UlpWis/vw2yxUFtXRyqVory8HIfLSWNzE7FYTFuJ5C/xY7VaqaqqIpvNsmPHDmZnZigtLwPUobDNbmPXnt2srKzgdDowGI2k0ilcbvWl4ivxq4swjEbKy8uwO+xUVFYSjUbZtmM7uVwOp8PB+MQELreLhsZG5mZn2bp1m+oeZlEXOSwtLTEzM8OePXuQJImVlRCHDx+mr68XAJfbhdlipqKyApdb9fVcWlrC6/MSXFnB5/dhMBhwOVUXJlcigSRJlJSWEAqHaNvahsFgoKW1BYC77rqLUChEoVDA7nTgdLkQDAIOp5OKShcDAwOUV5RTWlaK2+3BtPrCrKmpQVEUbDYrVVXVCIJAJpPBZDQh2ATcbjcmo0l9ETc2EFjdJbi0tAyHw471Ol4edxq6oeo2oBW5osCrGHpeOyO43p6AiqJw/tx5rFYLW7dtW+cc/2oy3UqDwXXzv879vyLdde7xhmnfCq6R53oy3Ei+15P22jSSJCHL6iqtkydPsmPHjje24eIN2sxr/uwG96KoX0BYsz1lUaPc6DoKKLx62WxG45W+RfUmVqrwxvxP3w5oD8vqg6Wjcz3uZKWqD/9vAzdSqK/HLeXNcL0G+3rzvbaXcbMU0wqC8Ka33n61675eF7TXUyav5tr1ZpTBRlzvTnhZv5Zr3J2Obqi6TYiiSE9PD729va8IlZbNZl/hLrSWiYkJLl26xNDQkLbuOhqNcvr0afr6+l4RXq1QKNDf378uVsCNSCaTDA0NAWqjHx4epquri5WVFQYHB2/6t0UkSaKzsxNJkojFYutcrzaKpaUlzXWqOFS+mQd2eDXoy6sxPT3N7OzsDaOjpVIpuru7yWQyr1/wG7CyskIikXjF8aI/6NrP9VAUhYmJCSYnJ7VymJubIxqNsrCwwJkzZzT3r6mpKUZHR0kmkwwODhIIBJifn2d4eFhzPZudndW+j4+Pk0wmVW+MoaF1rlm9vb3rjIVFXqs9z8zMcPHCRQb6B5BfJbTgnYLeU71NxGIxzp87xzvf9S4ymQyzs7OUlpYyNzuLz+cHFJaXlwmFQlRWVpJIJKivr8dgMKhuRMvLdF69Sn19vRpiTZIZHRnB6XSRiCew221UV1ezsrKCzWZjaHCIyopK+vv6KCkpZXFhAafLSS6Xp6KyglAoRGNjIxMTE4yNjrJ9+3ZkWeb4C8e5//77KYgFLly4gFSQqK6pJrSyQllZGZOTU1TXVBONRPF4PWoaSaK2tpbgcpDS0lKGh4ZpbmpmYmKchcVFXC4X0WgUm81GIh7H5/OrwVdW1/DPzMwgyzIlJSVMT03j8/lYWVmhvLyMXC6H3e7AYFTLobKykuHhYYwGI/X19USjUc6fO8+9h+4lFApRVVWFx+Mhl8sxPz+Py+UilUyRy+eYnZlhanKKPXv3kM/ncbvd5HI5kokkBoNANpNFQaFQkBgfH2Pfvv34fD4CSwG2b9+O0Wik40oHFouFSDjCbHIGv7+EmZkZtm7bitvtJrSyQigcprm5GbPZTDAYZHFhQZ2DFAS1nIJBqquqmZycXHUnUiiIBSbGJ9RwgEYDtbW1xONx8vk8dpuNaDSGyWTEbLawdZtqoFteXiYajVJSUsJLL73Exz72MQRBIJvNcuXyZXbv3kN3dzd2ux2T0UQqleJqx1UcDgfdXd3s3r2bUydPIggGXC4nVZVVuD1uzp87j9vtpramltGRUew2O729vRREEa/Hg8PhIJlMcvrUaR588F1k0hnm5ufw+/1amRfjJASDQSoqKkgmkzQ0NKjBYBJJFubnWVlZoa6+blNO170e9J7qbcLj8bB//10cO3aMS5cusbS0xFIgwED/ADar6uJy6uRJgsvLjI2NceXKFa0HoIZTS6HIiua4LQgC8USC9l3tyIpMLpfn9OkzqgVXkvB4PVy8eJFQOMz09DTLK0Hm5xeQZInTp04TWlnh9KlTWMxqsI1ino888gjPP/ccyWQCp91Bb28vy8vL9Pb0Mj42zvTMNH29fQSDQSKRCC6nk+6uLo6/cByr1ar6OxoMnDt3DqfThZgXOXvmDMtLSwwODmIwGrl6tYPJ1chNiqKwvLTE6VOnGBwYYHZmhkgkTE9vD6FQiLHxcaamp9Q8AkucePFF/D7/uiGlJEmcfOkkFouFs2fPAmqP8tSpU4RCIfoH+rl69SqCwUBpaQknXzrJmdNnmJqcYqB/AJdbtW7b7Hat91ReVs6pU6d48cUXWVlZIZvNAmC2mPF4PZw9d5ZMJsO5c+eYn5/XYhWEw2G6Oru0UUI4HGZ5OUhvTw8jwyMEAgH6+vrUMu3tIZFMsLgYYDGwyEB/P8PDw0QjqhvTQP8AnVc7mRifIBaLMTkxSceVK6qbmSxz8uRJCoUCvb29OBwOXC7VC6Czs5N4LM7S0hLve9/7yGTSJJIJbDYbHq+Hubk5Mpk0doedbDZLaVkp4xMTFKQCgiBQWlrKxMQEkiRhtpgBKC0rZWp6mtxqsGyHw8GhQ4c49pNjXLl8mcBigKVAgL7ePqwWKwN9/Zx66SQrwSCjI6N0dHS83J4NAqlUChllQ3v8twtdqd4mwuEwKArNTc14PR7isRjOVXcXi8WCzWZDUcBms+P3+fH7/JoClWV51Sm9RAt+IhZEKisr2blzJ3a7Hbfbhc2uBl82Go1q2DeXU+3pOey43W7sDjsul+qKYzKZKS0pZWxsDIPRgKKouwHMz8+xZ88eZFnBarNhs1mZmZ5GWt2JwO1yU1pWSjKRwG63Y7PZsNnsVFervdm2ti2YzCZcLhfj42NYrRYKYgGn04XNasPhcNC6ZQuZTEZTiONj4xiNJoyr8TmtVjWaUVl5OeFwmPLyctXhfdUXdnp6WlOqVosVUN26IuEIW1q3gKK+INra2sjn86TTaQwGA16vF1lW2LlzJzt27CCdThFYCrC8vIzVZsPhdGh/EQT27tmDxWzGZDJpwWOMRiMGg4GSkhIkSaa+oR63x62dn56ZQVFeVhZGo1EL9Gy1WpidmUUqFIhGo2zdto2xsTEEg+oN4HS5cLqcmMwmbDYbmUwGATCtBta2rfoQy4oa3LqsTO3JNzQ0YLFYtKH/7t272dG+k5LSEgYGB9jS1kYymWRkZITt27ezd99eHnjnO1lcXGTbag/8nnvuIRaL0dHRgdFk5MDBA0iyqgRlRUaSJA4fPqxdIxaLkc/laN2yBa/PRyQcxu324F6NjGaxWDAYDJjNFkpLS/B6vVp7liQJh9OB3+/f8KA8twPd+n8bKC7FE/MiBqOq9ERRxGQyadGeitHQi64mRedpgMKqk7zRZMJoUpWqvLqlRjFCPrAumnwxQvvaKOtr5+WKUddFUcRoNL6srFfn1YqywWqUfeVl273JZKIgihhX5V6b3mw2v+Le1i5HXHuPa68JcOHCBVCgubmJispKzGbzuvIpyl88VnTKL4gFjCajdrzosiSKopZH8Xprj10bZb8YlX7tvSiyjLx6f4CWlyAIr4hgXzymyAoGo0HLT16N9l8sy+L9F69brLu1j+baOiu2oSLFdiHLshZlrCjvtfEQivdb3PrE4XBo91KsJ0VRtGvFYjF8Pp/W/kRR1HYuuPYa+XxeCyO4ts7X7nhw3fZcKGjlXGwDd7L1X1eqt4GNLvJrH8C3C8UXhcViud2i6LzF3MlKVR/+vw1Y66Z0q3groiddS3F7j1e77mZ5+DaTHJtFlp9WdKV6m0ilUvT39zM7O/uKnS0VRWFubo5QKPSa+eRyOebm5tYdCwQCjI2NEY/HX3HuZigUCjflfvVGeSORiOLx+HVlKuYTiUQ049HNXH96enpduc/MzGzITp+pVIqxsTFGR0df1w6nr4c3OiqZm5tbtwvr9fINBALr8lcU1RhajOD1ekgmk9d1DbsRsViMqampO37UdefPCt+hiKLImTNnKCsro7m5Gb/fT1lZGdFIFJvdxrmz53jXg+9idmYGn9/PSjCIxWJBFAuUlpWq7kQVFczNzXG1o4OP/+zPAuqk/1NPPcWhQ4eIxWKcOHGCd73zXepvIlG8Pi/LS0v4/H41LkBpKclkEpfLhcOhbmVREEWSyeTq1iwZGuobMJlfnkNcXl7G7/ORzmRIpVJUVlYSDAbXzZ8W5+ZsNhuhUIiysjISq8aszqtXuefee4lEIpSUlGjXjUajDA4Osmf3bqKxGOXl5drQPxKJcOXyZY4ePYp7NfJSbW2tNo9aND7F43EcDgeZTAar1UoqlUIAtQxXVigpKSGTyXDixAk+8YlPaFb6jo4OmhqbaGltIZlM4nQ6NVegYv6RSASfz6ftB2W1WkkmEtTV12vzvI//8+M8+qgaVSuVTJJKp3G73cRjcfJiHqPRiM/rUzfIE/PU1NRo9bKysoKAgMPpwGw2I8syfr8fUJVbMBjEZDLR39/Pvn37tOXHuVxOK+NieRUKBUKhEFarlUKhQEEscPXqVWpqati+fTuZdAa7w44oiprBSBRFMmm13EKhEF6vl/7+ftp37iSXy2MymUgmk3i9XoKrxrzq6mpNvvn5eTKZDBUVqoue2WzGZrMhSRKZTAav10soFKKmpkabO83n86ysrOB2uXn++ee555577vietq5UbxMGg4FEIkH7zp1k0mlCwRWGBgcBgdaWFgwGA329vaofaUW56mdaVYXJZKS/vw+DYGDQbKKmqhpBWL9V8913382zzz7Lxz/2cQQETp06xcEDB+jv76epqYmBwQFqamoQxQIVFRUMDAzw4Lsf1JRbNpejq7OLXC6L3a4ea2lRA20k4nH6elSXnWAwSF7Ms3ffPkaHR7A7HcxMz3Dk8GFGR0ex2W0UJIl0Os3+/fuZnZ0lHosTi0YZcA0QCoeoq6vTti/PZrOEgiscP/4iW9q2MDY2xgMPPACom/UJCDzzzE8oKy3FaFajd3m9XgAmxyfw+X30dPdw6PAhLpy/wOHDh7lw8SJOpxOP201OzON0OimIIhbz+nlag2AgEY9z5tRporEY23dsZ+9qMBaA48eP09raSm9PD4lEEhSF0tJSrFYrdatboefzeVZCK5SVl1FRWcGZM2eoqKjg3BnV3crt8eDz+xBzeebn5ykrL2N5aZlYLIrP52N0dBSj0cT+ffsYn5hgx84dmlKVJInx0THmF+YRCwX279+vyRYJhenq6qKmpoZ9+/YB6gKCkydPsnvXLubm5olGI9jtDtKpFM8de5ZsLsvePXuJxmJUVFTQ1dnJ3r17uXTpEm1tbSRTSa3X2tzURG9vH7Isq77C2RzLwWXEQoFPfvKTmhI88eIJampq1ChWmTRtbVuJx2IoQG1tLZ1XrwLgcrrwl6j3de7cOWprarlw7jz5fP6OD/sH+vD/tlEoqJGVjhw9itPloqSslIIk4fa4sdptmMwmxEIBq82K0+XC6/fhcrsoLSsjl8/jK/FjNpmYm5tbZ00WRZFEIsGuXbuIxqJYbVbMFjPjExNkVnuWXo8Xm92OgoK/xE/d6sZ8RQRBQFZkTGYzDqdj3ZBxZSVEKBwmlU5TkCSqqqpxOp3E4jEaGhqw2qyUlpcRjkaob2jQ3GlkWWZhfp5sJoPZYiGXy1EQC9qGeaDuwlr0UhBFcd05s9mM0+WipaWFTCZDWVmZZj0GMJiMyIpCXUM9c/PzNDQ1Mjs/h4JCMplALBQoFAqUlZWxuLCIKOaR1gzP1Q3o3DQ2NbF1a5tmjV57/UKhQHlFBbl8jkwui4Lqr1nsddlsNhobG+nt7WVmZgaz2UwymaSiqhKr1YrT5cRms1GQCiAI+EtKyGQzRGMxkqkUNrsdk9lEfWMDsWhU6wWC+sKZmpoim81htVrXTXUElpaIxWLrVodZLBa8Xi/JVIpINEJeFHE4Hbjcbuoa6qlvaGB+cYGx8TG1ri1mSsvLMBiNq0FuBBoaGrA7HKovqqC6UpktFtxeDw6nc52BVBAEBIOgur6VluLz+XA4HOpUy8w0eTFPOpPB7y/BYn35heZwOEgkE1RUVWoeE3c6uvX/NlB0bUmn03g8Hu0BMRqNZDIZHA4H2WwWm00Nu+dwqIrNaDQiCAIGg4FsNovT6SSRSGBZjdNZbOSJREKLR7rWP7JQKKy6Q4HdYScej+N2u7VrrXUTKv7OYDBgMpmwWq2A2mNKpVJks1lOnTpFZWUlFrOFcDhMdU01LS0tOJ1OUqmUtmuuy+Vi69atq9sjqz1Oi9WiBT0uKiVFUUilUtisNrK5rBbzs+iCU5w+kGWZXC6H2+3WHsLi8L9QKGC1Wsnlctrf4jREKpXC4/FokeudTqc2fZDP58nlchgNRi5fvsyBgwdwuVxamRaHsA6HQ51SWDUIGY1GbDbbunTxeBy73Y7FYiGVSmG321Uf0zUuYE/8+xN8+CMfxmazkc1mNXcjUFdGxSJR9h+4a51LVCKeQDCo1zSbzdpLRcyLZLIZzGaztrlmUV673U4ymcS86l+by+XWTY9ks1lt2qb4fWhoiEKhwD333EM+n9dcw9TpJxHL6ktRUZSXy0hW+Kfvf5+H3/sIHo+HfF6dLlBkRfOjNRgMr6g3WZa1Mkqn05qL12ZUrrpL1SZXqreCt9K1SlEUbampyWQikUjg9XpfsRNrMplc9/C9Ed7K+5IlmXQ6hWvNg38z1349MsqyTDSqDvmLSn0tmXRGXYJ6m1zJ1r50bhoFItHIupfkm0FXqpuQzaxUdXR07jz00H+bmDf7HitOCdzM27xQKJDNZrV14GuPFxtJIpHA5XIRj8df3jolFKK8vJxsNks6naa0tFQbBmYyGZxOpzZsLU4N3Cz5fB5JkrSh6htBWjWA3UwA7tuJoqib3TmdznVTETeT/mYQVz01igatN0omk8FisdxUL1OWZW3q5trjkUgEr9dLKpXC6XSSTCbVHQdcLs37IpfLIYoiPp9Pawsmk0k15q2OEDZjT/Vm0Q1Vt4ni/GGhUCCVSqlrp/N54vE42WxWMyrlcjkymQz5fJ5kMkkul2N5eVn7XvQFLDb0tXNixe1ITpw4QSqVIp/Pa76Y2WyWH/7wh8iyTE9PD0ODQ3Rd7aS/r5/z587T3dnFSjDIc88+x/DwMIqiUCgUePbZZ4mEI8zPzXPm9GnN17N4P/F4XJUlkaBQKGgyr02zsLDA6dOn1Q3fVueWiwa24t/ii6f4m+IOrcVz4XCYY8eOaeW5tpzi8fg6n9NsNks2m9XmZYvzp0XZ1l63OMdXzCudTrO8vEwgECCXy2mh7uBl5VKcZ87n82QyGWKxmKb08/k8wWAQSZIYGhqiq6tLq99iHRflGx8fJx6Pa+mTyaRWhmuNUIqiqOdEkXPnzq0zVhbLMp1OE4vF1PuKx7XrJJNJ8vm81vaKbSYUCmllkkwmtXos3tfAwIDWprLZLMeOHdPOrV3D/4Mf/ABRFOnr62Nudo6TL52kr7eP3u4eLp6/wPzcHGOjo/zr4/9CYHGR5449Sy6b46UTLzE0OMToyOgteuLeOvSe6m0iGo3S2dmJ1WJhdHQUh8OJ1+shk86QzeWQZZktra3qA57NsH3bdp57/nk+9KEP0nW1k2wmy+DgAIlEEofDwYEDBxgZHsbr8zE5MUE0EmVxcYH29nYUWeHUyVNUVlVSXV1NdXW1ulZeUDd+83q9VFVVcfyFFzh85Ah1dXU88cQT7N69m9raWgYGBjh06BDBYJC5mVkyqTSpVIqKigo6rnRw3/33USgU+OEPf4jL6aKiQt08r7y8gr7+Ph577DGqqqpYXFyku6ublpZmgsvLPPXjH7N9+3bGxsaoq61jdm6O8rIyVkIh7rnnHmrr1HB3Vzs6MBpNTE5MYLVZ2bmzXd0Jdo1XQn9vH1PTU1RUqD6zZeVl3H///SiKQm9PD3Nzc7S0tDIzM0NFZQXhUIhwJEJDfQOxWAy3y0UoFGJn+04mJicRRZH6+nqmJqcoKSnBZrOtulMl+OCHPoTJZKLzaqfmqWA0Gpmbm0MURQQBmpqamZ+bY9/+fXR2XCWwsIi4ugPtqZMnSacz5HI52traEEWRxcUFctkc9x46xNWrV5mfm8PhcBKJRJidncVitfCxj30Ms9lMd1c3BoOBhYV5wuEI27dv14yXV65cIZ/LsRRYwuP1YLVYCYfDFAoF3B43JSUlZDNZzBYz1dU1nDp1ine9651MTk7R1NTExYsXkaQCXq+P9vadzM3NIwgwOTmJmBeZmZ6mubkZAejp7gEBKioqaG1t1YxRJpMJr8dDSUkJgcVF7DYbW7Zs4aWTL7F9x3Z27dpNIp5gcHCIfD7PyZdeIhqNsmP7dnp7e7VQhncqek/1NhGPx4lEIoTDEUxmM3X1dRgMRkpKS3G5XRiNBuobGwhHI9qmax6vh5WVkOqSgxo+0Gw2YbFaWFhcIJ6IE0/EMVnMzM7N0tTcjNVmQ5Yl9u/fR29vL+Xl5QCYjCZMRiOhUAiDwUAsHuODH/4Q3T3dIMCOHdsZHh2hobGBlpYWrefS0NiAw+nA6/PRvOooD6xGIDJTV1dHILCEZ3WDQpfLRWVlJQB2u51EMsHS8jKlpWVkcznm5uaJxxNkcllqaqpZCYdoaGzA6VKHv4lEgkg4QigUwmQxY7VamZ2bJZ1Oa71ZWZaZm58nGoshinlKy0q1lTySJDE3N08kHMGw6kXQ1NRENpujtaUFm91GfX0dgaUAbVvb1Hi0iQQ7tu9gYX6BWCymBjORJObnF9i1azeg9hanpqewWC2IBRFJlhAMAgjgLykht+pyNb+wQDafY2pmGlBIZ9IElpZo39WubUa4sLhAKBzGYrVqFvLgyorqUyupbnVFzwZQDUImswlZUbDarNhXpxMymQzBYJDQilqn9fUNanQyt+qyJwgGmpqaCIVDuD0ebcPH+YUFFEVGVmRsdjXKmMvlYml5mXBYfflYrTYWA4uUlJXiL/FTkCR27Wqnt7dXc/0yGAw4HA5WVlaQZJl4Is57HnmYyakpUukU+++6i5HRUbq6u7DYrDidDhqbm5AUGY/PSzgSoarmZTeyOxXdUHUbKIaCW1hYwGw288ILL/De976XcDjM3NwcR48eJRKJUFlZSTweRxAEzdczmUwiyzIul4tcLqe5WlmtVs3lSBRFNUByKER1dTWRcAQxnyedzdDe3q7JEVwOkkgmqKqqQhRFIhHVemsymZifn6ehoYFAIEBVVZXmP1p06/F4PASDahBqh8NBoVDgu9/9Lo899hher5eZmRlqa2sJhUI0NDRowZIjkYjm3lSMqJTP5zUvApvNxtLSEi0tLRiNRrLZLPPz82qEqNWoVl6vl6WlJRwOB7W1tQDaslPrqmJSFIXq6mrVT3I1VuvU1DSpVJKKykqmJqdwu11s37EDj8eDIAhEIhFkWaa3p4eysjIaGhqRZRmvz6tOneRFzBYzVavBtOPxOMvLyzQ0NKirgtxu4vG4FqmpUChoAbndbrc2p5hIJLQ56bKyMm1XgaKLVzqdpqRE3Xa7GKAboLq6GrPZrE0p+P1+bSVVsd5nZmYwmUycPHmSB97xAEaTkXPnzvGe97xHW9WUz+fJ5/O4XC5EUSQej2shCVOplBZlzGw2a/PsAG63m0AgQH19vbqCzmRiMRDgwIEDWpuKxWIEg0EqKysxGo0sLy9jt6tKemZmhvr6ehYXFxFFkebmZkKhEC6XC6PRSDwep7Jy8/qr6tb/Ta5UixQKBSYmJmhpaSEajSKK4jqn741iemqa6prqdQFKNrLqi/fR2tq6IS41t4JgMEg8Hqempoa52Tl8Pi9lq1uEF0mlUszNzVFbW/sK496dgqIojI2N0dDQQD6f13Z12GhFtTC/gNfnxbm6EKB47Y1AV6qbkDtFqd4ObsUD8Fp5vV3DE77VbNZy1JXqy+hzqpuIYpDhYpDga6NXXY/i6ixRFJEk6RWbrq1FFEXNSry28a9d5no9ikGEb3Ts2t8WPQWuPXY91uYry7IWFPvV7mMjeK17vpa18txItmL9rU1XrMtXY+1qLOBV778o8/U2Nyy2haIsaz0zXivf18O191nMu3iv18r1avd/q+v5dqAr1dtIseEX3W8WFhZ49tlnmZqa4qUTLzE1NaUpymKjvbYRLiwscOL4izz+z49z5vQZXnj+eS3N2rQTExOcO3eOS5curdtxVJIklpaWtLna4kNRfBDy+Tz/53v/h3PnztHZ2Qmoyvl73/0ep06epL+/f919KIrC+fPnGR0dfcULoph38bgoijz11FOanC+dOMHly5cZGx3l2WefXXcfa/NZK/taY1Xx3LXXWfu3yNLSkjavWzx3PTlBfYE8+eSTFAoF1UC1pl6K5STLMmfPnGV8fFzNQ5I5duwYU1NTnDx58hV1vlYuRVGIRqJ8+2++jZjPc/r0aV544YV18qxVkolEgosXL3Lx4sV1CmxiYoLvf//7jI+Nc+b0ac6cOUM2m+XHT/6YfD7P+fPnuXjxouYWdqOyWascJUkil8sRjUY1+c+dO8f4+Pi6epEkiWAwyJUrV9aF78vn81p4y7XXiMfjRMIRfvKTn7yinu90dJeq28TS0hLnz58nn8tjt9tob9/F8tISckHCaDCSSiYZHRnRdqEs+hNmMhkOHjigRUaqrq5W1353dbFv3z7++Z//mR8/8SR79u5laHiI9vZ2dT5Nga6rnbz/Ax9goH+A8fFx6hvqmZiYoLSklLr6OtUXM5vF5Xbj9/vZunWrugQ1HicWiSLm8qCghYAzCAYmxifo7u6mvb2dpaUlKisr6enu5tFH38eJEyfwuj2MjY/T2NjI7OwM23fsILC4SFVVNWJBJLi8rD1I8ViclZUQW7e0MT87xxNPPMHBgwcZGxujpqaGjo4Otm/fTjik7lMVi8fY2raV6upqZqZnmJyaJJ1K09zcREGSmJqcpK6+nqmpKRoaGlhcWODoffdRUlLC3NwcHo+HpaUlWltbGR8bp6GxgdHRUWRZpqWlhbHRMRqbGjVfVZSXt+0W83mGhoYpKfHzjgceIJfN0d/fh9/n4+qVjnWGuKISy6Qz9Pb2Ek/EsVosRCIRmlta2L17t2aI7OrsIrAYwOv10tvTS3BF3X20UCjgcDg096nLly6zb+9eBF4eJjc0NLB//34W5ufJZXMUCgWikSiZdBpkhcX5BZKpJAcPHgRgeGiIufl5mpubWV5eZs/uPTidTjqvdmKz2zAajYyOjOLz+4jH4zz66KPkcjn6+/qpeU8N3V3dJJNJQqEVampq6e3tYdu27Vy5dJmV4Ap333M36XSayclJenp6kCSJI0eOUFFRwfmz56iuqWFhbp4n/v0J7rprP8PDwzQ1N7Nt27a3+GncWPSe6m2iGNVeliTMZjOZTIZwJIKsrA6fBEjEE0xNTmI2mQguL5NJpSnxlxAMrpBdE/AEQFYUjEYjpSUlZHM5ent6qKmu0cL52ex2Hnv/+3n+uefo6upi69atGAQDlRUV2O025ufmWV5apqmpGUVR6Onp0XpGJrOJtq1bmZyaREFRN9ID2ne1c/S+ozgdDuKxGF6Ph/KyMtxuVVlZzBYqqyqRZYnW1tbVOJxBysrKyKTTxKJRLZKRLMncdeAANpuVgYEBfH4fUqFAJBwmGokQDoWxWixkVldRlZT4iUaiTK1a9quqqpicmGB2dgaDwUhvTy/btm1HQKC6qprxsXHatrRpO8UW44guLCywtLREKBxibmaWcEi9Xl9vL9XVVaRTKSLhCM5VOQ2CQCIWp1CQ8Pl8LC0tA6u7qnq8mMxmorEo4XB4fa9fUX2Tw+EQBVFVduXlFQQWFwFVWd9990FefPFFqqurV+MDRJidmaGuro4rV65oYfEyadWLY35+XluwAKqRTZZkamprkRV1DzGLxYKsKMiKgsPpwOlwar3OWDTG0mKAfC7P8NCw5oZmNBro6uyiq7OLluZm3C4XTocTAQGzyYzX42FxcRGr1cry0hLZTJb29nacThdGk5GGxkYCgUWU1TYZiUTIZDL4fD4ikQiAuqGiw47X61V9Xnt6KSkp1UI53snoPdXbhNlspr6+nlxFhRYWrqGxQd2szmyiobERSZJobGwkEAhw5OhRVlZWMJtVX83A0hJNTU0AWK0WGhsbEAwCjc1NKIpCZUUFU1PTLweelgpkshne88jDWkCPqqoq7A47RqNR3e3SaNBchioqKrSISjvb20ln0jz8yCPasX379uF0uihIBRqbmmhsbKS7uxub3U7b1jba2tro7u7GarPRtnUrRpOR2ro6qqur6e/vZ9euXQwPD9O8GqdVMAhEY1Eam5qorq7G4VItynaHg6rqajweD1ablZaWFrq7u3E4nexs36la6AWw2W08+O53Y7Va1QfVIJBIJKioqCCfz1NVVcnycpCWLa2A6rBuNBq566671LB/bjcul7oDrSTL1NTUMDU1xa5duxgaGsLpagUBFGDL1jZcbhcGo+reVVScW9q2UFVdRSgcorKqStt4sKmpSXWSr6ygsalJdX/Kq/PbPr8PAEmW8JeU8Mmf/5QW6SqbzbJt+3YAduzYoSlVj9dDTW0NW9q2MDo2SlNTEyUlJSwuLrIcXKasvIyW1hYEQfVtbt3SioJC29atKLKMz6de0+500NLaisVq4fCRw7g9bs3P9t5D92quddu2bcNgNKKs/mvZ0sr27duZm5vjyH1HWVhYwGA0sG37Nux2OwaDAbtDXYJsMBhobm5WdwC22TSluXXbVpLJJC1bWjEZjZSXlzM+MaG11zsZ3fr/dqBYg2+VwXRti9l8RtrrcxMyv+5iXPuD1/vjm0hffDQnJia0lzCs9wAo7rRwvWhXGy7zrcr3rW6/bxA9oModxKu919a6ltxsulvOJm/81+VWyCzc4P+v97evQXHXBXhlPa8N1P26r7uRZfIWlcWdwC2fU/2TP/kTBEHgS1/6knYsm83y+c9/ntLSUlwuFx/96EdZWlpa97uZmRkee+wxHA4HFRUV/M7v/M4t20jtdlC0+r7WQOGNpLv2o3NzCGyu57sYrWnt50bndDYPt1SpXr58mW9/+9vs2bNn3fHf+q3f4sc//jGPP/44J0+eZGFhgZ/5mZ/RzkuSxGOPPUY+n+fcuXN897vf5Tvf+Q5f+9rXbqW4bxnFObi1W2L09fVprifHjx9XI/+sUYizM7P09fWty2NmZoaenp5X5K0rUh2d28ctG/4nk0k+9alP8Xd/93f80R/9kXY8Fovx93//93z/+9/nwQcfBOAf/uEf2LFjBxcuXODQoUM899xzDAwM8MILL1BZWcm+ffv4b//tv/F7v/d7/Nf/+l+1HSPvZKamphgaGqK1pYVoNIYgCHR3drFt+3Zi0RjhUJjx8XFqa2tpbmlGUWQunr9AKLhCY1Mj4+MT1NbWEglHGOwfIJFMUF5eztKqNba+oYHGpsZ1+yzp6Ojcem5ZT/Xzn/88jz32GA899NC64x0dHYiiuO749u3baWho4Pz58wCcP3+e3bt3a9GNAB555BHi8Tj9/f3XvV4ulyMej6/7bGaMRiMul4tEIqn5Pba3tzM+NgaKQn9fn7avkIrAli1bWFhc5NzZc2qQE0kin8/R09OD2WwhHI4wOjLK0NAQicTmvn8dnbcrt6Qb84Mf/ICrV69y+fLlV5wLBAJYLBbNraNIZWWlFq0nEAisU6jF88Vz1+Mb3/gGf/iHf7gB0r81+Hw+ZmdniUYjlJWXUVJaQjyR4N5Dh5icnKS+oZ7BwUFaWlUjhdfnxWQ2cfDgAaKxGCuhFerq6igpLaWktBST2URraytWmxWrxYLH62V0dJTt27frc246Om8hG65UZ2dn+c3f/E2ef/75V902YqP56le/ype//GXtezwe11xQNiNer5f77rvvuueampsA2LJly7r0R2+Qfi27du3S/n/ti0lHR+fWs+HD/46ODpaXl7nrrrswmUxabMdvfetbmEwmKisryefz2qqOIktLS1qcyqqqqld4AxS/F9Nci9VqxePxrPtsVq5n1b2VHx0dnbeODVeq7373u+nt7aWrq0v7HDx4kE996lPa/4v7wRcZHh5mZmaGw4cPA3D48GF6e3vV9darPP/883g8Hnbu3LnRIuvo6OhsGBs+/He73euGoKBGNC8tLdWOf+Yzn+HLX/4yJSUleDwevvCFL3D48GEOHToEwMMPP8zOnTv5hV/4Bf70T/+UQCDAH/zBH/D5z3/+de/cqaOjo/NWclv8bf78z/8cg8HARz/6UXK5HI888gh/9Vd/pZ03Go089dRTfO5zn+Pw4cM4nU4+/elP8/Wvf/12iKujo6Nz0+hr/3V0dHRuAj3yv46Ojs5tQFeqOjo6OhuIrlR1dHR0NhBdqero3AYURSGXzfGTZ54hGAwyMDBAMpm8YaSxlZUVbU+qm/lEwmGee/Y5IuGIHmDnLUaPtqGjc5swmowMDQ5x6uQpPvIzHyEQCJBKJkml0lRVVTE3P4dBMCDLMjU11fzzD3+ILMls37GdifFxqmtqGBkZwWw2c++99wIwNDiI0WRidHiEkZERzU1R561DV6o6OrcJQRB44J3v5NKFC/zrv/wrH/zQh7ja0cHs7Czvfe976e7pYX5uDr/fz3333YfT4eTZY8e42tGBJEm0t7fzzDPP8Muf+WUEQWBubo5nnnmGbDbHltZWmpqb1C1SdN5S9OG/js5toiAWiETC/Pwv/iJt27bi8/vIZrM4HA4kWcbtcuH1+XC73RiMBsrLy6mtq9MW0TQ1N+P2eKhvaMBgUPfLKisto6a6GpfbffNbrOhsKLqfqo7ObUBRFFAU8qKIxWJBkiQMBgPZbBajwYjBaNB2YUVQF8RIkqTuaGo2k8mksdpsiKu/L8Z4EEVR+7+iKJjNZj3+wwah71Glo7OJEQQBBEFbdm0ymVAUBbvdfsPfGI1G7f/24tbjq5Hgin2j171n1Rvk9eyXdm3at7uS18cHOjqbDFmWWV5eZmFhAUmSXnE+GAySz+ev+1tRFJmammJxcVHdkodXV4Bvllg0ytTkFMtLy2rP+gZIksTCwsKrpnm7oPdUdXQ2GVNTU7z00ku0tbXhcrnI5XK43W4tXObVq1e5++67EQQBp9NJJpPBZDLh8XiQJIk//f/8KYcOHcJoMPCpn//5W7qb4eTkFP/0/e/jdDl576OPsqW1lYIkYbPZSKfTOBwObUriL//nX/KZz36GhoYG4vE4RqMRm81GIh7H4/USj8fx+/2YTKY7ujerK1UdnU2Gz+djcGCQmalp0qkUw8MjbN++nWM/+QkPvechBgYGMRlN9PX1UlZWxtzsHA8//DAH77kbk8mELMtEwmEaGhtu+fawVquVdDrN3r17icfi/NP3/4ml5WUeeOABzp87x46dO0nE4zS3tCDm8zz+z49z9MgRpqenmZiYYNeuXSQSCbxeL3Nzcxw4eIDDR47cWqFvMfrwX0dnkxEKhfj0pz+N1+8jtBLCYDDQtrUNgAfe+U5kWSadTpOIJ7jrrgM0NzfT06vuqlucLtjS1sbY6Ngtd/zP5XI4HA5+9hM/R01NDfF4nEw6jSiK1NbV0tLSQnBlhbatbRiNRtwuFyuhEBMTE0QiESorK5mdnSUYDGKxWGhpabml8r4V6NZ/HZ1NQvFRTCQShEIh7HY7Pp+PyclJamtrWV5epq6ujqWlJXxeH4GlAGVlZaRSKVwuF36/n3w+z/TUFHa7g5LSEhyrBq2NHk4XZQ2Hw0TCYZqam5ElicnJScxmCy63i3w+T1VVFePj45SXlxONRDGZTVitViKRyKqSdVMoiPj9JczMzNDc3IzVZt2Uw/+b1Sm6Ut3MKKDw6tVzM43v9VTxjfK7kQX39ViB365crwxeq3yuVzbr0hb/u0FFeKuU6kaz6kG2KduO7lL1NkKWZbKZLHaHnWw2i9VqfUOO3blcDkVRsNlsKIpCJpPBYDAgCAImk2mdy86Nfm80Gtdsm60ON0VRxGazaRZpi8XyumW700mn04A6x3i9ciwak27G5UmWZXK5HDabDQEBSZLIZrOYzWZkWcZisbxmXd1qruc2pSgKkiRp7UNLs1b/XkdXaqcV5VZPAb8l6HOqm5nVFpbLZvn6f/2vnDt7jo4rV8hms+RyOWRZJp/Pk8vlEEURURS1Y8VGLssyYl6kUCjw7b/5Ni88/wKyLNPb28ulS5c48eIJfvzkk1y6eAlJkpAkaV3e+XyeQqFAoVDgJ888w+VLarri+VAoxLe//W0kSaKnp4fHH39cvaaoXjOfU3//Nh0QAaoS/Ntv/y3//m//zl/8xV+QzWbJ5/NIkkQ+nycRT/AX3/wmV65cIZ/PryvbYv0VX06KopBKpfiLP/+mpqiPHz/O8NAQZ8+c4Tv/8B0mJyaRJEkt3zXXKbaBYl5r28FbQSad5h/+9z9QKBQ0mfL5PLl8DgUFsaC2iaKcRRnzuRxSocClixdJJpNviay3Er2nuplZfRYsViv3veN+vvvd7/D+93+AsbExent78Xo8DA0OYbVacTgdFAoFmpqaWVxc5D3veYjaujrOnT3Hwvw8brebocFBfu4TP4dgMKDIMv/nu9/jIz/zEURR5PSpU4yOjlJeUc701DTveMf9/OAHP2THjh3k8jnVOV1WGBkeYWR4BK/PRz6fo6qqikg4zI+ffJLFxUUKYoHH//lxcrks9fUNnD93jvc8/DB333P37S3LW0BRVRkMBgqiSC6bRQD+6fv/RDKZpKq6imQiSX19PYHFABazhX/8P/8/mpqbOPHiCXbt3k0oFAJFobSsjHQ6RVvbVro6OwksLiLLMgoKyUSSJ/7t3/nlX/5lkokETz7xBNt37CCbzTI3N8c73vEO/vVf/5V9+/YSjUbxer0kk0laWlq57/773rKh9OJigK7OTibGHyAcDnPhwgUSiQQOu533PvooHVc7MAgCsqzg9XoJh8Nks1lkSaK5pYVnjx3jP/3u7+Byud4SeW8Vek/1DqG2ro7PfvazHD9+nFQiyeL8AmOjY9o8j9FgZGZmls7Oq/j9fmyrK3P6+vowmUwMDQ3hdDpxu90IgN1u58tf/jJnz54jl8tTW1vL7MwMweVlZqanWVlZIZvJ8Mgjj9B5tZMtLa0IQG1tLTMzM3R3dYECoyOjyJJMX28f1dU1FAoFLl++TGNjIwJQWVnJwYMHbmPJvTXIskxDYyNf/OIXyefzHD58mHA4jMVqoby8HI/Xw9zcHOlMhqqqKtLpNB/84AfJZjI88M53srCwgNvlJhqJAOo0grqUFba0tvIfPvlJXnzxRQRBoKqqipmZGQKLi0yMj5NMJrBYLOzft5/hoWGam1uwWm1cOH8eRX5reqmSJDE7O8M999zDU0/9mIIoYrfZiMdiKMDY2CjRcITh4RFisRixWIyVlSDJZJKS0lIWFxdxOBxYLXf+xp66oWqToygK2WyWkZER2ne2MzY+hiAIzEzP4HDYyeXyuN1uddiYTtHQ0MDU1BRHjx7FarUSDAaZnJigurqaoeFhDh06hNvtZmxsjHQ6jc1mI5PJUBALpNNpZFmmUChQV1/HzMwM9913H729vVjM6vryQkEkk85QW1fHykqQmpoaxsbGqa6uZn5hHqfTqeVZVlZGOBTi4Kqj+mY0Ptwsxcdk7T0Uj8myzJlTp6morGTb9m1cuXKFsrIy7HY7PT09tLe3MzQ0xN69e7ly5Qp79uyhr6+P+++/n66uLurr6kGA4aEh9u/fT3d3N6IocvT++3E4HHR1dmKxWPB4PMzOzqoKV5aJhCMgCDQ0NrC4uMjhw4c5c+YMjY2NZLNZBEFg586d68p+7eO+kfWRTCaZnZ3F4/HQ3d1Nc3MzsWiMZDKJzWajsamRpaUlbDYbdrudiYkJ3G43hUIBm82GQTCQzWZobmmhqqpqU7YV3fr/NlKqb+W8mM6NKSqntQpqs9dN0aB5p8l8JytVfU71DiAejzMyMvL6fvRqLjnKDY6/BQib91m+LsqacmppaaG0tHTd+Xw+T39//3XX6N9uLGYz7bt2rfPWAFhcXGR+fl79omxMU1BgQzKqrKykoaHhzWd0G9F7qpucm47w82q1KGxAmpt5YN6WLWm9r/D1hv/a8Td7/2vL+LXyeo36WiczgpZ+ncy3+s16M+1uDTcq582C3lN9m3DTjetmkm1Umlvx203MjZTPK+pmI+//ZvO6QbqblvkWcrP9taLr3+32vd0odKWqo6Nzy5BlmcXFRew2G+fOn+eBBx5gZGQEo9FILpejprqG8YlxLBYLO3fuxGQy6S5VOjo6OjdidHSUVCpFMLiCzWojn8tT4vMzOTGJxWTG4/HQ091NbW0tYl5kcmLydov8ptGVqo6Ozi1jbm6OiooKZmdnaWlpJhRawev1cv/993P16lUkSeLAgYP09vSQSCQQbxB8+05CV6o6Ojq3jPLyckwmE9t3bGc5GMRkNoNBYGJygrsOHiCZSiLJEgcOHiQSjdDatuV2i/ym0a3/Ojo6t4Ri0B6j0XjDIDvFICwGg4FkMqk9q7r1X0dHR+c6vNpGhoAWIQ1423R+dKWqo6NzS9iMvc23An1OVUdHR2cD0ZWqjo6OzgaiK1UdHR2dDURXqjo6OjobiK5UdXR0dDaQW6JU5+fn+fmf/3lKS0ux2+3s3r2bK1euaOcVReFrX/sa1dXV2O12HnroIUZHR9flEQ6H+dSnPoXH48Hn8/GZz3zmbbF/zetCWR//cqM+WvY3keaGor2J3+q8NhtSzxtUF9fW7c20r41qo3ciG65UI5EIR48exWw285Of/ISBgQH+7M/+DL/fr6X50z/9U771rW/xN3/zN1y8eBGn08kjjzxCNpvV0nzqU5+iv7+f559/nqeeeopTp07xq7/6qxst7p3Dq7Uz5TXO69xRvB6lcsO0yq1pEm9U4d3od9cev9MVKtyCFVVf+cpXOHv2LKdPn77ueUVRqKmp4bd/+7f5T//pPwEQi8WorKzkO9/5Dp/4xCcYHBxk586dXL58mYMHDwJw7Ngx3ve+9zE3N0dNTc0r8s3lcuRyOe17PB6nvr7+zl5RpagxJtPpNFcuX8Hn9+F0OlEUhYqKCjweD7Isc+7cOZoaGwmFw9TV1anRf2rU/aLOnDnD/v376ezs5J577sHhcKy7RGdnJ1u3bsVqtdLT08OuXbtueotpRVG4cuUKNTU1mk/itXUjSdLrCun20+rbuJbiIzk/P08sFqOuro7FxUWMRiNut5urV69y9MgRPF4vgUCA8Jp6TyQSNDQ00N/Xx+49e95UFP21qmFkZIS6ujocDocqVzRGbV0tgUAAg8GA1+tlZWWFmpoafD4fS0tLhEIhampqCAaDSJLE1q1bCQQCGI1GKisriUQiLC4uUlZWRiKRIJ/P09bWhslk2pTt4GZXVG14T/XJJ5/k4MGDfPzjH6eiooL9+/fzd3/3d9r5yclJAoEADz30kHbM6/Vy7733cv78eQDOnz+Pz+fTFCrAQw89hMFg4OLFi9e97je+8Q28Xq/2qa+v3+hbe+tZbVc2q42RkWGSiQTnz58nkUiwsLDAxMQECwsLVFVV8cQTT2KxWDCZTNo0idFopL+/n0wmQ29PL/lcnp6eHhYXFxkZGWFqcpLFhUUmJyZ54fkXGB0Z5cKFC0QiEcbHxxkfH2dycpLh4WEmJya5fPkys7OzXL16lUKhgCAI2G12rl69ysrKCgWxQEdHB7Ozs1y4cIHh4WGefvppxsfHGR0dpa+3l4GBAXq6u5mdnaWrq4vFxUUmJiaQZfk2FvTmQ1EUuju7GBsZZSUY5OKFi8xMz2A2mykrLWN6ZgaAgf5+RoZHWF5e5vF/fpx0Oo0gCPT19iFLb75MFVRlcuXyZdKpFIqicPrkKRRZ5umnn2Z2dpaOjg6ee/Y5zCYzZ06fQVEUTp06hdFo5Pnnn6evt4+x0THm5+bp6uoiuBwE1OfcYjbz7LFnuXL5Cgvz88zNzr5pmW83G65UJyYm+Ou//mva2tp49tln+dznPscXv/hFvvvd7wIQCAQAdduEtVRWVmrnAoEAFRUV686bTCZKSkq0NNfy1a9+VdulMRaLMfs2qJwiBqOBnTt30tPdw9JiAAMCi/MLBAIBpqamqKiowGAQiEaiiHmRsZFRbUpAkWRi0SiFQoG+3l6ikSjRcIRwKMyF8xcwCAIGQcBsMmE2mZALEmfPnCEei+N2u4mEw1y6cJGpyUksZgvnz50nl8uRz+cRBIHt27czMzVNIp6gq7MTMS8SWFwkGonS3dWNXJAwIDA+OsZA/wAjwyO43R4unD9PNpNhcmKCnu6eDVEAbycEQaCktISFxUXyoojdbl/dcdWF0+lkS+sWFFnB5/OzvLTE8tIy5eXljA6PEAqFMJqMWiT9NzMYVRSFq1evEo8nWFpeBmDb9u0MDg1RU12DgEA0HGH37l0MDQ1hNquLNHfu2MnQ4CA+jxe/38fiwgKjo6NEwhEW5udRFIWdO3YwNjqGzWajurqa6elpLG+D3VQ3fJmqLMscPHiQP/7jPwZg//799PX18Td/8zd8+tOf3ujLaVitVqzWO79CbsSu3bsBAbvdRm1dLYLRwMTEBBUVFXR0dPCxj3+cf/2Xf6GysgKzxYyCgiRLuL0eKiorKS0tweP1qsO42lqmp6cxmkwgCFisFgqFAmaLGbPFgs/sZ2CgH4/Ho8a9tFpQAIfDgcNhR5Ikbb22yWziyNGjlJaWIMsSiUSCquoq7A47eTGP2+VCkiVS6TQmswmrzYrdYcdoMiEYDJT4/eRFkYJUwGTWV02vxWA0cvDugxgMBqqrqzEYDPT09DI2NorRaGBpaQmn08XBuw/idnsQRRGTyYTD4cBssSCKImaz+c3JIAgcPHgQ82rs0zNnztDe3k4un2Pv3r3MzMxQV19HTU0NmWyWnTt3cvr0aXbv3k0iEWf3nj2srKxQUlJCW1sbExOTGAwGhoaGqKuro6SslHsPHyKVSuF0Oamqrtqg0ruNKBtMQ0OD8pnPfGbdsb/6q79SampqFEVRlPHxcQVQOjs716V5xzveoXzxi19UFEVR/v7v/17x+XzrzouiqBiNRuVHP/rRTckRi8UUQInFYm/wTjYHsixrH0mS1v1fFMV1f/P5vFIoFBRRFLV016YpnhNFUUsrSZL2/0KhcN3jxe/FY7Isa/IV5Vp7nbX5FY9fm+/aT1FeHeUVdby2vgqFglbPoVBoXZq1ZVks5zdTrte2veI1i3VavE7x2sVjKysr666/tj2ubUPXyrv2epuRm9UpG941OHr0KMPDw+uOjYyM0NjYCEBzczNVVVUcP36cffv2AeqczcWLF/nc5z4HwOHDh4lGo3R0dHDgwAEAXnzxRWRZ5t57791okTc1ayfsr/1/cfvha/+updijvDbNtTtsvhn5inKtlelabnRc55VcrzzX1lfR8FdSUgK8XLZrDYIbUb/attar/xfWXPPa66y99rU7zq6V5UYGqI1qj5uBDb+T3/qt3+LIkSP88R//MT/7sz/LpUuX+Nu//Vv+9m//FlAL9Utf+hJ/9Ed/RFtbG83Nzfzn//yfqamp4cMf/jAAO3bs4L3vfS+/8iu/wt/8zd8giiK/8Ru/wSc+8YnrWv7fziir82HLS8ukM2kaGxsRBIHOq1dRFLDarLS1tbEwv0BTc9NN57uwsEBJSQk2m+01rz80OIRYEJFlWXsRrmVyclJ7aRoE9QEfHR3B7y+hrLwMQPVEOHWau++9B6fTCajW7fGxMXx+P7t27dq0+73fatbW8cDAAIePHMZqtbK4uMjw8DBHDh9hcHAQSZbYv38/42NjVFfX4HQ5WQoECIXCVFZV0t/fTy6b5fCRI3RcuUJLSwv1q9s9v55yLcozNDhEfUM9yWSSUChEXV0dHo+HhYUFopEItXV1663/wRVqal+2/q+srFBbW6ta/wuSajdZXKSktJTKqkri8TgzMzOUl5eTTqfJZrK0bd281v+bZcOV6t13382//du/8dWvfpWvf/3rNDc3881vfpNPfepTWprf/d3fJZVK8au/+qtEo1Huu+8+jh07tu4B/8d//Ed+4zd+g3e/+90YDAY++tGP8q1vfWujxb0jSKVS/Mvjj/OuBx/Ujs3NzbNt2zYWA4ssBZYoKytjYmKCcCiM0WjEZDZRXV3N7OwsFRUVzM3O4i8pwelwIssS6UwGm83G3OysatNSFMKhEM3NLSQTCXwlfkpLS5mdnaW7q4uP/ezHmZubY3Jyknw+j8ViYXFhkcqqShLxOF2RCCjg83mRJZlwKAygKVWj0cjQ0BCHDh/S7iGbybIcDDIyOkp9ff06X+afRhxOB+l0mnQ6jdVqxe12k0gkiMViXDh/nnsO3UsikeDylSs8+OCDOF1O+vr7ScQTOJwO9uzZw+VLlwgEAvT3D7Bj5843Jc/E5AT+Ej8DAwPEolHcLjdut5uTJ0+yZ/cenn7qaSorK1lZCSKKBQ4dupczZ87w/ve/n9OnTrFnz16ef+55TCYjFrOFjitXuOeee3jpxAl+7j98gvPnz7N92zZOnngJWZFxu9w0NTfd8b3WWyL9+9//ft7//vff8LwgCHz961/n61//+g3TlJSU8P3vf/9WiHfHoRp/qunr66WyqpKSkpLV4L5GysrKGBsdZXl5ifr6ehRZIRKNkkjEGR4apramhuWlZaKRKDPTM5SWliKvrlpZmF/A6XQyNTWJ0+HE4XAwODDA/Pw8d997D6WlpSSTSVVJG000NDTQ1dVFX08vTc3NOB0OLl+8hCzLbGnbgtPhJBwKMzg4yNatWwFVWatDRwHBYABB0AwqoPoov/Od78Tr9d7OIt4U2Gw2BEFgZWUFn8+nGV6TqSSf/NQn+cmxY0QiEWLRKEtLS1RUVOD3+xkfG9e8Mbw+Hy0tLbz3vY8wODD4Ci+a14PJqNaRz+djbETdwA9g+/btDA4OUlNTgyxJRCIRDh8+zNDgECaLGUVR2LFjJ4ODA/i8XswWCyMjIxw6dC8Tk5PaSzyTyWC12cjlc1RWVjExrt7HawW23uzc2a+EnxJKSkooKyvDaDRqzv9ms4n5uXnyBZEjR45y7tw5TGYzBoMBW86GJEvY7XYyuSw+vx+b3Y4oilRXVxMMBpFRKC8vJxgM0tzSQiadwWw2I4p5du7cSTqdBqC1tZWR4WF6envw+XxMTk5itVoR83nC2Sy7du9ibHwct8dDJBJhfnYOq9WKLMuIorr44L777kOWJGxWK8NDw6QzaXw+HwYEamtraWxsZHR0lG3btt3mkr69jI2N0dTUiMfj4fz583i9XlpbW7FYLIyOjrJv3z7NAb+srIzTp0/jdDq5++6DmM1mIpEITY1NTE1OkUql2b59+xuWRVEUTCYTUkFCEAQO3n0QBDhz5gy7du0il82xd59q/a+tr6O2poZMJsvO9vXW/z179hJcCeIv8dO2dSu5fJ6Ddx9keHiYXbt2MTszw969e4nF49x14C7u3EH/y+h7VG1yitVTdI4vGiUkSdIafvH7tRgMBmRZ1v7CGuODomAwGLSepCIrKCgIqIaJtfObiqKoLldmM7Ikr66kuozL5WJne7t2DUVZuzZS9ZKMxWKacaNQKKy7h2LeRqPx5R7tHTyX9kYp1rEkSdr9x2Ix3G43BoMBg8FAoVDQ6lpR1LKNRCKU+P2ai1uxDGVZ1sq1yBuZUy3KU7y+wWAgFovh9Xq1uiqumJNlWTsWDofxer1aGyqmUVZHSGvbpXZOVpAVWZN5M7aDm9UpulLd5GzW6ikq8dezBPWNIgjC6yqHzfhAvh5u9l4VNfFr3u9GlMdb3Q43Yx3qG/+9zQiFQiSTSerr61eXIfaiKOrGak3NTSwsLGgW+JthcXERv9//mtZ/UOd00+k0lZWVhEIhFhYWcDgc5HI5/H4/y8vLNDU1kcvltDm8tT2Xa5EkiUuXLuH1erFYLGzZcv1tiUdGRqipqcHtdgOQTqe1GAZFp/b+/n6y2SxlZWWv6/7vBLLZrOpcX1fHlStXMBlNHLz7IDMzM1RVVeFyuUimUnR0dLBjxw7GxsbI5/Ps3r2brq4u9u7dS1lZmdaD3SiWlpZU639tLYGlJUxGE26Pm2AwSE1NDR6Ph5WVFUIrK9TU1rKysoIkSbhcLgYH1Xne9vZ2bbl1SUkJc3NzhMNhDh48eMfPr+vOg3cAmUyGxx9/XDNGCAhMTU1hsViYnZ3l/LnzpJJJZmZm6O7upq+vj+GhYSKRCP19fSwFlui8epXJyUmWAgHm5+dJpVJks1mmJieZmppicnKSjo4OQisrTE9NE4lEtOuPjo7yk5/8BEmSePH4cQyCgZMvncTtcpPL5RgdHdXym52dZXJigkuXLjE6Osrc3BzjY2MsLi6ysLCgDUv7+vq0wC1jo6MMDQ2pcQU6rhIIBAgEAnR2dhKLxbRekrqiqGdd73hmZgZRFHn66aevOwVyJyNJElevXsUgGNi+dRupZJLTJ08xOjKqKcmBgQGmp6awWqxs3dJGLpNFkWRqqmvo7+vfMFm0F6SicPLESxTEAk8//QwzU9NcuniR5449i9Fo5MwZde3/yZdOIiDw/LPP0dPVzfDQEMlEkqbGJtIpdb5+amqKgYEB5ufmqa+rQ0DA8DaYVdV7qncA0WiUstIyrnZ0UFZWht/vxyAYsFjMVNdUMzQ4yPz8PPX19ao1NhYlmUjisNspLSsjl8uxFFhibHQMv9+PyWRCLIjMz85hd9iZnJzC6XRgt9npjceZnZvjyJEj+P1+crkcK8EgsWiM5aUlLGYLFRXlOJwOBEFgdGQUg8FAKpVienoav09d4lpbU4vVYmWgf4CyslISiQROp4vq6mpAjRUTjUbx+3xcvdqJIAhUVFYi5vPMz82hoGguVmvnW42r87GFQgGj0YggCIRCId73vve9JVMRbyUmk0k1PNptRKMRqmtq6OrsZPfu3Zw6eYpHH32U/fv3k8/mWFhYoK6uDn+Jn9LyMsLRCHv27tl4oQSBpuYmhoeHKS0tpVAoEAqHOXjwAMNDw9p8eWtrC0PDw9gdDkwmE1OTkxw6dJi5uTmamppAUbekDi4HqaqsxOf3YzAacHncGy/zW4yuVO8A/H4/pWWlGA1Gzd1EMBiYn58ns+rsfe7sOUxmEwazGVvORqFQwGKzIskSVpsNm8NOTsxTXVujhpEzmfCXlhAKhWhsaiSTyWCxWMjn8+zYsUPrqc7MzLB12zZqamvp7OrCZDFTKEhqL1NQg72sNTSNT4xjNJmwOewUpALJVJLWLa34/SUElgKascJms9Pc1IzX66WjowNJkjEYDdgcdkSpQCKRIJfPq8PIUIg9e/ZQEEVQ1CG/JEnYbDYMBgP19fX4fD7m5+epra29nVW1oRRdz2RZJhQOU99QT0EqUJAkautqOXvuLB6PB6/fR3VNNSuhFeobGpiYmKCjo4P29vZb4vu7dds2xLzI/rv2Mzc/T219HY2NjeRFkfb2ds6dO0d7ezupdJo9e/aoBrWSEvwlfsYnxikpLWF4ZHg1TsgBQCAej1NVVbUp51JfL7qhapNTrJ6i5bxo5S2IBRQUbfWJKIprLPCqdbholS1aW4uW12K+xeNGo1EbOheNQkajUbP6Fhv6WuPUWqvvWk+CIte7jiAImgIW86rCMBgNiKK4ztOg+HtZlpFlmXQ6jd/vR5ZlVbGu5gMvz92uXYZ7pz+Yaz0+NK+L1XoEyOfzmM1mQqGQamUXDJjMJiRJ0izqRW+BosfARpVJ0ROkWM5F+YrtxGAwsLKyoo6mVj0X1gZ2KbaboqzFc2vrfSPl3Uh06//bTKm+XXi9lvw3eo07jTdcJsWfvcYtvxGXqrcMhVfIvxnrULf+v81YWFggEomgKArt7e3q6iSu/ywpikIqlWJqaoqtW7dqvZpMJkNdXR2FQoHOzk5cLhc1NTWq3yECmpMqvCIW57WNfHxsHLPFTENDA5FIBJPJpDU0RVGQZVkbjhfnQ4sKdXZ2Frfbjc/n25QPz1vNWiVWtOxbLBYCgQDj4+McOHCA8fFxnE4ngiAwMzNDS0sLtbW1TExOMD83z5a2LaRSKaRCAZ/fz+jIKNU11bS2tr4hmURRpLOzk6qqKjweDyMjI+zbuxeL1UooFCISiVBTU8Py8jImkwmXy8VKcIXqmmqcTieRSIRQKER1dTXhcBhJkigrKyMQCFBaWorf72dpaYnR0VGqKiux2mxEwmF27d59xwffubOl/ykhkUhw7CfH1Al+VJeWgf5+FubnmZycVK34U1OsrKywsLDAzMwMZ8+eJZfLMTMzw9TUFNFolPHxcUAdYl26eIl4LM7p06eJRWOMjIyQSCQYnxgnGo0wPT3NxMQEV69eZXBwkJGREcLhsLZlzdzcHMurQYszmQzZbJbBwUH6+voYGhoikUiQSqW4fPkyU1NTLC4uMjMzQyQSoauri6WlpdtSlpuZRDzBSydOkMlktLnnWCzG/Pw8breb4eFh7HY7dptdW/HmdDoxm82k02lcLhdDQ8OYTCZKS0uJRaNvWJZcLkdVZSUXzl9AEASikQixWBxQI8Zl0hmeefoZJicmOH/2HM8eexZZljlz5gwAL514CUks8MJzz9PZcZX+vn5+8vQzyAXVgwTQdjGIRKI4HA7GxyfeFh4cek/1DiARTyCgrg2/evUq9XX16jyWKNLb20t9fT01NbWsBFcYHBzE7/cB6prtixcu4nQ42LK1TctPQECWJHVHgLzISydO4HK7QIDhoWEtkIogQFlpGS6ni57ubmpr61YNC2A0GrR51MWFBQTBQF9vL06Xi9LSUqKRKJOTE5SXlWO32enu6sbj9aieDGVlt6EUNzeyLNPR0UE2kyUSieDxeCgvL6e2tpa6ujpWVlYIBoOUlZUxOjJCXV07oO6YMTI8TH29Gk0qHA7jdruZnpqmqbn5DcvjcrlIJpLcfc/duFwu8qLIykqQ8opyaqqrGRsdxeVykclkCYZW2LtnL6Ojo9oIp66+jpHRUYyrHgzz83Ps2rWbyclJMhl1g8+SkhKmp6dpaWnBZrMRi8XIZDJvOrD27Ubvqd4BlFeU4/X5GBocwm6343A41Kj8k1PqLsQKdHV1YbFaSCQSlJWXYzIaMRoMmIxG0un0OmOQJEtYbFY8Xi9mi9qAbTY74VCIVDJJPp9HliTEvIjD4SCdSbP/rrtUA8mqb6ksy6ysrHDhwgWt1+RwOXE6HNisVmRJwmwy4/K4yeVzJBJxKioqkCRJcwbXeRmDwcDuPbupq6/HYDBwtaODyxcvMTkxyezMLPF4nL1792pLUs1mMxcuXCCbzWJdDcQSCAS468BdGAwGcrkcPp/vDcsTi8U4efIlFuYXmJqcpLWlBY/Hw6VLl9i1ezclpaXcd/99tG1t48iRI+zbvw+P18Phw4e5cOEC27Ztw+vzcv877mf3nt3s3r2b/Xftx1fi58F3P8jo6CiiKJLNZPH6vMzMzHDXXfvfFrt36IaqTc5aS3AxJNza48X1//l8HpvNRj6ff9k6bzAgy6rWFVZ7lRaLRYsQJAiCFvxEKkiYzCZEUVy3lttoNJLNZrl48SIHDhzQVrvkcjltbfhaSzysiS8gK5jMJm2OtZhOFEWsVuvbwlK/UVzr5RFaCeH1eZEkCavVqtXv2rX0gUCAyspKrWwzmQxWqxWj0bjO4v56y1hRFCRJIpvNar7AoA7Xl5eXKSkp0bxDimEg13qGFOdNDQbV3a6YpujNoQbuUb0/il4KRZe+jfZW2Eh06//bTKnebooPxkazGR+e28Hal+StKJNNbf2/DpuxXdy2Lap1Np5UKkV/fz9dXV1MT01px2/U+HO5HFOr6XK5HN3d3YiiyOTkJKIoviL9zTxEFosFQRDI5/N0dXUxPj5OLpd7xW8VRWF8fPwVhihFURgbG1vnD7sZH5zbQbEMY7EY01NTmjEwEokwNTVFNpulr6+PmZkZEonE6rxkBlBHB3Nzc6TTacLhMNFolEwmw9TUFPF4/E3Jlc1mWVpaIhaLMTU5RT6XB9SVcEW55ubmCAQCr5Cr+D2bzbK4uMj83BySJNHX28vCwoJ23zMzM0iSxNLSErOzs2+Lrcp1Q9UdQKFQQECgp7ubdzzwADMzMzidTjo6Oti9ezfpdBqv10s+l6OsvJy52VkuX7lCU5MaRf38uXPU1NQQCARwOBxIkoQkSWQyGcpKy+jq6mT7jh3asshoNIrH4yGXy6l/szmsNqs29D9z+jQ729vp7e6hqqaanTt2EomEqW9owGAwMDw0RHNzM5WVlVy4cIGmpiYMBgOnTp6ioaHhbbecdKO4cP48JpMZk9lMXV0d586d06ZnnE4np06dora2Vqu/LVu2cOb0aQoFiaP3HWV6elpbJBBcXqa8vIL9d+1/Q7IoisJAfz+hlRDJdIqtbVu5fPkSR44e5fjx47RtaaOrsxOv10doZQVBENi1axdnz5zhofe8hxMvvkhbWxsvPP+CtgCkMRLl7JmzfGh12yRFUTh9+jQf+MAHOHvmLF6PB4MgUFtXt4Gl+taj91TvALxeL6WlpVisVpLJJAMDA4yNjanW/oFBQisrzM3O8dKJlzh35izZbE5bI280Gjl69ChPP/U0LqeTixcu0N/Xx9mzZxkfG2N8bIxIJEJPdw8jwyP09/dz6uRJJsbHGegfYHhomBdeeEFznxIEgWw2h8Nmp6W1lXg8zomXTjA4MKj1UtT5NnXlVHA5SDgUYnBgAKt146cP3k5UVFTS2dmp+WmWl5fT1dWFy+XC6/Vy4MABKisr6erq0jwvxsbHsdvtXDh3HqvFigCUlZXR3z+gWeLfCHNzcywtLa/GbC1hcmKCTPZlq/3k5CQms5lkMsnySpDSslImJidIp9U2UFZezsTkJJIsoaCwGFikpLSEQ4cP09ffB6jGOYvFgtFoxGwxMzc/T6Fw5xswdaV6h1BY3XjPZDKRSqWorKxUjUAo+EtKmJiYoCBJ5MW82mNZ9XME2L5jB0ajgbq6OqLRGDW1tVgsFpyO/z97/x0c2XXeeeOfzhnoBho5YxAmAZgZTuZwhkMOgyRSsiyurbBrWdKaW/tbr+3yBtu1lne3yn5tq+rdWttbtna93tfySrLkJIqkmIaTE4ABBjnn0Oicc7y/Py76EphADjlDERj1d6pr0N3n3nPuPec+fc75Ps/3MayfXYZer8PtcpHLZjEaTVgsFiKRCGXlZbS2tmCz2QAxzNBkNHLg4GNUVFaQSWeIx+OUlpZKIajZbA6ny0lPTw8KpYJ4IsGa3U46nZGImALuRCQa4fTp03g8HgYHB4nFYpw6dQqXy8WFCxfweDz4fD6efuopgsEg/f39tLa2otVqMVssZHNZstkcwWCQk6dOStsIHwUWi4W6+jpMRUUceOwABqORfV37GBgY4LHHHsNkMnHy5El27d7FwYMHOXzkCHqDgaPHjtLX10dHRwcGg4EnnniCAwcO0NbWRi6XQ6PV0NjYyNx66pT8GD106BD1DfXU1G5/7YYCUbXFke+edCpFMpVCr9cTjUbR6/XSoMyLbuSZ1UQigVqt3uSekmdZY7GYxLoCKNc9BZQqFalUSlSwSqc31ZNMJiVmNpfLEY1GpeiePEOczWTQ6fUAxKIx0TNALpPIrbxLl06nK+yn3oaNzH8ymUSj0Ug5qFKpFBqNhmg0ikIhCuokEgm0Wi1ra2tUV1URTyTQ6/Wk02nJwyMWi6HT6T6Skv5G0iyTyUjLd7lcztraGmVlZSjkChRKhdSWjdoUq6urlJeXI5fLUalUxNeTTKbTaVKpFAaDQdIvyLczf52F2P8tjEfFqMKDs7EPK94+H8oqCMKmkFbxOz7UYnMrPjSfJD7Ox/CjuFR90tiK46PA/j8iEASBdDrN8PAwkUiEkZER/H4/Pp9PjGD5gAdgeXlZDGldWxO1UT2eO85/O/KeAhsxPzcnSffJZDLisTiDA4PitkMmI2pibIjx/6BXAe9BWo2k06ysrEifRyNR+m7eJBwOSyx7KBRicYOHQCaTkY6x2WwMDw+TyWRYWlr6yMbx9r4Kh8MS2w8i+5/3UhD3Xp1EIhEWFxc3sf/5Y+x2OzabDZ/PR29vL/Pz84CYzaK3p5elxUXcLjcry8uPBPtfMKrbAHK5nEuXLpHNZrl08SKpVIpUKkVvTy/2tTVi0RhLS0uEw2Hcbjc2m016oJaXllmzrfHaq68RCUeIxWIEg0GWl5dxOBxcv36dUCjEwsKC9JD4/X4uXrzI/Py8dJ7JySm8Xi/wnmDK9RvXmZyYZHx8/BO7N48S0uk0ly9flt7funWLpcUl4vE43Te6GR0d5dy754jH4nR3dwOiUb108RLZTJYL5y8Qj8WQyWTSeHkYuNl7k7mZWexrdgDOnztHMBDkzTfeYGZ6hsuXL/PWm2+RiCfE2H8BLpw/TywW492zZ+m72cfgwCAetxuT0YjDLp4nl8uh1+ux2+1cvHiRiYkJEutGeTujYFS3CZLJJPNz8yQTSfxeHwvzC/i8XlaWV5icmGBqcpKR4WH6+/oZHBjA4/YgQzTIXq+XbCZDKBhkZGiYC+fO4/N66enuIRQMceniJaanprlx4waJeIJEPIFcJqe3p4dEPAGCyOgr1hnn/Gw1Go1SUmKhubn5k749jwRUKtUmd7MDBw6gVKsIBgJEIxF8Hi9Wq5W5+TlpRqhUKiUdhueee46ZmRmy2ewmjdIHRUVF+brHgQwERG+AhQVUShWRcBiP24O1tFT0EMiz/6VWFubmxey7udx6TrQScrkczc2iclZZWRnZbIYdO1ooKipianKKD9Qw3AYoGNVtgGw2i8FgoHlHM3qDgWwuRyabwVRcxNzCPIlkkng8QUVlJel0mmKzGZ1OhwBiuSITeoOerJBDJpeh0qjJCQK1tTVkMhkSyQRFRSa0Wi2jo6MgA41Gg0qtJpMVxbCz2SwOh8joz87OSqmKDx0+jN1ufySWbZ808kRTLBZjcHCQ5ZVlmpqaUGs0NDQ1YimxsG9fF0aDkUOHDtHX1yceA8QTcVwuF7t375H20PPk0YMa11AoxOmnnsLv93Pr1i0eO3gQU3ERT5w6ye49uzl48CBHjh7BYDRy9NhR+vv76OzqwmAy8sTJJzh46CDt7e2UWksJhkJYy6zMzs6SyWSIRKOYLWbkchn7Duwnntj+M9UCUbXFkZ8ZRqNRtFotiURCmoXk4/OVSiXJZBKDwSBFTOVZ90QiIaZWUaslpfV82pT8+fKMv06nIxqNotPppD27fMqSeCwuMfoqlQqZTCbVmWduC3ulHw0b9R3y8ftOpxOz2YxKpUKtVhOPxzcx+XmWvaqqimQyKfWdXq9HLpdLrPrDYNMzmYwo3KLR4HA4RPZfoZB0IXQ6nTTuVCoVKysrd2X/8xF5arVa8ijZOB6z2ex76YK24FgqsP+PiFEFQOCBHLl/FrEVH8r3w1bMhnC3Nt2PNsHD0C/Yiv1XYP8fEQiCQCqdYmJ8guWl5bvG7t9efn5unvm5ecLh8APXn8lkmJqclJjfDwtBEPB4PO/r9J/PBpC/Nq/Xy9KiyF4nEgmCweAdx7icTik/1kaEQiG8Xu+WcAu6X2z0U3U4HNLnKysrDA4OEgqFiEajuN1uUqkUIyMj0j1ZW1tjcGAQn8/H4uIiS4tLJJNJJibei3B7UEQiEVZXViVf43A4jG11lVQqhcPhwOPxEIvFWF1ZIZlMSvvtq+tl3G43zvX+mpqa2nSNXo+XcCiMIAg47I5t1W/3QiH2fxtAJpPx7tmzdO3rYnJqkscee0xKvpZMJjEajSQSCSoqKpDJZHR336C9fSeXLl/izNNnxCXV+g+/0WjE7XZjMBiIRCLSloFer5fSPufjx4uLi8W63z3Hl7/yZZxOJzqdjtnZWXbv3i05qkejUeC9pG4Wi4VgMIhcLmdleZlSq1VKsZFP6BeJRKisrCQSiaBSqbh16xYnT57EYrHgcXuYmpqkobGBZDJJLBYjGo1KwQlFRUWEQmGisZiYIqamlmgsisViYXpqilgsxslTpz7BHvtoSKVSnD93ji9/5SvSnqjb7Uav19PT08OZM2eYnJxkeHhYygKRTqcJBoM4HA7UajVXr1zhxc9+Fp/Xi1wmo33nzgdu1/nz52lqbGRldYWjR49y7tw5GhsaGBgYxGAw4PN6USgUtLW3Mz0zw1NPPcWFCxdoamhkdHiEzLpEZHNTE1evXePFF18EYG5ujqHBIZ577ll8Ph9vvPEGv/y1X96Ss9QPg4JR3QaQyWQkkklkcjnl5eX09/fj83rR6fXU1tbS39+PQqHg2WefXddLFWd7jx14jLfffpvDhw8RCoex2+1YrVZCoRDV1dUMDg5y8OBB7Gt2ioqLsNvt7Nmzh4mJCXbu3CkZVaVCgc/nY3BgQJytyOWYTCYp19T09DRPPPEEvb29ABw5coTh4WEqyiuIxaI47A58Xi/pdIal5SUpMsjtdpPJZFiz2dDr9NL1KhRylApRhzU/A1tbW6OoqEhUoU+l8Ht9tLS1kkgkmJudQyaXoZDLqayo/KS66YGhUqqQy9/bN21sbGR5eVna7z537hyf/vSnWV1dZXl5mT179lBfX8/qygrNzc3kcjk6O7uwWCyk0xnJBe5BYTAYWF5eQb0uaK7X61lZWRWzRwSDuN1uduzYwfLyMomkuKIxGY0sryyTiCcQgIDfT1dnJ52dnYyNjVFZVcnIyAjlFeW89trrVNdUk0mnpf3h7YzC8n8bIJvNotfpOHL4CLW1tfj9fjLpDAq5gvKyMoKBAPV19RLrK5PBrt272LV7Fzq9jorKSiLhCNaSUoqLikklkpSXlWPQGzAXFRONRKiurKK5qUlMw9HYyNLSEiCSJ9lcTvRA0BsQcgJ6nZ5kPEE4FKKmqhqtWkNpSSl6nQ6FTM7S4iKJWJxsJkMmnVk3zEpRS8BqRa1SYzIYiaw7iMfjCdKZjORXmU5nCIVCjI6O4nK5xJhxtRqjwYhOqyOdTIkC22oN6VRKVMiqqyMRT+Byu8lmt6cnQiaTIZcT1cPGxsYkgqeqqgqLxYLVasXtdtPQ0EBRURFDQ0OkUilkMlEM+sKFC4TCIVZXV6mrq6X0IaWtOXbsGFqtlq6uLkZGRjh+/Dg6nZYnTz9JZ2cnnV1dnDj5BFqtliNHjjA0NMTBQ4fQaLU8ceokR48dpbG5CZlCjqXEQm1dLQsLCzQ0NGDQ67FYLFRVVaFSqx4JL5ICUbXFkVdhD4VCFBUVIZfLCQaDUi54jUYj7UUaDKJASjAYRKvVolKpCIfDmEwmKUa/+0Y36Uya+vp6KioqMJlMBINBcQaYTKJcV2VXqVSS7FwwGESj0ZDNZhEEQZxRKUSG2WAwkIjH0el0koqRSqkilU6hVokuWYCkXp9negHJG0Emk4k5uHQ6Sbsgtu7Enm9DfktCJpNJe6n5ePI81Go1kUgEnU4nsc3bARv3VPMM/traGrW1tWSzWdRqNdFoFLlcLmVb0Ol0LC0tUV9fTyaTQaVS4ff7kclkUiy+yWSS7sGDEFWJRELyOMhne1UoFJKWRN4DRBAENBoNi4uLVFZWSipUG7Uq8nKSeS+HaCSK3qBHqVRKHgZbNequwP4/Qkb1fnE/Mf7xeJx4PI7ZbN72qYA/CFvxwbwb7tVnDysLwIOe45MwEVux7wrs/yOEbDbLwsICoVBokzp6Lpe7K9Pt9XqlMn6/X1JaB9DpdJSUlNy3Qc1kMvh8vvctk2eBAXLZHIsLC6yuruJ2u4G7PyAul+sOT4Z0Os3y8rLEFi8tLhIKhkilUqwsL7O0tPSB3g95bMWH8l64V1tjsRgOh4N0Oo3b7cbv9xOLxZiampLuQywWw263SwpQbrebbDaL2+1+qMYwEAhIdUajURwOB5l0Bo/bQyAQIJFISG0F8cfbYRff+3w+vB6PFNiQJzbz4yaRSBAIBB56mz8pFIiqbQCZTMYbP3mDQ4cPUVRURDqdJhQKYTKZCIVC2O12ysrKUCmVaLVaQkHxF1Uul2O325mfn0ej0ZBYl4ibn5tnz949hIIhjEYjwVAQlVJJMpXCarUSj8eRy+XMzMxQX19PLBZDr9dLWwmBQEDyDgiHQqjVGq5evcpLL72ETAZvv/0Ozz33HNFIFKVClAtUqVVEwhHMFjOCIHD58mWOHz+OVquluLgYhULBxMQEdrudyspKPG4PCoWCt996G7PZzIHHHiMai1JUVERJSckn3SUPHRsNaz7g4/Lly+h0OiorKpmemUav19Pa2srMzAypVIqOjg66u7tRKBREo1EGBgY4dPAQJSUlvPXmW3zpy1+SEul9FOQNXCqZ5I2fvMGzzz1LaWkp58+fp6amhqGBQTQaDT6/H7VKRWNTE1NTU5w6eZKLFy5SW1PD6MiIuDUgg2NHj9HX10d1dTV7O/bS3d1NaWmpSHAKAnq9no6ODioqty/ZCB+DUc1ms/yX//Jf+O53v4vD4aC6uppf/uVf5nd/93ffy7IpCPzn//yf+cu//EsCgQCPP/44f/EXf0Fr63u56X0+H//23/5bXnvtNeRyOV/4whf4kz/5E4xG48Nu8paHDHF2cP3adf7Vv3oZj8fDrf5+6uvrmZyawmgwoNVosNnWiMWixGJxysrLMJlMKJVKlAol586+i1qtpqKiApfLhc/rJZ6IY7WW4Xa7kMnkyICy8nJAYGV1lVwuh9Vq5VZ/P1qtlpp1TwOnw4lSqeDo0aMMDw2zZ8+eDZE7chAEVldWKLaYuXDhPNlsjlJrKfF1LVeQoZArWF1dxWaz8cwzz2A0GmlsbKSnuwe5TI5SpcTjcbNz9y56bnTz+Z//eZQq5baagT4oSktKuXD+PF/95a/itDsotVqpq6sjFApRUyOKOVutVn7y+uu88MKLhIIhent7MFvMqFTKD6fFeA8IgsDY2BgyRH/V0tJSFDI5jjU7iWSCaCyGy+Wirq4Ou32NSCQCiFF3doed0LoPaiQSYWJinGQyKfpPC6DVaLHb1vB5vBiMBsLhCM3NsQdv9CeMh778/+M//mP+4i/+gv/xP/4HExMT/PEf/zHf+ta3+LM/+zOpzLe+9S3+9E//lG9/+9v09PRgMBh47rnnNjmYf+UrX2FsbIyzZ8/y+uuvc/nyZV5++eWH3dxtgZwgYDQaOHLkMH/7tz9gaXGJSCQiOk1nc+h1enw+P2v2NULhMMiQyJx0Ok1mPR2wqaiInCCQEwS8fh/VNTVotBqsZWXoDXqKi4sJhUMsLi4Ri8bQqNRk0xmy2RyZdAa5TI7RYECv0yGXK8Ry8TiBYFAisXJCDplczp6OvbS0tBCLx4nFxQelqLiYeDyB0+EQSSuVmEwwv71gs9k4deokLpeTTDpDY2MTTzzxBC2tLQyPDGOz2SSS62cBoVCQJ586zdLyMi2trajVaiYnJ1leXiYUCjE+Po7P5+OZZ58lGotSWVVJqdUqkpuZrORN8aBL6qLiYgTEpfvk5CSnnnwShVLJk6dPs2//Pnbu2snTZ55GoVRy6PBhxifGOXb8GHKFgidOPsGJJ05QXVNNfUMDSpWSVDrF8soynV2d6PQ6Tp46yZOnT1NSWkJt3fbOTwUfA1H1wgsvUFFRwV/91V9Jn33hC19Ap9Px3e9+F0EQqK6u5t/9u3/Hv//3/x4Q2eqKigr++q//mi9+8YtMTEywe/dubt68ycGDBwF46623JB+96urqD2zHI0FUrYen5nI5vB4vRpORUDCI3mAgmUyiUqnIZrNotVqy2SzJZFKaMRYVFUmpV1LJFMhEtl2pVEqx+vF11n6j8EY+Pjsfty2TyUin0hgMBmJxcRtAnI2Icd55BfdMJoPFYgHA4/FQXFyMWq3G6/VK+d83DrXUehaDdDoteTUkEgnC4bAUkCBf94fN7+vqdLpNjPajio2sezwep6ioiHA4jGrdMyMajWI2m7HZbNTV1RGPxykuLiYej5PL5TAajfh9foqLi1GqxMXog9yzfGSbXC5naWmJ6upqFAoFarVa2hLKZ9bV6XTMzMxQU1MjeSmEw2H0er2kMSEIghTIkclkMBgMhMNhdOveHw/a3o8L921ThIeMP/iDPxAaGhqEqakpQRAEYXBwUCgvLxe++93vCoIgCHNzcwIgDAwMbDru5MmTwq/92q8JgiAIf/VXfyWYzeZN36fTaUGhUAj/9E//dNd6E4mEEAwGpdfKyooACMFg8CFf4U8ROUHI5XLiK5t77+/Ca9PrUcNWu0eFPhURDAbvy6Y89D3V3/7t3yYUCrFz504xd1E2yx/8wR/wla98BUBiiSsqKjYdV1FRIX3ncDgoLy/f9L1SqaSkpGRT3PBG/OEf/iH/9b/+14d9OZ8s1nOUpFIp3C4X2fVUxaWlpYDI7AOSX+b9IBAISHmH9Hq95NuanylsJDbyYtj5fez8jDYSiUi+h/nZ6YdBfqsgX1cymcTr9WIymTCZTPc8LhqNSqpNAG63m5KSkgciY7Yittosbau1Z6vjoY/Gv/u7v+N73/se3//+99mzZw+Dg4P8xm/8BtXV1Xz1q1992NVJ+J3f+R1+8zd/U3ofCoWoq6v72Or7aSIUCrG2tsbI6ChHjhxBJpNhNBjx+/3Y7XaKi4tpamratLyOxWKYzWbJ4dpsNqNQKJidmcW2uoq5xMKhQ4cIh8PI5XJCwRCJWByHy0lLS4u0lRCLxTAajeRyOUZGRrCWltLT08uJE48zPT3Nnj17ANFQajQaMpkMqVRKcukqLi4mFotJTv/5tkyMj9PR2YlcLuf69etoNVpMRSZqa2tJJBJYrVYikQharRZBEEgmk5L3Ql6u8NrVa5w+fRqz2fwoaBsX8IjgoRvV//Af/gO//du/zRe/+EUAOjo6WFpa4g//8A/56le/SuW6u4TT6aSqqko6zul0sm/fPgAqKyulPPN55PfVKu/hbqHRaDZlD32UYLVayWWyzM3NU1lRya2+fgxGI4uLizQ2NDA8OER1VTWzs7MsLS1SXGwmmUxgLbXi9ngIh0N84aWXpCiYixcv8o1/+S/RqDXcvHkTm81GcXExZrOZtTUbCAKTk1Ps3r0bj8dNZWUloVAIp9NJOBzGarVSWVmFtayMW/39LC0tU19fTzKRoKKygu7uHpRKJWVWK6VWK4lEAq/Xu64Fq2Rf1z7cbg8Bv5+S0lLa2tr4+x/+HaefeorXXn0Nq9VKNpNBJpev77MpKTabCQQCWK1W/H4/Ho8H1foMVUAQkxIWUMAWwENn/2Ox2B2O5XnlI4CmpiYqKys5d+6c9H0oFKKnp4djx44BYqxxIBCgv79fKnP+/HlyuRxHjhx52E3eFkhnM2TSafw+Hz6fj2AwSC6bJZ3J4PV5cTocLC0uEglHyGWzWMwW4vE4mUyGpsYmiQBIZ9Kcfuo058+fZ35+nuXlJUKhIEIuh0IuBwGR1Y/FSCaTkjO3QqFALpfT3NzM8tISTqcTj8vN0uIS4VCIXTt3MjMzQ3V1zXqcvgGTyYTf58NmsxFaV60qKhIJFZkMFArRKLrdbp771PPMzs6gUCjErR+ZuP1QX1fH/PyClG45LykXDAZJZdJkcw+H4S6ggIeFh87+//Iv/zLvvvsu//N//k/27NnDwMAAL7/8Ml//+tf54z/+Y0B0u/qjP/ojvvOd79DU1MQ3v/lNhoeHGR8fl/YGP/WpT+F0Ovn2t79NOp3ma1/7GgcPHuT73//+fbXjkWD/ec9YxGIxQqEQZrMZv98vMf/5LADCulScDBkKpWgA4/E4169fx2w2c/z4cQwGA4FAgGw2Sy6bRa5QiEy/TI5CKSpH5WPuM5kMGo0GQRAkZ/vp6WkaGxuJRCIkk0lKSkrEeHMgut6+jo4OvF4vMpkMhUIhKmzF48jX/84bZ5fLRVtbGzKZTNILLS4u5p/+8R85ffopKirFPXar1Uo0EkUml0m55/Nx8DKZDLPZLO2xFvb+Cvg48Ymx/6FQSPj1X/91ob6+XtBqtUJzc7Pwn/7TfxKSyaRUJpfLCd/85jeFiooKQaPRCE8//bTkLZCH1+sVvvSlLwlGo1EoKioSvva1rwnhcPi+23G/TN12wEdlULPZrLC8vCz4fL6Hwshms1khm83e9TuXyyXEYrEHOk++vYlE4pFhjAt4dHC/NqUgqLLNsLG7crmcpFD0MEQzBEG4pyZAOp2WZplwZ1jlRjys1B0f9VzbDflrFwSBTDqNan3mDSIBuFGdK7+KyG/nAJLPZ/48CoVC8vPdmNfqQ7cnJyCTi8fl1lXC8t9nM1mUKqWkmiWXy8Ugk/V2Cesrp/yKKt8uYT23Wr5deeWy3Hqwykdp708L92tTHi1flJ8hJJNJzp87R319PQ6nkyeffFIalPkBmneu3jiYvV4xzfHGkGFBEIjH40QiEeRy+abv8w/zD//2Bzz/qU9hLbtTo3OjOtZHfRjuR2HrUcf01BQ3btzg+U99isrKSlaWl7E7HHR1deHz+ZicnBS1GWJxKioraGhoYHl5mZ7uHk6eOsnU1BQyZOzavYvz585x5MhRGhobPlJbBEHg3Ll32X/gABaLhbPvvMPhI0ewWCzc7L2JkMthKi4i4A+QTCUpLi4ml81iNJnYuXMnAwMDZDIZjEYjXq+XTCZDV1cXw8PD7Ovah9lixm63c/XKVZqamognxMCFxx57bNuHoheM6jbF4sIi8Vic3bv3cPHCRRKJBLlsFoPBiNPhQKlUsnvPHpLJBOFQGI/XS21NDSOjo+xsb8dgNIhK/EuLyOVy9nZ0EAwEGRoe4sknn2RtbY3S0lL27NmDQqEgk81Iyu93w1aQqNvuaN6xg0gkKv0AvvHGG9TV1WOz2Qj4/STicTLpDFevXuEr//yfAxCPxUVVsmyO2ZkZiovN7GjZQTAYeqAcVeKPqTjbXFtbIxqNStFQM7MztLa0crO3F7PZQsDvB5mMzs5ORkdHaW9vZ3ZmltaWFgb6byGTy9Go1bz5xpsolUqmddMcPnIYq9XKsePHWFlZYWF+ntKSUuxrdlrbWj+4gVsYBem/bQqjyUgymSSZTKBQKlHIFbTsaCEcCoFMRnVNDaOjo2i1OlxuN+l0it179ojGNJMmEokSCoVIpzOo1RoSMXGmatAbqK2tZW5uDoPBIM0g87PfAj4+BANBFAqFlD/MYrHQ3NxMX18fi0tLzM7NEQgGOHDgAPPz84RCIeob6nnq9Gm8Xg9VVdUkk2LK6M997nMEg4EHak9OEMXB5+fnWV5ZYXVllUgkwvPPP8/K8jLHjx+nra0NpUrJZz/7Wez2NZqamgiHwzz77LOsrK7S2dXJ0aNHiUSjWK1WDhzYz/z8vJRzzOl00traypOnT+P1+aioKP/ghm1xFPZUtxk27r/Nzc4STyQoKSlhemoKlUpNe3s7r/74x5w6/aS4hFxZwWKxYLfb2blzJ9PT05SWlrK2tkZJSYkYU65UYjSaSKVSpNNpqqqrmJqaYt++feh0OrLZLDdv3mTXrl0UFxcDhVnlw0S+T8fGxnA6nLS2tbK8vExzczPBYJC6ujrUajUOhwONRkPA78daVsbo6ChlZWXotDpqampYWFxAqVCiUCpIJpLUN9RL3jQfdk9VEAQmxsepqKyUxovRaGRoaIg9e/YQjUSprqlmZWVFjPBbz4tWW1fL9evX2bt3L+FwmNraWux2O3q9Hq1Wy9LSEmazWQoumZmepqGhEb1Bj0qloqys7EO396eFgvL/I2pUb0f+AZicmMC8nsfo5s2bHDly5COFbwqCIDn5t7S0bMnB/agjT/Lk++/2Psj3+UbC6uPup9vrvFd9wroy2sMgT7caCkb1ETGqG2emeUY3n+Y5z/IqFAqJjMqnic6zxLcb1kwmI7G1tw/6jUzuxgf743o4cuu5p/JtzLf99vbmr2cjNrLI2/3hzfdx3psj73eb74O8hkbe+2IjE58/Lp/XKd+H+eMehP3P15MfV/l+2vg+X1++7ruV2cjs336ujWN0Y/9vxT4tpFN5hJDJZHjrrbeYmpri3Lvvsrqywj/94z8xODjIzZs3GR4elsr95f/6S1xOJ8vLy/zlX/4lmUxGEkJJJBK89tpr2Gw2EomEGASwbtiy2SwTExOMjY0BomjKd77zHVKp1HqWT/GBzx+TF2XJZkXdTofDsalMXjQlXy7/ud/vlwgUh8PB3//936+7EmWkVDEb61ldXSUWi0kpYvLX4nA4uHTp0ifQGx8fbDYbP/7xjwkEAgDMzs7yyiuv4PP56O/v5/z58yQSCV599dVNhu/tt94mFAwSCoZ46803mZmZ4fXXX+fatWsfuS2CIHD+3Dl8Xi/9ff309/WzsLAAwM2bN+nr62NifJye7m4uXbzIwMAAAwMDTE5OAjAwMMCt/ltMjI9z7epVLl+6jN/v59KlS5J05MTEBAMDAwwODkrXlY+83M4osP/bAA6HA5fTxaeef56WlhZCwZA0Sxu8NcDPff7nANEPsKqqksuXLlNdU4NcJmd+bo7JyUna2tqIRmP4vD4WFxbJZXP4A35JQ9Xr8VJVVUUymQTEzKS5bJaR4RFWV1epqamRSAWApaUlSiwWIrEojY2NnD17lsOHD7OyvEIqmUShVNLW1sbszAwNjY1MT02h1Yv7s52dnTQ1Na3XIc6y4ok4czOzTE5MkMvmkCvECK90Jk0oGGJpcZGamhqWlpdoa2sjHImICvKPECoqKqQfJBDzPHm9XjF0t6wct9OFWqUiFo1K/ba2tkZ8PaTY4/WSiCdoaWlBqVQ+UGJHmUxGbn11NDs7Q1trGxPj4zQ2NjIzPUNbWyu9vb1YzBZRLW15ha6uLsZGR9m5cydzs7O0tLRyq/8WMrmYTvyNn/wEpULJtG6Kw0eOsLSedXV4aAiDXszK+zCyFXzSKMxUtwF0Oh3RaJRkMimmqw6HUKlVWCwWnnzySS5cuCiVrampweV2rz9UMkZHx9jR0oLb4yGeiKPRakgmE6yuruL3+WlsbMTv97OyukIqnULYMKqz2RzpdBqr1YrH46amtoaZmRl8fh8Gg57yygpi0SgL8/MY9HqUcgVFxUXkEEimkgwODdK0oxm9XodGpyUUCqFWq9+TKcwJZLMZYrEYgUCAYDBIOpXGUlKCQa/H5XKta0nI0Oq0jE2Ms7ejg7HxcYzrngmPEnK5HLt27cLj8Uh72sePHycUClFeUY5MISeby5Fb398MBoPMzc2xtLzE1NQ08/PzzM7NkUgksNlsmwSLPgqEXA4BeO7551laWaaxqUli/5eWRPa/pa0VpUrJi599EZvNRlNTM6FQiGeeeZaVlRU6u7o4evQY0WiUMmsZBw4cYGF+gWg0yoknnsDr9VFVVcXc3Bzz8wsEHtBjYSugsKe6xZEnCGZnZojF41RWVrK8vExdXR2xWIxYNIalxEJNTQ3pdJqpqSmsVitKpZKZmRlqa2ux2Wzs3LmTiYkJVCoVBoMBi9nC7OwsLa0trK7noyopKUGlUtHQ0EAsFmNgYICKigppe6C5uRm/34/RaGRgYIBdu3YRDATQ6w243S4xKeF67noAs9mMw+Fgx44dUqbN0tJSlEolNTU1+H0+RkZGKSouwmKxEAgEUCgUUiaDvNp8ZWUlDrtDTMWRSlFeXs7i4iJms5ldu3Zte+OafwRnZmZQq9WUlpYyODiIxWLBZDJRUlLCwsICtbW1GAwGhoeHpaR/J06cwGF3UGotRa1Ws7S0RENDA6urq9TX1wMffn/ydvZfoVAQDAaprKykt7eXPXv2EIlEqK6uZnV1VdKG8Hq91NXVSex/Xn5zbW0Ng96AVreZ/S8tLcXlctHQ0IBCoWBhfoGm5iZpj3aroUBUPUJGVfyDj0UzNN/5D+PU+SXph6r8IVS8FR/AD4PbH8HbyZx7HXN7uKr4xboU4oaIuAdtzwfWeRvy7P/91LMxsm9jW7dinxaIqkcMOSH3XnK9dcIml8uBgJTkbaOnQDablUii94Ns/ZXL5RBy75XNx3fniax8vRu/y9ezMUR14/v83uC98R6BtbGdt5934+ePApFxL+TvKyDF8ufv4cY+yN+bvOHK35NsNks2J7Lxwoa++qjI93FOEKTz5lXRchvalVvfJsi3NV8me1uZfBs3timTyUB+vGTu7PPtiAJRtQ2QyWR499130el07Nmzh76+PqqqqvD7/ZiLzSSSYsK8Q4cOYTabWZhfYGlpCYVSQUNDg7QMzM8GNhrBXC5HIBBgdnaW6qpq6urFbAnpVJrvfe97nHjiBH19fXzuc59jYGCA48ePk81m+f73vs8LL77Aa6++xksvfQGdXo9MJuPC+fM8dvAger2ed95+h8+88BmAu7oC3VjPWe/3+3niiSfQ6/WAmPLl9dde40tf/jJyuZxAIIDFYmFpaQm3y8Whw4el9j9KWFlZobe7h6efObOeHWGC3t5ennzyFE6XS0qSODk5SXNzMwcPHiQWi3Hx4kVOnz7NhQsX8Hl9fP7nP8+F8+f51Kc+jUKp+PArCMT0OpcvX0ajVmMtKyOVTFJVXU1dXR0DAwOkUylKS0vxeDyk0xnMZnEcWiwWWlpaGB0dJR6LU1Jiwe12k85kqK2txev1otfr2bNnDw6HgyuXr7Br1y7kCjmzM7M8+9yz6HS6j+kO/3RQMKrbBIuLi7S3t7O4uCiKU3R2EQgG+Ov/8//x//vVfyMpTAmCwNl33uGLX/qSmMY6Eubvfvh37Ny5k2w2Qygs5mFXKVXo9Xo0Gg09vT3saG6mp6cHt8fNgQMHUKlVJBJxGhoauHThIkuLS9TX1yOTyVAqlYSCQdZsa3g8Hnx+P56ZmXVR7Cx+n5+F+QXcLhfT09MEg0FKS0sJh8LE4jGOHz9OPBanv7+ff/2v/zWTE5OSGDaIWRxSqRQKhYJwOMxrr73GsWPHcNgdm8o9aggEAni9XkBcPbS0thAKhbDZ1ojGoqysrPClL34JlUol5fLSaDQEAwE0Gg3PPPMM169dlzLePsisT6fTcerkKW7cuMH4+Dh7du1mZGSE2tpaxsfH2b1rN1evXsNaWorf7ye7LoYyNDjEjh07GB8bZ9euXfR09yBXyNFotGjUGq5du8bzzz8PQGlpKccfP47D7iCeiONb1+Hd7igs/7cBstksL7zwAtNTU0TDEcLBENms6DQtV8glYig/C8ynDrbb7djX1kAQUKmUpFJpfF4v5dYyZmdm6O/vo6zMitFgQKFU0tjYiG3VBiAt++RyOQcPHeLC+fPvpbIRQKFUUF5RjlqjZm52Do1Gg23VRi6bZWlpiWQyiUarZWhwkJYdLdhta6jVatZWbaLLlFxOLpMllUwxMjxMbN27Qao7lyOTThMOhTAYDAwNDVFSUoJMhlTuUUN7ezsnTj6Bx+Mhnk/XbTTQ2dVJeVk5GrWYMsjldFJeXk4sFpNIJZlMhs/nw1JikVYjeU+Oj2KoZDIZi0uL7O3Yy5kzZ5ibn6euro5EIsEzzzzD3Nwch48cpqGpkRwCn3nhMywvLUkps888c4b5hXl2793DYwcPEgwGUamU67H/cyTXBYA8Hg87duzg8OHD7Ny1S/Jh3c4oEFVbHIIgJr0bHR1FBuzatZvxiXFUShU1tTUkk0mWl5epqKigvr4ehUJBIBBgamoKhUJBTU0Ni4uL7Nu3j9nZWYqKiqiurmZ5eRmAxsZGbvXfWs+kqiCRSNC1bx/pdJorV65w/PhxFAoFq6urNDc3A+J2xJUrV9i/fz+3bt2io6MDh8NBSUkJHrcHq9XK3NwcSqUCS0kJgUCA3bt3s7y8jMVioba2FhB9Xd1uNwC1tbWsrq5y8OBBwuEw169fp6K8nKKiIrweL5aSEtbsa1itVlQqFa2trY/ErAbe2/ccHR1Fp9NRXl7O4MAgBr0et8dNV9c+ItEI5eXlGAwGlpfFnGCXL1/myJEjDA4OcvjwYbxeLwaDAZ1OR09PD/v375eW0h82oioYDHL9+nVKS0tpaWnB7/dTU1NDT08Pe/fuJRgMUl9fL/orl5SgUChwOp00NjZy7do1Ojo68PtFl721tTUph5zNZhO3CuIJFHI5ExMTNDY1klj3Bqitrb1rtN9WQIH9f4SM6s8Cbg9ZvR9sxQfvo+BuhFw6nZbCVe91zMYyH7Rv+lHCVN+vztvr2/g+Lzz9INiKfVtg/x8xbGTe88vjjUx4/vONHgAbsfH79zPU78eu38+x96p/4zng7g/NRxGAedSQvz95w3V7v2/87HaDenv5PD6qgbq9P2UymdSuu42njW3f+H5jmdvHV76OfNsfhUlEYRRvAySTSf72b/+Wz3z600xOTmGxmEXH/ro62tvbMZlMnHv3HOUV5QwNDfG5z32O8fFxOjo6MBgMLC0usbS8RC6XQ61WYzAY6OrqAjY/kNFolBvXb/D0maeRy0TSK59OI/99KBSSInVyuRzxWByjyUgmk+HvfvhDXnjxRYqKipifn5ecuvMIhUIkEqLeZ55oyXsgnH3nLE+efvK9aKufQdhsNrpv3OCpp5/GbDYzOTlJ382bnD59Grvdsd5/KqZnZtizZw979+4lFotx7eo1TjxxggsXLhAIBPjc5z7HlStXeOaZZ+4QqLlfRCIRLl26hNFgwGotIxaLUVNbQ3V1NaMjI8TjCcrLy3G5XGSzWSwWs6SZ2tjYyMTEBJFIhDKrFZfLTSaTprauDrfLhdFopH3nTpxOJ5cuXaJjbweZbIalxSWeefaZbZ9qvmBUtwE0Gg0HDx7kn/7xn/jUZz5NNpPB7w9QV1cvCUmn02l0Wh3V1dWMj42jVqtFFyUB3nzjDX7xS1/EYDAwOztLf3+/FCEzNzvLzl27xEgpgxGn08n42DiZTIbV1VXMFjNGo5FoNEp5WRmRSJShwSFyuSxNTc1MTU3yc5//PAqFgkg4gmZ9JpMXR5mbmyOdTqNUKmlrbSMai9LX18czZ84wMzNLVXUVqWQK23pU1/vNZB91uJwuvB6vRDg2NTURCARYWFgglUqzvLzML/zCP0OpUmG1imlt1Go1bo8btVrNmTNnuH79OjqdDr/PL/odfzSbikaj4dTJU1y9eoWhoSE6OzoYGhykqqqKoaFhOvbu5eLFi5SVl+H3+UhnMhw5coRbt27R0NDA8NAQe/d2cO3aNRQKJVqtFplMTt/Nmzx95mlAjLh7/PhxVldXCQSDUhrz7Y7tfwU/I9i5c6coIF1ZiQAUFZmob6jflIwNBA4fOsz58+epqCgXDZMM5AoxXbVcLkelUlFXV8fqyiq3+vppampmZGQEa6mV0tJSFhcWSCQSZDIZGurrWVxYYHJ8QiQZ1kQXqmAwiFarIxqJYDSapDYKQE4QCIVCeL1eUqkUWo2WaCRKOpkiGokQ8AfQ6/TMzs5RZDKRSCRYs9koKi5+JJZ+D4KOjg6OP/44rnWf1GQySVFREfv276fYXCwKk2i1Up6xjV4Qkj+v2YJcJkeMq3r/rZj3g0KhwGazsX//AU4/dZrpmWmqqqpJpVLS+wOPHaC6uppUOs3zzz/P3NwclZWVpFIpnjx9Wky70tZGZ2cnXq8XjUbDzl27WFhYIJ1OI5PJ8Pv97Ny5k6eeeoqq6qoHSgGzVVCYqW4TZDNZdrTsIL2uP1lTU0tZWZm0dBdj6lWYikx8/vM/R0Xe/Qn4/Oc/z/jEBOFwGI1Gg8lkorauFpPJhM/vY//+/YyNjbF/335OnjpJJBpBIZfj9Xh48vRp/H4/SqWSyspKXC4XWp0Wg16PxVJCdkOkT319HZOTk+RyOaqqqlCr1VgsZhRKBSqVCq1eh0UhR61RU1FRwfT0NPv27SPgDzwwsfEoYHxiHJ1WR0VFBd03bqynwnFhsVgoKiris5/9LIIgUFdXh0wm49q1axw5coSa6mopgq6puYlsLkt1dTWZ9AeHlN4LoVCIyalJysvLaW9vZ/eePTQ0NHD9+nU6Ozvp7OqiubmZxcVFPvvZz6JWq2lpaaG5uZlr167R1dVFe3s7LS0t2Gw2nv/U82i1WpQqJcXFxSwuirnR5ubnEQSBRDJJc/OObZ/0Dwrs/7bAJ9FF4+PjaNRqdrS0/NTr/llb+t+V/U+lUH/A3mIymbzv/ceHwf7fb50fpl33wlYcA4UU1Y8IPgmDKggCu3fv3uRY/tPCVnyYftqQyWR3Nai398XHRehsFDm5HfdT54dt1097jH3cKBjVbYBkMsmPf/xjnn32Wd555x327xczUra2tjI/P8/TT4sb/7du3QKQnK6dTic6nY54PM7iwiK1tTUcPHQInU7Ha6+9xtGjR7lx4wZPPPGEJN/W3d1NW2sbZnMx7547x549ezCbzRgMBgBpu2Hj/yBmFfjxj3/MZz/7WbRaLXNzc+zYsWPTdXg8HpRKJSqVCqPRKB2fTqe5ePEiZ86ceaQerg+LaFQk8U6dOoUgCPT09LC4uMixY8eIRCKYTCYMBgOXL1/m+PHjVFRU0N/fz9zcHB0dHXi9Xvx+P48//jjd3d10dnZKgRYPgumpKcKhMHX1dZRXVDAxMUE0EqWqugqHw4GQy2G2WAgGg1RUVFBbW8vMzAyhYIiKygqcTieZTIY9u/dw4eIF2tvbaWtrI5VKMTw8zI4dOzCZTFy5coUnn3xy24+BglHdBlAqlaytreH1eFmzrXH0yFFWl1coLiomEo4gQ0YgGODmzZu8/PLLBINBZmdmmZ2e4cwzz1BaWsrE2DgH9h9Aq9Uil8vxerx4PV5sK6sk4wlGhkdIJZPEY3GCwSD2tTWWFhapLBfV6C9fvoxapaajs4Pp6Wn0ej1yuZyysjJqa2tRqVT4fD5UKhXZbJa1tTUxZ7zNRi4n5ieqrq5CJpdz/fp1Tj95mtnZWdrb2/H7fCwvLklqRT+rUKlUrK2tAeKP14EDB5DLRZLxwvkLHD1yBK1Oi9PhlJSgOjo6UMoVmIvNNDY0cvbsO+h0Oslj40EhCAJ9/f3s6+zi1q1bPPf88/T39dPV2cm7Z89SUVGJz+sllU5x7Ngxbt68SU1NDbf6++nq7OLyxUsoVUq0Gi1qpYqV5RX27NoNAnRfv8Ha2hrmYjOBQACbzfZIzFoL7P82gVwulwwiiA+gRqt5T7sPMZJFEASMRiPNzc3s2r2bc+fOodFoRBEVtXpDYjXQarUolEqJjRVdd1KsrqwQCoUwGI2EIxEi4TCRUBi/34/b5SYUDGIymVhdWWVxPW9RHoIgEIvFxDQf8TgajZZIJIzL5SIaiRIOhtBptaIAdnk5c3NzpFIpdHr9o5BJ44GRXwHkE/dFo1GUCiV79+5lbm6OhoZGnnr6KVZXV6Wkeb6An/LycvwBP52dXahUKmprayUD/aDteeKJJ5iYnKSsrIxsNsuJJ04wMTVJR0cn1tJS4vE4Tz31NNNT01hLrWQzGU6ceILJyUmamptpb2vH5XLRvGMHX/zFX2RpeZnsupj54SOHuXTpIqMjoywvLkn5ubYzCjPVbYBMJkN9fT0Go4H6hnrSmTR19XVYLBZCoRCCIFBcXMzjjz9OX18flZWVRCIRlColBx47QCaboaKyknQmjRYtuVyOyqoqjCYj9Q311Dc24HA46NzXRTgUwmwRswKUlJag0+tQqdWUVZQDkM1lCYfF/FDNO5olI5/JZCgrK2NkZARBECgrK0Oj0Ygaq7lSstksKo0atUpNeUUFJSUlOFxOdu/ezfDwMKXW0p95l6pMJoPVaiUajdLf38+hQ4doaGigtraWQDCApWQXi0uLKJVKmpqauHz5Mo8//ji1tbVkc1n6+/tRqVRkshmSyST79+9/oPbkZ4wmk4n2ne00Nzdz5coVOjs72bNnD21tbSwsLPCZF19Ar9fT0NRIW1sbly5fZv/+/exobWHnzp3YbDaeee5ZAsEAgUCAffv3MTs/x/7HDrC2tsapJ5+koaGBmpoazGbzQ7iTnywK7P82wVbppsmJSTxeD21tbZJL18PEdl/6fVTcLtKdjzx7v/IfVGYjHuS+bgw3vZ86Y7EYOp3ugerciuOgwP4/IrhfY3rHXtTHkH5FEATad7bTJrS9f+TL+9V9t+82fCYIwh05XrbiA/awcfs1SobrHvdSJpPd3bitl38Ye5Mbx15OEJDfq84N5WUymSQ2fr9tkMoJgrgvtc1RMKrbBLlslmvXr3P8+HFWVlYYHBjAaDDy+IkTjI6MoFQp8fp8FBcXo1AoyKYzaHRaOjs78fl8nD9/nhdffJH+/n6OHDki7a3m3aaSyaQUd38v9SG73c6N69dpbGqisbGR0tJSqUz+uHg8TveNbk6fPk1OyPHqq69y8OBBLl++zKmTp1hcXODI0aOSeIp9bY1btwb41Kc/JYlsv/7a6xQXF1NSUsLejr0/tXu81SDkcly9eo1Dhw8Ri8WYm5ujs7OT69evSyy5IAh03+hm957dzM/P4/N62bV7N2tra1gsljs8MD50GwSBpaUlum/c4Omnz1BWXoYgCNy4fp32nTtZXFxEEATMZjOhYJDyjex/KERFRYUUIXbgwAHm5+fRarU0NDRI7H9jYyPDw8O4nS6e+9Tz234LoGBUtwk8Xi/jY+NSNI3fH8Dr8dLY2Mjg4CD/8ld+hUAwwPj4OH6/n0w6TX19AyDGWIdCIVZXVzEYDNy6dYtcLkcoFCKTydDc1MTExCQlpSUYjUaKi4oYGx9nx44duN1uduzYQV1dHUqlErfbTfOOHesC2HaSqSRer5dcLsf+ffuw2+2srqwAIrkWDAYxGo10dnbyD3//9/yLr/7SJjUqhUJJKBSSZr7itfmoqqxkbGz0Z9qoOhxOVldW6OzqlLRn854gebjdbpaXl2lta6W2tpaF+Xlu9t7k0KGDXLl8hebm5gdehpeXl7N71278fh9l5WXrda5gMplwu1x4vT7S6RRHj4rsf21tLbf6++ns7OLypUsolSL7v7S4xOL8AjXrbl43brzH/p94/AQ3btyQZrnbGQX2fxtAEARmZ2dpbW3l6pUrCIJAJBwml8thNJlIpVLkhBxGoxG5XC4KAqvfc8CWy+UcO3qM1159FZVShcftxmK24PV4kCEjFo1hNBpZW1sj6A8QCoVAELDb7ZhMpveUjgTQaLSUlZWRTCTx+Xw4HA486+e5fu06SqVys/P3+gpSq9Wi0+tZWV4mm83eJgEnJomLRqPid4KATqfjxRdf3DJ7yT9tZLNZhoeHsNlsDA4OMjc7x8L8PJl0BhnviZcPDw9jt69ht9sxGo3kcgKZbIacICBTPNjjnU8VLZfLUaqU1NXVk0wmGRoaYm1tTQyPtlqJJ0T2f2ZmBqvVSjqd5sSJJ5ianqKpqZn2dpH9t62usra2xuLCAplMhlg0ypHDh7l5s5dMNoNKpXwkwpULM9VtgDw5cPDgQd584w0SiQSdXV0UFRURCoU4fOQI/f39VFZWotPp0Ov1ZDNZ0eVqHa2trSSTCZqaGpmbm0WhUFBRIZYvNpuJxmM0NjaK+gBaLSUlpdQ31DM6Miop/ueEHLW1tdTU1KBSqRgaHMRqtaLViloAdXW1rKyuYi0vE+U8cgLl5eWEgiHcLjef//znuXzlMmqNBqVSSWtrKzkhh16np7+vH7PFjEKhoKqykvKKcgLBIMlUSgpM+FmCQqHgzDPPUF1TQ8uOFnK5HIuLi4DoWZFKpbh27RqnTp2ipqaGyspKxsfHOXz4EBqtFpvNxpEjRx4KQTU5Ocn83BxKpQrbmo3Tp09TU11DbV0tDoeDF14Q2f/GpkZaW1u5cuUKXV1d7NixYxP7X1dXR2tbK4IAc3NzHDhwAJvNxuHDR4jH4zQ3P9hWxVZBgf3f4ni/7tkKjtIfpQ2pVEpKd3w/uN/z3y7MfLd790nfr3vhgx7DuyntJxKJdUm9D76mj3Ldm9okiLpX92L/N0bZxePx+2b/7zV+tmI/Fdj/Rxh30xz9IANyt9DSh1H33c51tzo2frZxifdx/TBsp7nCR/3hzBu3jX0LPJR+vktLkCG7o848Ntb5Ydn/fNn8ebY7PvSmy+XLl3nxxReprq5GJpPxyiuvbPpeEAR+7/d+j6qqKnQ6HWfOnGFmZmZTGZ/Px1e+8hWKioowm8184xvfuCOL4vDwME888QRarZa6ujq+9a1vffirewSQH2S5XI7enl5y2Rwryyv85PWfcOniJZLxBEODgwwODHDp0iUGBgYYHh5mYGCAsbExQLzfr732Gslkkt7eXrLZ7KY68vtzHwS73c6rr77KwMAAPp/vrmUSiQTXrl2T2vzGT97AtrrKP/7DP4jeAzdukMlkAFhbW6Ovr48b128Qjdw7pPJu6Tvu9kqn07zyyiubwjPHx8d55513uHHjxvumitkKiMVi3LhxQ3q/srLCG2+8QTAY5MKFC1y9ehVBEBgYGBD3vRGTJ/7DP/wDbreb4eFhBgcHcblc/OhHP1rfLngwCILA0NAQP/qnHzEzMy191tfXh9/vZ2hoiKGhIZaWlhgaGsLhcABiSvXBwUEcDgfDw8PcunWLaDTKW2+9JdmDYDDIO++8w+rqKkNDQ/z4xz9+JFKQf+iZajQapauri69//ev8/M///B3ff+tb3+JP//RP+c53vkNTUxPf/OY3ee655xgfH5dcdr7yla9gt9s5e/Ys6XSar33ta7z88st8//vfB8Rp9rPPPsuZM2f49re/zcjICF//+tcxm828/PLLD3jJ2wv5X3Cv10t/fx9VVVUIgoDP68XhsFNTXU1vTy/f+JV/ic/nY2pqSmT102lqakSW1Ww243K5cDgcaLVahoeHEQSBcDhMKpWisaGB8fEJyivKMej1FBUVMTE5SVNTEx6Ph+bmZqqrqlDIFTjtDpqbm3E4HDgdTtLpFF6fj1w2S1fXPtZsNubn5zlx4gRyuRy3243BaKSlpYV/+sd/5Be/+EWJ/X/t1df4xS/+IktLS7zzztuUWq3U1tai0+mYnZ2lvLyc+fl5mpubCYVC1NXV4XA4JGHjmZkZdu3aRVlZGSBqJDgdTlTK97YVUskkmUyG4eFh9u3bt6XZZaVSKQmoACLpk0qRSac5dOgQ7777Lj6fj5mZGaqrqykuLqa0tJSmpiZmZ2Zwu9yk0mmsVisHDojRSo2NjQ/UJplMRnt7OzKZDON6Chyv18vMzAxajQan3YFnXZD8+PFjdHd387nPfY6e7h72dXVx4fx5lEoVWo0GBMRME+07AdDr9ZhMJkKhEC0tLayurJJMJj+yBuxWwYeeqX7qU5/i93//9/n85z9/x3eCIPDf//t/53d/93f53Oc+R2dnJ3/zN3/D2tqaNKOdmJjgrbfe4n//7//NkSNHOHHiBH/2Z3/GD37wA8lV5Hvf+x6pVIr/83/+D3v27OGLX/wiv/Zrv8Z/+2//7cGudhtjdnaWHS0tXLl6BQEBr9+HABiLTKQy4q+72WyWGNuNyyi5XM7RI0d49ZUfo5QrcNhF42qz2chkMkQiEYwGA8uLS3i9Pvx+P8lkEtvqKlqNGNaad8pWKJUYjUZi0Rhej4fVdUY3k85w9coVFErlXfNMFa/7HrpcLukzIZdDnmeXlUq8bg9+r4/RkRH0Oh3pdJpUKoXBYMDtcjE3M8vC3DwIMHBrAJPRRDaTvWPmDeKsL5vNIggQi8b4/Oc/L2kgbLWtgY1bKfm/s9ksKpUKU1ERwWCIQCDA4cOHGRoawuV0Yretkc1kUSqV6PV6Oru6qKiqxOvzUlxcTCKRoKOj46G0S6PR4PP5KCsrI5PJMDgwgMvpJCcImIqKiEQjPHHyCSanpiguLiaXy3Hk6BEmJiepraujsakRu9NB845mfuEXfoH5+Tkpc25ZWRkOh4NMJkN7W9t9R4htZTxUl6qFhQUcDgdnzpyRPisuLubIkSPSsubGjRuYzWYOHjwolTlz5gxyuZyenh6pzMmTJzftvT333HNMTU3h9/vvWncymSQUCm16PSqIx+OoVCpOnTqFUqkkFovR0dFBZ2cngUCArq4u+vr6sNlsaDQaysvLqaioQKl6byHSvnMnh48cprGpSTqf1WrFZDJhNJlQKJXU1NaQSCRQqVQUFxfT1NSMw26XBno2l6WqqoqGhgaqq6sJhUPSbMlgMtLU3MzS4iLF66lRcrkcZouZYDDI6uoqX3jpJYaHh0mlUgB8+oXPMLbuV3vqySc5fPQI5RXlNDU3Y3c40Ol0mM1mYrGYaAjXgwuSySR1dXXY7XYEBGm7IZPJYLaYGRsbZWxsjMnJSRRKBXV1dVIywq2IvJFPpVIUFxcTiUS4dvUaExMT1NbWUlRcxI0bN5iYmOD48eM8efo0NXW1XLp0ieGhYcbGxnC5XJSWlvLcc8/hcrkYGhpi4Taxm48CmUxGJpOhvLycbDbLlStXOHnqFE8+eZrGhgZKSkv49Kc/TVlZGXV1dRw9epRLly5hMploaGzg8OHDlJWV8fTTT4tKVGtrdO3bx/T0NEtLSySTSTo6Orhx4wbj68kCtz2EBwAg/OhHP5LeX7t2TQCEtbW1TeX+2T/7Z8Iv/MIvCIIgCH/wB38gtLW13XGusrIy4c///M8FQRCEZ555Rnj55Zc3fT82NiYAwvj4+F3b8p//838WkzTd9goGgw9yiZ84crmckMvlhGw2K/2f/3vj647Pslkhl83dUe72Yzad97Z6bj9vvnx24/uN58lmhWwme2e7snc/3/28NpYPBALCG2+8IUxMTAjpdFrIZrNCJpMRwuHwbfW9d+3Z2/9eL7eVcEcfZzJCJBy+673f+D68Xmbj615j5GG1L3+v7zZO8q9QKHRHW+/Vro3jY+PY2YoIBoP3ZVMeGef/3/md3yEYDEqvlfWonkcFd1si3u37DR98YOz/xnPJZDJRRfA2Vv92hhfYpHsqKg+K/5DJpJTWd2t3/n/hQyzBN9ZfVFTE888/T3t7OwqFQnJMzwtoS+U3XLvs9r+3MKR7JJejX8+SK9yFFRfWWfV8Jt3bt3zuNUYeCAJSnbe3Z1PbZTKMRuM9vT82XpMgCOtdI3oWiPH/D7fZnwQeqktV5XqyOafTKeWGz7/ft2+fVGbjvhqIyzafzycdX1lZidPp3FQm/75yQ0K7jdBoNNs+X/i94PP5GB0dJRwOU1tbS1dX1wce4/F4GBgY4MyZM4yMjJDL5aQ++CgQBIGxsTExEiYWo7y8HJ/Ph9lsxuN243a5qaiq5NChQ2SzWd59911Onz6NWq3m3LvvcvjwEcwWM6urq9jtdhKJBPv378dkMn1w5Y847maAAFZXVxkfH+fkyZOSpGJjYyMDAwMcO3aMoqIiEokEoyMjHDx0iFQqxejICPsPHGBhYQGDwUBFRcUDty+VSjE8OMTBQ4dAJjL7oWCI6ppqHA4HMpkMs9mM1+uluroaq9XK6uoqPp+Pqqoq3G43mUyG1tZWrl27RmNjIy0tLSwvLzM6MkpVVSUmkwnbqo2TT55azwa7ffFQW9/U1ERlZSXnzp2TPguFQvT09EiM5rFjxwgEAvT390tlzp8/L25uHzkilbl8+fIm94qzZ8/S3t6OxWJ5mE3eFtDr9TQ1NREKhaiqrKK/r5/Z2VkuXrzIrVu3OH/+PJOTkwwMDBAOhwFRxPr69eusrq7S39dHOBRmemqKsdFRXE4nN27cYG5ujitXrnD58mVmZ2eZnZ1lbGyM3t5erl65Sm9vL3Ozc4BopHt7e+no6KCpqYmJ8Qn8Xh9FRUXs2bOXNfsae/bskUinpaUllEolcrmclZUVlCol2WyWH//4x+zevZvdu3dv0gAo4E6UlJQQj8cJh8MMDAwgk8koKipCJpMRi8UAMfJqamqaXC7H0tISMzMzxGIxSQPiYUAmkzEzOyNGyQkC169eQyGX8+abb2JfszM8PMy5d99Fp9Fy/do1scy162g0Gs6dO8fE+ARLi0tMjE8wOTkphVCXl5ezZ+8e1Go1FZWV+Hy+Le/2dj/40EY1EokwODjI4OAgIJJTg4ODLC8vI5PJ+I3f+A1+//d/n1dffZWRkRF+6Zd+ierqan7u534OgF27dvH888/zK7/yK/T29nLt2jV+9Vd/lS9+8YtUV1cD8OUvfxm1Ws03vvENxsbG+OEPf8if/Mmf8Ju/+ZsP7cK3E7RaLWq1GhkyVlZWiMdipFNpbDYb5eXlRKNRVCoVy0tLrNlsgLgkf/zYcV75px9RWVmFDAgFQ6JBnpklGAgiE2BleQW3y43NZsPj8TA/P8/S4iJCLkc6lWZ8fByAdDpNLpdDLpdTXl7O8ePHiUQiIlNv0MNty778/6lkElGLTvRhjcViKBQKLBbLI7uyeFhQq9VotVrC4TD/4l/8C/HHad37wm63k8vlpC2QQCDAxPgENtsaN3t78bg92FZXH0o7ZDIZMrlcWprv27+f8YlxdjQ3o9VqCAWDHD58mMmpSfQGA4IgsP/AfibGJ6gor6C6qgq73U5TUxMvfeELTE9PIazrO7hcLurr69FoNGSy2UeCqPrQU4W+vj5Onz4tvc8buq9+9av89V//Nf/xP/5HotEoL7/8MoFAgBMnTvDWW29tcrP53ve+x6/+6q/y9NNPI5fL+cIXvsCf/umfSt8XFxfzzjvv8G/+zb/hsccew2q18nu/93s/cz6qG5HJZNDrdVRUVtDT3UNtXS1FRUXI5XJMJhN+nw8EyKy7F8XiMaxlZRzQ69FoNKRSSVZtNtHXUAY+r5d0UyPF5mLJtWVubg6DwYBarUaj1SKTIe2hVVZW0tDQQH9/v+gGY7dT31CP3mAgnU5TVFREOp1GrVaTTqcxGAyMjo6STqUwGo1MT08Rjyd4+umn6e7uprq6mqampkdCQOPjgCAITE5OUl9fj06nY3R0VEr4aDabqays5NKlSxw+fBiDwYDJaOSpp05jKbFw6NAhqqurPzDF9f1CHHt6YvEYfX197N27l3gizt69e1lcXKS2ro7S0lIi0Si7du3i0qVLdHV1UVtXy969e3E4HFhKSwiGggQCATo6O5mcnKSlpQWVSoXeYGBkZITOrk6MRuNDafMniULs/zbApo192Z3ZTMUNfxnC+ob/RsHnu8XAd3d3gyDQ0tqK1WoF7h0rn/8uj/xs9XYCJV/XxjZv/OxuRMXHQqg8AtjY3yDep7vd93A4jMlkuq9w0AcNTc7XG4lENq1Ibh+LID57ecW028vk23K38XJXUnQL4X5tSsGobgM87C7KPyTvq97/MeB+DffPOh5mfz+M+7qxPe/Xhw8TW3E8FARVHhEI6070o6OjopyfRoNcLmPNtsbhI0dYWl5i9+7dpFNpLl26SElJCS0tLVIEUx75zJvwwTPEWCzG1StXqa6ppqSkRNrr3ohcLkd/Xz+PPXYAmVzOwK0BzOZilpaWOXjwMUzrgy6ZTHL1yhVOPPGEtIc6MTGBz+fDYrGwa9euLfkAbQWsrq4SDAapra3FYXegUMgxmkzc6r/F4ycep7i4GLvdjt/np7aulmQySTgcpr6+npGREbq6upDL5Q/l/k5NTlFXV4veYMBmsxHwB6iprcHhcCCXyykuLsbr8VBVXY3FYsHhcEjeAB6PR4yYam/H4XCsy05WSHq8paWlUsh0W1vbticwt7fvws8QKioqsK0r9w8PDTM6NsbKyopIYMlkKBQKJicmSSZT3Lh+g7GxMWw2G729vdy8eZPXX3udsbExrl+/jsvlYnp6momJCQYHBxkZGWF2dlZyW1MoFExMjKPX6YhEIszNzTE2OsroyAjXr1/H5/MxPz/P0PAQ2axIljgcDtLpNDMzM8jzotaI8eyTk1PvCV0juoilU2kuXrwoRVcVsBmCIDA0OMTM9Axer5fu7m6Wl8X+Li8vY3l5GYCJ8QmmJidxu1z8/Q//jlgkikwmY3x0jFz2wZj0/IomGAzS399PLBZHEAQuX74MgsAbr/+E1ZVVBvpvcfbtd1Cp1JLoy5XLV1AqlLz7zllGhkeYm51ldWWVoYFB3C4XCALd3d2oVSreeftt+vv6WFtbeyT8ywtGdRtALpej1WrxBfxUVlayarNRXVPN22+/Jc0iZTLRn9BcXMz+Awdwu90MDg4yNTVFTU0NCqWC5aVlUskU3TduMDMzQzQaZWpqioqKCvr7+yWFIXEPT9TOTCaTrCwtMzE+wczMLKlkkmvXruF0OkVSYd1fWy6XIZPJkW/Ya8ufK/9ZKpWSPvf5fLz44osFouoekMlklJSU4HQ5SSaTGAwG1tbWMBqN6PUGWlpa1nNDFeP1enE6nJSXlzMzIxphhUKBwOa92Y8CYV0VKxgMSj+6u3btYmJSDKGVy+X4A346u7qYnJyU+nPP3j1MTkxgsVgoLS1lzbbG7OwMPp8Pm20NAdizezezM7PodDpqampYWlwShVe2Obb3PPtnBMlkkvn5eQ4fPoxao+bUk6eoq61jcnJCUl3KZDJYy8rYsWMHPp8Pj8eDTqfDaDRiMBiQy+WoNWrUGjVmswWbzUZzYxMGvQGlUklbW5s0a0ylUpSWltLa1kYwGBQViXRaVGo1ao0Gi1IlOX3nsjlQCigUClLJJFqdDq/Xy+joKIcPHxY9AjQaxsbGSKVS6PV65HI5dXW1lJSUsLCwIGUWKOA9CIKAUqnk4GMHUSqUVFVWIlcoxFXFzAxyhRyn04nJaOLAY49RVFxEJpdFqVBiMBjQaDWk0+mHovh06NAhNGo1xeZirly5QkdHB8lEkq6uLpaWl6irr6OyspJ4PM7uPbu5fPkynZ2dhEMhOjo7cblcWEostLa2srCwgFwuZ3JyktraWkqspRw9foxoNIrBaKTiHsE92wkFomqLI9892Wx20xL6bthYZqMTtVwu3/T+ds+B/Pe3qyRtPNfd2Nv8uTfWl18yRqNRiouLpXNtLLvx2I1eAQWIkB5JQUxhs7F/NnpVBINBzGaz1IcbCci8twB8dNJno2nInzsUComufDI5yO7uDeL3+ykuLpb6dWNb7nbuu5XZiuOhQFQ9Yvggg3p7mdsH8e3vb3fSv/37u53rXi4veQf0jcgb1Lu1/W7nuVuM+888ZEghm3frA4vFIsbky++M+X8Ynh13c4e7PX30Pdt1lzJ3O/f7ldmueHSu5BFGKpXi3LlzBINBzp07J6n0C4LAwsICqVSKoaGhO/QS4vE477777n2p+oMYNXW3hcvtn92eDTVPZly8eJFsNksmk2FpaemO86yurpJIJCTl/zyi0agUoVfAe1hdXWVsbIxgMMjkxCQzMzM4HA5+8vpPCAaDADgcdsbGxgiFQrhcLubn58lkMgwMDDzUkM/JyUkpo4JtdZWx0VECgQCTk5NMT0/jdDoZHR2VQmMdDgdjo2P4/X6RFB0fJ5fNYbPZpL17n8/H2NgYTqdTCpG+fWxsRxRmqtsACoWC8bExOvbuZWxsTNqDTKfTxONxhFyOqckpVCqVFAZaX1+PUqlkenqa1tZWbDYbVZWVeH0+amtrUSqUOF1OTCYT6XQarVbL1atXeezAY/gD4oMhl8tpaWlhfn6eyopKFhcX0Gp1eLwempuayOUErGVWLBYLMpmMubk5njz1JPGEGK8+MTFBOBxGpVSi1eoQEMhkMoyMjHDkyBFWVlZoamrCZrMxMTHxQIIvjyKGBodIZ9LodDp6e3qoq6tj3759VFSUs7K8THFHB+Pj4wSDIbQaLW+9/RYnT55EJpMxNjZGR0fHpi2WD4v8j2kwGORWfz/W0lL0ej1XLl+ho7OTN17/CRUVFXg8HtLpNEeOHeXa1at85oUXuHJZzKj67jtnUSrF1NNGg5HR0VHq6uuprKyku7ubtrY23nn7bdRqNdayMknnYjujMFPdJshmsvh8frKZLG6nC4fdwcz0DNNT0ygUCszmYhx2O26Xi4V5UZw4v2TzeX3EojHGxsbx+/xMTU6xtLSEw+4g4A/Q39eP0+lEEAQi4TDxeJy5uTnm5+a5fOky8XicQDDA6soqU5OTpFMpVEoVN27ckGYmMpkM+XpUVzKZZHJ8guWlZTKZDB63h+FhMY9RPBpDKVdw9coV0qm0KLyhVqNWbu8UGg8dgiio4nI4SSWTon/omg3DOvvfvGPHOvtvwev14HQ4qCgrZ3ad/VcqFA/FST/vjxzwB3A4NrD/4+N3sP9TE5OoVGoEQWDP3j1MTIxjXmf/bWs2pmemcXs8rK6ukMvl2LN7j8j+a9fZ/4XFAvtfwE8H2WyWktJSqqoqKbWWUmwxMzk5iV6vR0Agm8uhUquxWq0szi9gLRdzNuXZdgCdXpwpPvbYY8zPz1NVXcXc/BxNzU2072wnkUhgMpnIZMUAg7wkX4nFgtfno7q6GqPJSDqdwWyxEAyH2LV7F/F4HBBnzTK5nMGBAXKCgE6vQ6fTiUIZ6Qw6vR6tVotKowa5mO8oFo9RU1vD9MwMau32f5geKmSgVCk5ePgQCqWSquoq5HI5I6OiT7FCqcDhcGAymXjs4EGx73JiehWDwYBWoyWTzjww+y+Xyzl2/Bh6gx5LiYWrV6+yd88eEskknV2dLC8vUyux/zF279nDlStX6OzsJBQK0dnZidvtxlJaQltbm8T+T09PU1NTQ2lpKUePHSUSiWAwGqncIBm6XVFg/7c48qxrLptFts7qKhQKiQ3eyL5uZH3zTHE2m92kB6BYn8HIZDKy2ewmZjlf30ZsPGd+j25j2U11ZbIiubKBDRYLijnjN8b+yzdcSyaTQS6XP7Ton+2OjbH/2axoKLPZ7Cb2Xy6XS+x/vkwul5O+y2ZE742NJNYDtSUnICBIz1O+r/JeIhvHUCAQuGuZ268tD7lcfod3y1YcB4XY/0fBqK4bo4dxng/KAnDf5TaWud/zfghsxYfpp4GH/hjmT/cAWQ8+dJse4njYiuPgfm1KYU91GyCTyXDtqhjFNDg4iN/vx+v1vu8xU1NTDAwMEIlEyObuzDYK7+V0z2tzXrl6RRK5zn8/PDwsiYWPj4+zuCju1y4vL3Pjxg0mJyY3zWAf9PWziLzxSiaTTExMSJ+Njo5y9uxZXC4XTqeT1dVV4vE4ly9dxrm+vzk9NcW7Z8+ysrLC4OAgfTf7CIfDXLt2VSIcHxQul2sT++9wOJicnCQcDjM7O8vCwgJej4fJyUkp4abb7WZyQnw/Pz/PzMwM6ZQYQr24uChd48LCAn6/X5Q6nJi4a2bc7YaCUd3K2LBkv3XrFqOjo9TU1JBOp4nFYgwNDa3HZMeYmJhgenpaWjJeOH8epUKJz+fjzTffxOFwMDU1hdvtpq+vj0gkIjlq/+T113G5XJw9e5ZMJsP09DR2ux2bzUbfzT4p0sphtxMMig9NOBzG4/Fw8dJF6WEr4MGQDwkF8Qequroag8FAIBDgRz/6Eel0moWFBaamJtGs70GXlZVjMVtIpVLU1NQwMzMjRmMplLhd7ofSposXL4IAvT090vtsOsNPXv8Jy0tL3Ozp5e233kahUHD16lUALl+6hFwu5+zb7zA8NMz05BRjo2MM3LolKf8PDQ3R29OLkBNwuVx0d3f/bCr/F/AJQBCJoJGhYYRsjoA/wMrSMsNDwywvLTM3O8vszCx2u12a8T333HO8e/YsoVAIIScQ8PsZvDXAwtw8HrdHEg0vKxNJrZHhESorK5mZnmFpcUn0Gxwd27TMkcnlyOUyae/O5/fx1OmnHglh4U8S+Rm6QqHY5ARvsVhIJpNks1ka6hu4euUq9XX1HD58mKmpKbFMiYVoLEZdXR1qtZr9B/ZjNBpRKJWs2dceSttaWlqYnJiQhHJ2NO9gcmqKsrIyMtksXp+PtvZ2pqYmAdEQt7S2MjE5gcFowGg0Yltbo6auluc//SlGx0YRBIHl5WV27drF66+9xq1btwj4A4TW/W+3Mwrs/zZANpelpLSEo0eP8sqPf8zx48eRyeUYDQb0Oh0KuQKv10ttXS2CIPqCLi+v0NnViVajRRAE5ufmQSYjmUphMhlRKpUIiDPOo8eOkUgk0Ov16A16FhcW2Ld/P4ODA2QzWckhWyaT4XS5CF6/jlKppKamhra2toe+r/qzhvzyPx+rH41GGRkZoaOjg5KSEurq6nC7XBiMDSwvL6NQKmmorOTq1ascPHgQg1HMznDu3Dl0Oh1KpRK9QU9l1cOJo29paSEej7Nnzx5u3LjBrl27SKVT7N+/n9XVVWpra6mvryeVTrF7926uXbvG3r17iUQidHV14fP5KCktIRaLEY1G2blzJ9PT0+zcuZNgIMjOXTtpa29HBug3ZMbdrigQVVscebY3nU5vYso3xt/Pzc2xtLREU1MTra2tgLgPKwgCarX6rlEqec3K/HllMhnpdFpkmjNZKVFfXtgj//3tcfsqlepnfi/0YSGXy5HJZFAoFAQCAUpKSiQ2P5PJbGL/lUolXq+XkpISAKl/QJzxZrPZTQpg9/LuuB/kPQ8AKYPuRmY/750A4rjwer13lMl7COTblfc8yf+Q3O4lsBXHVIH9f4SM6v2U2Tg47wcPU8F9Kz4APw0IgkAqlWJ+fn5LEiwqlYodO3ZIP5ogttntdt+RJn6roLS0lMrKyi05pgqCKo8I7mdwyWSyj5SZdCsO3O0GpVJJXV3dTyXFyIfF3YRuQBS70el0n0CLPhgPQ6rwk0bBqBZQwANALpdjMBi23A/U+xl5tVotZYzYStiKP0wfBQWjWkABHxFbzShtxL3ath3bvN1QcKkqoIACCniIKBjVAgoooICHiIJRLaCAAgp4iCgY1QIKKKCAh4iCUS2ggAIKeIgosP9bHIIgiEr8s3PE43FMRSba2tqkiKZ8RAtAJBJhbW1NDB3l0WFTH2UIgkA8FsfhdFBaWsrQ4BDt7W2UV1TgcrkI+P00NjbicDjFNOEqFS6Xi8rKSoqLi/F6vXjcHqqrqwhHIgiCQE11DT6/D0EQKC0tBe5vLAiCgNPpZGV5ha79+xgfGyOXy1FXV4fX46GhoRGtTovX48Hj8VLfUM+abQ2NRo2pqAi73U5dXZ0oAuP343A6qa+vx+v14vV62bt3LyvLK1RVV6HVaolGo6ysrFBVVUUkHCYajdLU3Lzto/QKRnUbIJFIEItG+c5f/zW/8q9eZmlpCa1Wy/T0NIlEgv379xMKBlFrNPzwb3/A7/7eN7f1oPxZQi6X4+KFC0zNTPPYgce41d9PS8sOcrkc/+t//i/KrFaMJhMet5toLCZG8qynK3ny9Gm+//3vIxPE+Pzh4WEEBJ5++gxXrlzmG9/4lx+qLYIgqkX94Ad/i06v452332b//gNcOH8ei9nC2Pg4n//85/mr//1XlJaWkrmYwevxkkgmKC42U1paSk93D7/01V/iu9/9LkaDkVv9/Rw6fJi/+c53+Obv/R7/48/+jH//H/49VdXVvP7aayTiCTweDx6Ph+rqan7+pS9QU1PzMd3tnw4Ky/9tAIvFQkNDAzKZDIvZwo/+8Z/4zv/310xPTZNOpblx7Tp/+/2/ZX527pFxoP5ZwdzsLKurqwQDAVQqFWv2NRzrWXHb2lpZXFhgbT0LrdvlorKigp6eHun4psZGuru7CYfD+P1+wqEwr/74x6SSKf7u7/7uQ7VFJpPRsqOFo0ePUmKxoNPqGBocpK21TcwvFoshCAJt7e0sLi6iUqkxGo047A527GhmbXWVaCQCArS1trGysiKl6Umn0iSTSUkdLZfLsaN5By6nk1gsRmVVFX19fY9EqurCTHWbIJlMIlcokCvkaLVaFEolpaWlRMJhlpeXSaVSRCIRcSvgY1DkL+BObPoBW18ZfNjbrtPrUalUotKYx8NnPvMCcrmcH/zgBzx56klisRinTz/FW2+9SbG5mFgsxhdeegm/z8/ffOdvSKdSfOELX0CpUlHf0IAgCDQ2NuJ0OFDeJeTz/dosCAL/+I//wMz0DGazmaamJiwlFtp37sTr83LixAm+993v8eyzzxAIBnjhhReYm5mlta2NY8ePEY5EOHnyJH/zf/+GZ595FofTwRNPnORmby+f/synUalUCIjbWT/60Y848fjj1Dc10tnRycWLFzlx4gSJROJD3sGth4KgyhZHvnvicTHtc0mJKKGmkMtRqdTE4jFR3zQnoFKryKQzlJS+p1xUwMeHzY/OBgP1IW57Xgwnr5sqA9QaDWNjY7S3t6PT6VAoFGKq7/W9xkgkgsloYnh4iF27d5NIJDCbzSSTSQRBQKfTEQgEMBqNklLV3VWq8vmr3muLx+Mhk8lQXFxMJByhpKSEZCqJWqVCQEybvXPXTrRaLTKZjEQigUFvIJ6Io1AoUCqV3Lp1i7a2NkmG0OVyUVxcjFKpxO/zYTAaSaVSqNVqFAoFGo2GSDhCJivWu1WzQBRUqh4Ro1rA1kVepWphYQEhu65Y/4C2QBDyhk9AJpNzN9siPrHCegJHORvyOm6CQqmkubn5DpUqj8eD2+1G9iFXNIIgkMsne3yf9udyOeSKe5e59/mhpLSEioqKbW1UC8v/Agp4AAQCAf7b//v/Eo/Ft9yOi6XEwh/8P38oiVjnce3aNf7h7/8BGVtvl+i555/ny//8K590Mx4IhZlqAQV8ROSzLLhcri1FEOYNpVyuoLyifFPqb0EQCIfDUoK+rQIZ4kzVaDRSbC7e1jPVD021Xb58mRdffJHq6mpkMhmvvPKK9F06nea3fuu36OjowGAwUF1dzS/90i+xtrY5V47P5+MrX/kKRUVFmM1mvvGNbxCJRDaVGR4e5oknnkCr1VJXV8e3vvWtD9vUAgr42JHfE02lUqSSW+OVTImvVDp11zZns1mxvVuszalUikz2ziwV2w0fevkfjUbp6uri61//Oj//8z+/6btYLMatW7f45je/SVdXF36/n1//9V/ns5/9LH19fVK5r3zlK9jtds6ePUs6neZrX/saL7/8Mt///vcB8Rfh2Wef5cyZM3z7299mZGSEr3/965jNZl5++eUHvOQCCnh4UKlUkrsbW2eyivA+jTGbzZjNZmRbbPH/fm3eVhAeAIDwox/96H3L9Pb2CoCwtLQkCIIgjI+PC4Bw8+ZNqcybb74pyGQywWazCYIgCH/+538uWCwWIZlMSmV+67d+S2hvb7/vtgWDQQEQgsHgh7iiAgq4f+RyOem11bCxbRvbt13avBVxvzblY/e0DQaDyGQyzGYzADdu3MBsNnPw4EGpzJkzZ5DL5ZJT840bNzh58uSmxGXPPfccU1NT+P3+u9aTTCYJhUKbXgUU8HEi7/qzFff/NrZtY/u2S5u3Mz5Wo5pIJPit3/otvvSlL0kbuw6Hg/Ly8k3llEolJSUlOBwOqUxFRcWmMvn3+TK34w//8A8pLi6WXnV1dQ/7cgoooIACPhAfm1FNp9P8wi/8AoIg8Bd/8RcfVzUSfud3fodgMCi9VlZWPvY6CyiggAJux8fip5o3qEtLS5w/f36T+0FlZeUd6XEzmQw+n4/KykqpjHM9/jmP/Pt8mduh0Wg+UkbRAgoooICHiYc+U80b1JmZGd59911JeiyPY8eOEQgE6O/vlz47f/48uVyOI0eOSGUuX75MOp2Wypw9e5b29nYsFsvDbnIBBRRQwEPDhzaqkUiEwcFBBgcHAVhYWGBwcJDl5WXS6TQvvfQSfX19fO973yObzeJwOHA4HKRSos/crl27eP755/mVX/kVent7uXbtGr/6q7/KF7/4RaqrqwH48pe/jFqt5hvf+AZjY2P88Ic/5E/+5E/4zd/8zYd35QUUUEABHwc+rFvBhQsXxMDk215f/epXhYWFhbt+BwgXLlyQzuH1eoUvfelLgtFoFIqKioSvfe1rQjgc3lTP0NCQcOLECUGj0Qg1NTXCH/3RH32odhZcqgoooICHifu1KYUw1W2AO7poo8vJXbrv7opE9/f97e4s7zc8Npb9sMNIJpO9b/33W+/DwoM+BnfcN4Q7ggE+6JrvFx+6rTIkR/8Pc+ymdgkf7Jx/r+u4vc77GWNb0a3qYwtTLeCni/yAy2YyRCIRstnsnYZUgGQiSTQa/UjGIZlMksurLN0D8XhckpaLRCLkcpvLZ7NZImExnUcymZS2e/L/p9PpTVqZG9uZSCTu2e5cNkc4HCYej3/s8fW5XI5E/L025uuOrYszb2xvLpeTUt28HwRBIBaLSeVBvFfRu9zD+0U2m93EN9xeXyQS2Xy/7nLbEomE1Dcg9m8mkyGTuXuYqIBAKpncdL25XG5TXQ/aP6lU6p71bycUjOo2QDqd5vXXXsdut/Paa6+RSCRIJBJk1wdgJpvh9ddfZ3BwkHA4TDKZJJPJSIYsFotht9ulmO9MJiM9VMlkkhvXb7C0tEgul5Pi2NPpNMlEEhCN7q1bt/jhD3+I1+vl6tWrTE9PS+0TBIGZmRn+8R/+ganJKa5fu86lS5eIRqO88sorpNNpLl26RE939ybDmkwmWV1d5e2338bn80lSevkHK5vN8pOfvM7q6ipXrlwhmUyKPwC5HMlk8r37kM2STCQlY5fXJs1fY/6cmUxGevjzZVKplNSmYDDIW2+9KV3Tu+++y/z8PN3d3UQiEek8ly9fxuPxkEgkePXVV6X7ma8znU5Lhszr9XL27FlRHnCDNu53v/tdyajm73kmkyEej5PNZqVz5nK5965xvV/D4TA+n4/FxUXps4337Hv/97v03Oim72Yf6XRa+j6RSLC0tEQ4HObixYt4PB7pPrz++usEAgF8Pp9ktPP3Mt/uyclJLl++LPVfLpfje//3u3Tf6JbC0AVB2NTm/P1YW1sjHo9L7ZG0B9avO5fL0dfXx/z8/EN8cj4ZFKT/tgE8Hg8+v5/WllauX7vOuXfPkUwmKS0t4dSTTyKTyUimkthsNhobG+m+cQOVWs3q6io6rRartYxINEJxcTFOp5OamhrcbjfJRAKZXI6l2ExfXz+Tk1NodVqCwSAqhRKzxcyx48dRq9UcOnSIZDKJxWJBqVTeodDe2tpKLBLF7XGjVqsJugPi7CedQS6X43GLRujxEyekY7xeL93d3WKeposXaWpswufzAfD0macJBAKsrtp48bOfpaWlhVu3bqFUKkmlUszNzSGXySkqLqKuto7hoSHkCgUHHjvAwsICtTW1jI6NotNqKS+vQK/TUWwx09zcTDAY5NatWxj0BmZnZlColHR0dBCLRolGY4A4k5ucnODpp59mcGCA5cUlovEYHo8HhUKBx+NhcWGBSCTCwMAAK8srNDY1MjMzg9Fg5NOf+TQyZLicLibHJzAXm7FYLJSUlKBWiZGCCoWCeDxOX18fkUgEnU6Hz+ejoqJCVL9yuti5ayerq6uYzWZWV1fZtWsXuVyOaDTK2NgYJx4/wZp9jbKyMjo6OpDL5dIPTygUoq+vD5/Xh1oj1rmwsMCZM2dwu93Y7XacTqc0+3Q5nYRCISYnJ0kmk5SXl+Pz+Thy5AgGvR6lUoVCoZD6b2NdGz8fGxtjdnaWhoYGJicn0ag1pDNpurq6JP9xt8tFS2sr4ZA4CSgpseD3+ykuLn7Yj89PHYWZ6jaA0WjcsOzOUlRURFmZFZ9PDNlNJpMcOXyYdDLFyPAI2WyOHU3NyGVympqaEHI5VEoVc7NzdHV0opDJKS0pRaVUkU6lkclk7Nm9m0gkjG11lb1795IThE1ZW0dGRqiuriYWi7Fnzx7i8Tgul0uabdntdjLZLNbSUtKpFDKZmPYll82SzWYxFZkko55XJFOr1Og0WhRyBZUVlSwtLhKJRGhtbQFAr9eTyaTx+/1Eo1GWFpcosZQQDARRyBXo9XrMRcVEoxG0Oh1Wq1U0DMEQ4VAIo95APBZn9+7d3Ozrk6LyotEowWAQt9st1qPTMzU1RTaTRS4X9z1VKhUqlQq/38/8wjwOp1OcwSVTZNKiwQsFQ6gUSqYmp9jZ3o5WrcFcVEwkEgYBUukUfX032dHSwprNJoVd54Qc6bQ445ydncXj8aDVaIjHYpRZywj4/KQSSSrKy4mEI2g1Gurr66mrq8PlcmE0Gkkmkhh0eurr61lcWKCkpEQaL3K5nIOHDtHS2kI0EgUE0qkUrS2tFJuK0Gt1mAxG7LY1iouKCfj95DJZZDI5wWAIh92BQW8gl82yurpKIBBAAHI5cbbsdrlxuVxEIhFkCjmHDh+ipaVF3JoCZmZmaG5qwmQwYjIYicVi6LQ6MWNqOEJbSysIUFlRic/rpb29jampKfQ6/QduQ20HFIiqLY589zidTvx+P2azGblcTiwWI5vN0tzcTDabFWducjk1NTVMTU7R0NjAK6+8wunTp6moqGBtbU0iSowGI+l0SlpelpSUEAqHqaioYHl5GZPJRCqVoqysjKKiIlKpFENDQ6hUKiorK4nH41RVVTE4OMjBgwdRKpWScWhra5NyZZWVlTEzM0Nra6sUXqxQKIhGo7S2tpJOp6VlsVarRalU4na7qa2txWq1Stft8XgoLy9HpVIRCAQoKSnBbrcjl8tRq9VkM1kuX7rEs889hwzw+nzo9TpyOYFMNkNpaSnz8/OSH3Q0EmF+fgGtVium+FYpKVpPsazX62lpaUEmk+H3+7Hb7ahUKurq6rDb7ZhMJsLhMEVFRazZbCiUSszFxfj8fqqqqggEAmQyGVpbW5HJZIyPj6PVagmFQtTX11NaWko8HmdsbAyTyYTJZCKTyYj5m9ZlBNPpNONjY8hlcjq7uvB4PLS2taJWq6VldTQaJZVKYTabmZ6e5uDBg6hUKjKZjJSKRa1Ws7y8jF6vF9Obm0yEQiH0Oj3BYJDKyko8Xg9WqxWbzYbZbCadTkvJ94xGI4FAgMrKSjQaDQ6HA6fTiUqppLyiglwuh91up729nWAwiMViQa1W4/V6WV1dldJTZzIZMbWLSs2afY2a6hq8Xg8NjeLMvqKigmQySSAQoKamhtLS0m1NVBWM6hbHR+2ebDbL6Ogou3fvRnWXBHAPA9lsdtOy736Qv56H+dDEYjHm5+fZvXv3XbNxzs/PU1paKuU/2upDXhAEJicn0Wq11NfXv+89drvdpNNpycf7UUHBqG5BPCpGFR7c3efjxkcxVJ+UcdsORnUr4qd537aiQYWCS9WWRp6BzrvZfNDro9bx08JHqeun0b6N9+9e/28qn8ttcn3aeJ57HZPHRv/aO46/yzk/DN7v2Pw4+iBsLHO/Y+tux3xUN7CN+KC6t/uPXsGofkKIx+OsrKxsGqzhcBi4c1Dd7f37vXK5HG+99ZbkZrPRKNzrgbqb0bmXgb/b+42fx2KxTT6Q9zrf+32ef3jzn6VSKYmlFgSBUCh0z+vIv4aGhqR7PD8/TzablQi/C+cvbDrW7XJx/sIFent7mZ6els5hs9m4efMmgiDQ3d29KR/V3erv7e1lYGBg0+fvnjvH3MzsXe/1/dz3udlZyX3s9vs0OTHB66+9zjvvvEM6nd50nnQ6TTQaZWZmhv7+fsmlbHp6mvHxcebm5jb9iGw8byaT4Yc/+OEmXeLJiUlef+01qa7b7/m9ruP2MlOTk5JLnujffPdxv11RcKn6hBCPx7Hb7UxNTZFKpWhpaaG/v599+/YRjUaprKykrq6OWCzG8PAwZrOZnTt3Eo1GOfvOO8iQUddQj1KpJB6P43Q6qa2tRalUksvlcDqcvPXmWxx47AArKysYjSILW1FRgd/vx+l08vTTT6NQKJiamsLpdLJz504mJycRBDE5XGVlpeRzWF5ezuLiInV1dayurpLJZFAoFOzdu5fJyUkqKipYWFhAr9OTSCbYuXMnLS0ii5/NZnnzzTfJZrPU19dL58/lcmg0GhQKBZWVlczNzUn7iCsrKxQXFzM7O4tCoaC0tJRMJsOJEycIh8O88sorHD9+nFAohMFgoL29nUgkQk9PD+lUih0tLYRCIaampvB6vYSCQYwGA2t2O0qlkrm5WRKJOM89/zwKhYKz75zl5JOn0Ov1eL1ehoaGxH6oqCQYCDI2Nsby0hJGo5HJyUmKiopYXl5GLpfzzDPPoNVqSafTdHd309XZxfDwMF1dXQCkkilk63u9MzMzBINBTCYTU1NTKBQK9u/fz/T0NDqdDoPBgM1mo7S0FIPBgFKpZHlpGYfTiVwuJxQK0draSmVlJQaDQfzBSafweD2Mjo6SzWbR6XRMTExgtVqJRqP4/X6OHz/OyMgI0UiEoqJiYrEYrpgTrUaL2+OW+qmsrIyGhgaUSiWhUGiTUHz+x83j9ZJKpVCpVORyOYYGB0ml01itVubn56mqqmJ6eprm5mbC4TAmkwkQXQPr6upYXFqibAMRef3adXbuEsd2fX09VVVVP7Xn8ONAYab6CUEul+N0OgkGgpiMRgL+AEaDgaHBQSrKK5ianBLdchJJIuEwc7Nz4nEyOdlsFr1ej9PhIBgI4nF7iEQiGAwGotEoTU1NaDUaikwm7HY7kUiE2ZkZnHYHE+MTjI2OUV9fL80GQ6EQy0tL+H0+gv4AZdYywqEw1lIrjjU75WXl9Pf10djQQDqVRqvREo/FiIQj3Oy9ibW0FLVShQzwuN2olCr0ej3JZFK61kgkQkN9PSvLK/i8Phx2O+FQmPa2NtwuF4sLCzjsDvw+P+FgiHAozNLiErFojFQyRS6Xw2g0AqIHgdFgZGR4mPKyciYnJgHRBcvtcrO6sorD7kCr0dBQV8/q6iper5fxsXEMegPl5eWUlJQQiUSkGZdMLicej+P1eBkcGGB6cgq1UoXNZiOVTjEyMkKZtYy52VlkyCguKiYcDkszc4Du7m727N7D8NDQJsMgIM7SIuEIN3t6qSivYHpqingsTiIWx+f1icbOVMTQ4BAN9Q1UVVXR09NDmbUMl9OJSqUSfYTlChbmF9DpdOK5BTET6UsvvcTU1BQVFRXMTM+QzWRpamzEZDJRVFSEXC5naWmJVCqFz+dDLpPhcrsZHh6mxGJhcmISr8fD7MzMpnbncjmCwSCpVEoMU5XJ+MIXviAZWyGXIxqJMj05hcftRsjlKLFYSCVTZNaDIBRyBdNTU9TW1NLb00tlRQX5nK9KpRKDQc/Q4BBl1jJmpt+rf7uiMFP9hCCTyaioqJAMpMloJJvNsGvXLsLhEAcPielmcuuhOaWlJeLySAaBYJBdu3ZjKbEwMT5ORWUFRpORqqoq5ufnCQaDVNfWYDKZUKvUCIJAqdVKaUkpSpUSnU5LKpVCoVAgCAKZdJrqqmpisTjRaBSfz0dNTQ0lpSVodFpUapXoNhMKUV5WhlwhR6lUIpPJsJZZWVpcYteunZSVl2M2pyivqCASiTA1NcWTTz4JiDNzmVzO8ePHGRoaoq6uXmTqZTJ2tLSgUqnQaLTEE3HkSgVyhRyjyYjRZESpUFBVXU0wGARAq9VSXlFOXV0dfr+fY8ePAaLxPnb8GDJkKJUKQuGw6IerkJPJZGior2d4ZITOzk4qKkRd3vyS8zMvfIaR4WHUag1Hjh4lGAigVKmorqnG6XJRUlJCNBpl1+7dzM/No9FqqKurQ61WS+x8RUUFazYbHZ0dzM/NYbVakcvlWK1WPF4Pbo+bQ0cOEwwGOXToMLOzM8jkctKZNJFIhEg0QmNTI/F4jJbWFo4cOYLRZKS2rpaqqipCoRBt7e2EI2HJy0Gr09KwbjyPHj1KMBjk4KGDLC4sYrZYcDidkmtcY2MjWq0WtVpNPB6nurqKltZWXC4Xjz/+OPFEXNobzmQy1NfXS1shBoMBlUpFY2MjOp2O5eVlduzYgQAkUklqamtJJlOEQ2F8Xh/V1dU0N++gp6eHlpYWysrKyOVydHZ14vF4aGhoAMBkMmG2WGhqbiaeiLNv/76P98H7KaDA/n8C2LjPlGdV75fxjEaj9PT0cOrUKSmf+wcd/4H1rI+A5ZVllhYXaWtvp7y8/I5jbj/+9vPmryv/dzKZlHxBL1y4wIkTJ9BqtXc9193aez+f3++1f9Ty74eNZd+PHd94X27/DGBubg6n00l7eztWq/WebUilUvT29nL48OH3Zop3Ofe92vlB9+J+zvV+dQwODJLNZWlva8dkMkkCLB+2zz5qGz5uFFyqtoFRLeDRQcFV6+FiOxvVwp5qAQV8BHwYicQHPXcB2wsFo7qFkUwk6b5x477LRyIRzp87j81mY3FxkbNnzxKJRHj33XcZHBgAxId/4NYtotEo0WiUkZEREokEAwMDXLt6TTIOqVSK7u5uerq775Bji8VirK2t3bvdySSvv/46Pd09rNneK2ez2Xjrzbfo6e65Q7oumUzS19eHx+N5/4sUBDxuN6Mjo9JHDruD3u4exkbHuHH9Bqlk6n1OwF2l8MRTC5uOzeVypJIprl27RiaduaPsB+F+y9zN/ex+IAgCvT09Hyg/+H5YXFy8p4zg/bQn76p2O5aXlpnd4Ea2ERuvVxAE0qn3r3+7oUBUfULwuD0MjwxLbjRqtRqVSsXi4iJNTU0kEgmUCiUjI6NkMhl27tzJyuoq1dXVeL1erFYrPq+PeCLO/v37AVCr1RQVmfD5fDQ1NXHr1i0ymQyPPfYYly5eomvfPmQyGTabjbr6et5++23Ky8upqalhcHCQttZWqX3xeJze3l6ee+ZZIuEw0zMzlJWVsbCwgNVqRa1SSZJuDQ0NhMNhduzYgVKpRKlUsrCwgMloYmxsjOoaMYQyl80R8PtxOh0kk0nUGjUVFRXY7XaKi4tZWV6hsqKSa9euUV1VxdLiElqdFrlcQVlZGQ6ng+bmZhbmF/D7fezt2AvA0tISS4uLnDhxgtHRUWKxKHs7OnA6nZhMJimuXSaTkcvl0Ov0KFVKiSzx+/0sLixiLS3l2vXrvPTPXkKpVLK4sMD8/Dx2u4NUIknnvi7WbGsoVUp27doFiEIydrudlpYWFhYWiMfjNDY2srCwQGlpKaurq9TU1BCJRLBarSTiCZwucf80366bN29y6uQp5hfm6ezsxGg0kslkuH7tGul0htq6WuQyGfF1X1WVSkVRURHRaJTVVRuBYJCOjg48Hg8Gg4FcLodKpUIul7OyssLBgwdRq9XEYjG6u7uRyWSUlZURCoVQKVWYzWbsdjsajYZsNksgEODgwYPIZDLisTgTE+OYLRay2aw09vJ75vF4HK1Wi8/nQ6/XSwpaBr1BTNYpQ/ou71LV29vLSy+9hEqlwul00tvTw/4DB/D7/NTU1tyR1267oTBT/YSQSMTJZbIsLS4xOzuL2+XG6XTidrvx+/wolUrMZjNGoxG3y43X68O+tsbc7Cy3+m8xMz3N9PQ0MmSSa5RKpcJcbGZtbQ2NRoNSqSQajRIOhzly9IjkgC2Xi6x/NpuloqKC0dFRvvylL+N0OKVzabVannvuOV7/yU+4ebOPbEZUKHI4HJRZrczNzdHd3Y1Go8HtdtPX17dpxiNDhkajwb8u5ZdHOBLh9FNPkcmkKS0ppbe3VxJTsZjN9HR3ixJ4fj9yhYKAP0CZ1Upvby8atYarl69QUlKCQv5ePPzOnTuxWq1cvnwZhUKBRqNhYX4Bn8/H6Mgoi4uLaDVaFhcXEXICc3NzzGxwHYrFYthsNpaXl1Gp3pO3k8lk6HQ61Go1crmc3p5eHHY7uQ0zs3A4zOzMLCsrK8zPz5NMJllcXCTgDyCTyXA6nAQCAaLRKMlkkvHxceKxOKlUCrvdztLiImq1mp6eHrQarSSpKJPJWF1ZRafTMjY2htPhZH52juXFJczFZhYXF6mtrUWhkGM0GJidncXv9zMwMCBe3/Q0169fR6vRblppeD2i+93s7CylJSXY19YYHRkBxB/l4cEhlAqFNPucmpokEo7gdDpZmJ9ndXUVj9uDw+Fgbm6OhQXRvevWrVsgiPuOw8P///bOPEiu6rzbz+29p/eerWcfjZbRCO0IC7HaRh8CZOM4qVSZKBRxKLtIIIbYRbDjchJXikDslG3icuw4VXb+CDYVVwAjhSVCYCSEkISkGe0bM6PZt+7pfe97vj9u92VGGgnJtJgZcZ6qLmn6nr79O6fvfe9Z3vO+h3WD23noECaTiaGBQRQBvT29mE1mTCatP2dQDFitVna//TZej2daQtD5ijSqs4SiKIxPTLB06VJamlsIh8OYjEY8LjcNDfV0HeokmUzgdDqpqKhgcjKk7ZhRBR0dHTgdTq23Z7Hoc3DDw8OkMmlWrVrFiRMnWLJkCSaTid27d3Pq5CkOHDjA+Pg4VpsVVVVZvXo12WyWuro6ug53sWr1at2gxGIxgsEgq1atpLm5mdHREexWGx63B8VgwOFw4na7yWQyOJ1O2tra9Js3n8/j8XrI53MsaGvT66yqKo2NDTQ1NWGvqMBiteD3+0kmk5iMRixWK9U11UQiEWw2G/YKOxVOBxabFY/XQyaToaW1lbNnz1LhqNDPe+7cOTxeL60LFuB0ODCbLeRyOSZDIUwmI26XC5/PRzKewGa10tDQoIdTBIiEwxQKeYwmYzHcoFYPt9tDLpfHUVGBxWqltraGcDis+4gCjI+NY7GYyWWzxKMxFMBkMBKJhMlmsrjdLhrq6xkfG8Nut6MWA0BPTEyQy+Ywmy3YrDZqaqq1EIBF7whFUUimUpjNFlavXs3k5CQOpxOn04nL5WJycpKhoSEqKiq0CFcFlYnxCWwWKw31DbicLvxen9a2pg8GpJFIlLpAHTXVNVjMFiocDmpqajly+LD2wDUaUBSD7rIVCNQxPj5OTU0NsVic4IQW1WoyNInT4cTldGE2mVl+3XKqq6sYHhrG6XCQzWZxuVyYjCYUFBwOBza7DYejgoqKCv0BXFFRgcFgZNHixQRDIVYsX17W+2w2kKv/s4AQgoGBAbq7u7n11luvyN2lxMU+o/VEDaiqiqIo044nEgm9B1tCVVW9/PkRns53kbrY4syVuoVd7BwXq/v571+q3pc690yuX+eX/TAtF2uHkZERurq6aGtrY3x8HEVRWLJkiR7GTlVVstksO3bsoLGxkaVLl07brXR+vfL5PFu3bmXz5s16lLHL0TETpXLxeJzf/e533HPPPTO21aXaplSHl19+mdtvvx2HwzFjRLCZ2vxy2/R8F7W5hnSpmuNGVQhxQcT0+UC5EvNd7mV3Od83Vyg9mC5m5Etlzn/YXYxCoaD7Il+MK2mf86+53ydB5OVoKgfz2ajKhapZoHRTzXTTzTYz9Yhn4qNe9Ff6+bl4k53P+cbqUmUuh6kjig/jctrnYtfclTjiX4mmTyqyhWaBj9rrGhoaIhAIXNQoTx1GJeIJxsfHaF2wYFqZVCrF6VOn6Fi2jHPnzlFbU8PQ0JA2b+dw0N8/wJIlS0gk4hiMRnw+H0IIzUVKAY/Hw/j4ONXV1fqe/PM1lNyuLGYLoVCQqupq7HY7FRUVF5SfyvDwMMlEgoXFgCwXoxS8w2g00ndOy1jg9/sxmU2Mjo5SVVX1oUYglUrR09ODqqq0trbqdRkbGwOguqaa7ve7aWxsxGq1XvQ8I8PDqKpKfUOD/l5fXx8Azc3Nl9RwMYaHh6mpqZmxZ5hIJDh54iQer4fW1tYL6lly1ert7aW5uRm73U4qmWJoeAiX04XX5502/TCVc729GIxGmpqaUBSFbFaLfeBwOGhpadHnfa8UoaqcLmaCKPXoz6/XfHh4fhjSqM4S2WyWoaEhvF4vY2Nj5LJZ6urrGR4enraIYrfbyWQyuFwuJiYm9EAg0WhUz7EkhKCxsZHR0VGcTieHDh1iw4YNjI6O4na76erqQhUCv9+Poih6crXdu3ezfMUKJicnCU4ECYcnWbhoEV2dXdhtNha0tnLunGYYfNf7SCWTvP322/h8PpxOJ7FYlHQqRceyZRQKBbq7u/UhcG1x/388HsdoMHLi5AluvvlmjAYD0UiUXD6H3W5nfHycqqoqqqur9bYJTkzQ39+PsRiBq62tDavVqrtwldJ+7H13L7fdfpuWEXbPO9x0080U8nnOnDlDfWMDbrebkZERTCYThUKBaCRKU1MTTlfxISAE27ZuZd0NN6AoCvF4nFgspmU1TaYIBoMoisK7e97ljjvuIJlK4vP59DnTUtoVIbTMq/X1DRhNJj0X1kD/AAJBc3OzHknM6/USCoXIZDK0tbUxNDSE0WjUr4NSRCchtPCGmUyG4eFhqqurqaysxGw243Q6UQsq+/fto65Byxvm9XipcFQQjUYpFAqcOXMGv99fTKrn164Fl5vOQ52sWbsGh8Oh16OUbiUQCKAoCufO9emxDUqG753d73D99WsZGBjgjjvuADSvidHRUQKBAMFgkEwmg91uJx6PU1lZSSQSoa6uTu8ERCIR3t61i7aFCzEYDOzZs4eWlhaMBgO5fJ7Gxkb9GpjPxlUa1VkikUhoRihfYGhoiJraWgb6B1BVlbGxMQxGI9dff70eiq+9vZ1XXnmFLVu20NXVxfLly3n//fcJBoO4XC4U4MyZszgcDmLRGLt378ZsNtPc3IxiMDAwMEBvby+rV68GtIvWaDTpLi0LFixg29at5E+eYsOGG/nVs7+iuaUFi8VCLqc5a5uLwVmGh4a46aab2Ldvn34jqKrKO++8g8PhwO/3EwwG6e7upqOjQx929vf1YTQYicVipNNpbHYb+aIx3rx5s942BqMRk9HEnj178Hq8mM1mFi1aRDqVore7h2gxoIjL6eT40WPUNdRjMpo4cfw4bW1tJFMpTpw4QTAYxGw2c+b0Gew2Gw6Hg2gkwvoNN2qahWBgYJDNn/scR44cIRKJYDAYSCWTBGq1XFzv7X8Pp8PB4a4ujEYj0apKurq6sFptNDU1YbPZ6OnpoVAoEAqFCE+GdaNqNBr1CFW7d++mra2N119/nWQyqecBO3fuHOaiz6/dbqelpYWuri7Wrl3L4cOHaW9vJ5fLcebMGYaGhli7dq32+xkUYrEYawN1BCeC2CyaW1I2m+Wzd3yWSCSiB1LZtWsXixYtorenB4NB3uxgDgAAIMtJREFU0dpmIki+kGegfwC3x43JZKKmpgaj0ai/pi4yZTJpFEXRfaIBwuEwx44dY3x8nIGBAQDcbjc+n4+jR4/icro4e/YsBoNBy1EmBFarjZK5nAxN4vV4GB4aJl70dPH5fFflfvs4mXuTep8QSjFN09kMeVXLNlpdU0M6k9FD91VXVZHP5fC43CCgfUk7J44dx6AoqAUVm8WK1WLFbDQxMDBIJBohm9NCtKkFbUGklFBu9erVTExM4PV6Ac0n0efzcfLUSex2Oz09PSxfvgJVqIwMj7Bo0SJUVSVfzNM+OjrK2PgYNTXVNDY1MhkJc+ttt5Ip7kASQmC1WrFZrVjMFnLZHAZF0fK8F3PIC6H50mazWXx+P44KB3arlnH19KnTCPWD3Vy5fK4YucqqhZBDcwcaHh4mm80SngwTj8cxGAz0dPcg0ML3GYxGPVizw+EgHA5T31CPxWbFarORSqfZv2+/vpC0/sb1vPfee0SjUWpqarQ03H4/ZosZpei4nkgmtfCFiTherxebVfOrLble9ff3U1dXp4UYDAV1H89cLsfE+AR79+5FURRCwRBNTU1Yi21kNBiZDIaor6unkM9TYbPTUN+A3WajtrYWg8GA2Wwmk8mwdu1aza3K4dDOnc3h9fm4ft311NXXMREK0tTchNVmxeP1Yiy2Q8nXNpfL4a+sRC3W22azESsme2xsaCSZSFLIa7rzuRxjY2Ps2bOH7u5uRkdHsdsrWLV6NaFQSK/f8NAQ8ViMTDpNIp4gUFOLUTHgdrnJZrJ43G5sVivZTIZKv5+BwUEKhbzebi63lvQwXexNDw0NMTw8fPVvvquMXP2fBUqrsKWc6S+++CJf/OIXGR4epre3l0/ffjv5QgGLxaJfgKX500KhAEJgMBr1qO2lnmA+n9fnqkwmE9lsVh82d3V1EQgEps3v5XN50pm0vhOmVF4ILYi0z+cjn8sjEPq8Xj6XQzFoof8ymQxWq1UfqmUymWkr26WpAAUoFP+vu3uhgFJMNQL6A6CkSxUfpO2Y2nPKpNMoRS2FQgGrxUo6k9bnFI1GI/lcHsWg6IbPWGyrUttPTExQV1en60wmk9OMz9RVb7WYYsVqsZLJZvT2BHQfYVVVSSaT2KxWcvm87seaKz6QAM245HJYLBay2SyKotDb08vZ98/S0NDAso5lFNSClta72Fal8IzZbJaDBw+ycOFCAoGA3rbZbFaf38xkMnqPt/Qdpd/MYDCQy+X044oypW0MH/SmS+2fy+bIF/J6HYUQ5PN57QFXzPxauhZzuRyhYIj97+2nrq6OFStWFMNNqhRUVcsAm9JGJel0GoPBoM9NFwoFhCoQaNdwIpHQRiAu15wc/kuXqjlsVEuUXG9isRhOp1O/CR0OxxVfVBfzsywdK20nnOm8H+YPe7nvf5jm88t+mObLPe+V8FFcwS7nVrlcrSWDnUgkqKiomOYV8GG/34f5p14sYtZHqd/FPlu6huPxODabDbPZfMmylzrn1frNy4V0qZonKIqi/0BWq/WSK8wfham7gOYCc+FZfr7x+X03MPy+lHpll8PFfr+Z2vHjbltFUS67Hp8E5JzqLFB6ul9Omct9hcNhPfrP+cemEgwGUVWVQqEwLdHgxTSV3i+l1Dj//Xw+T6i4v//DNIK2q6cUVWnqOWcqm06n9ZQl5XqdX7eSplJKlA/7rBCCYDBIKpXS61Ha534lv9v5TJ2rnKlsJpPRk/DNdGx0ZJREInHBeaPR6AVJFEuvTCbD0NAQoeI1USozMTGh5fWKRvVYBB9Wj/HxccbHx/X57JleiURCb+eL1fNaQPZUZwlVVYlGo7o7Sz6fR1EUPUJRPp/HYrHouadKeZ48Hg8mk4lcTkvBUUryNj42TmNjIwsXLSSfz+s7d3K5HF6vl0gkwsjwCIcOHeLTn/k0Xq+XyclJFEUhlUrh8/lIpVKoqorNps1/lVyvBHDgwAEqKytZ2t5OoWiUXS4XmXSGV195lU13bcLr9RKNRnU3MECPjmS1WrFaLBw6dAiPx8PKlSvp7OzE7XazdOlS0qkUNrtdD2hy5MgRbDYbZ0+f4dbbbsVmsxOPx/D6fCiKQldnJ4uXLNHnFWe6+T0eD/F4HJfLpc9NJhNJ7BWa209pZNDV2YXD6WD16tV6Tian00kqlcJkMunDb4/HQzab5ZWXX+aOOzZiMBo4fuw4La0teq83l8thtVpJJBLYbXZQ0PNr5XI50uk0aqGAudguLpeLQqHA9v/7PzZt2oQQUOGoIJlIYLXZqKio4OiRo9jsNo4fO8anP/MZ7Ha7PuetKAq73tqJy+PG5XLR1tZGOp3W5jLTaaLRKDabTZvztWnBVUwmEzabjUQiwQvPv0BLczMLFy9i6dKljI2NseutnTS3tmjzp0YTK1auoFCcvzcYDKTTaf039nq9CCF46bcvsWL5cs719bHprk16UsdkMonD4SCZTDIwMMDk5CQ3FF3YSh4PyUQSp9NBJBrF7XbP+w0G81v9PCYSiXDo0CEsZjPd73djs9vx+TT3Ic2oFjAajSTicaw2G2aTiXAkzC233EogUMvO372l5z4aGRmltqZGiyLU309BLZDJZsnn87S1tbF69WqCwSD9xWP79u2juamZ/r4+VKGtyre1tdHf308sGmXhooWk0mluueUWjEYjCmBUDAz09XPyxEncHjfpdJp7770Xg9FAMpHg5f99mcbGBqqra3j/7FlyuRxOl4vKSj+9vecwGBQq/ZWgfBBVy6AYGOwfoOd9LSbn4iWLWdLejt1u5+iRo1y/7noi0Qjb/vd/qa2pJRye5DOf/Sw+n4/Dh49gNpvp6e3F6XRy9sxZbrjhBo4ePUImm8Xn87FgwQJ6enr47Gc/i9vt5ty5cxw9coTGxkZ6enqL+aMqURSDrunw4cNYzObig67A4MCAtjiVz+P3+3XPitGREeLJBGdPn9Ey2iaTxOJxtNkDpZiJ1IzRaKKpqYnly68jHo/zzu53SCaTVFZVkojHsdu1+VShCk6fOs34+Dhuj5vTp89w7xfuxW63c+zYUdasXUssGmPbtm3U19URmpzktttuo6qqikVLFvP888+zadMm3nrrLeKxGBazBX9lJWNjY8SjMfr6+7DbKwhNhrjhhhtobm7GbDaTSMQZGxtj0RIt7KPH4yGRTDI4MEBjYyODA4OEQiEqqyrp7e3F5XLrRjqZTLD5c5/TFivRgvA0NDSw4/XXAfD7/aSSKaw2G9XV1WQzWcbHxnh9++s0tzRz9uxZGhsbSSVTuFwuhoaHaG9vp729/eO/IcuIHP7PEuFwmImJCS3EncmIw+nA6XIRjUYJh8M4nQ4UtIs8OWVV1OP1IIBoLIbZasFssWA0GsgX8lr0oPAkY+PjLFu2DIPBoO+KsVqtxVX34jlTSTLZDBQ3A6TTKeKxGEval1BdXaMHui4N7c0WC/UNDbhcTkZHR1m2bBmgzad5vF6am5u0DJr5PFabtkIeiUTIFwq4XE6SqRSDQ4Oau5S+eq4l1vNX+rlu+XUMDg7pu61sNi05odvt0cPkLVy4UN8FZLNZiRSHti3NzVisFuob6rHZtFB9drudQqGAoij6zq7+/n5isTiJhNZDTKVTDA4NkS0+gEAbxoYjESxWK/FEXIuGpSh4vR5CoRCDg4MING+GXC6H2WIGBOlMmnB4EofDCQq4PW4SiSSBugDHTxxHFZpHRiQSIZlMIITA6/UxORlicHAAVaiEQiEsVit1dXU4nA6qqqpQFEVvC5dLc0EaHh5mQTGJX+lauvPOOzl+/DgjwyN0dHRgMBlpaGxAMSiEoxFy+Tytra1UV1Xpvs/5fB67vYKW1lbdlWlycpING24kGAyRSqXw+/1EYzG6e3oIRyLFXWP1jI2PsbSjQ/dKUYVgxcqV3HDDOpKJZDEFuSBQX6f5qKL51vr8fhLJBL29vcRiMSoqKhgeGaa/vx+v1zvvY6mCXP2fFUrzWRMTE7p7isFg0FeAS25RRqNRc2/J53j33b3YK+wsX76curo6Uikt86nX6yUYDGpuRwYjqtBu9lIeerfbrbvChIIhBNrNXXKzKbk5xWIx9u/fj9/vZ3UxmHUmk0EIQV1dHel0mkgkgs/nY3JyUvdzLc3BWa3WYojCSdxuN7FYjFwup4d5U1UVm9VKOBLB7/fjdDr1c3o8Ho4fP04gEKC+XgtoPTk5CaBPZZR6R6VdPyUNpaDJ0WgUn8+nzyGWgmXn83ncbjdms5lwOEwymcRitujDcpvNRiQcwefXdollMhlGR0epL2Zvtdls+lSGoiik02mEKrRdTeIDN7TS8dJ3l9zlTCYTRqMRt9uNEILh4WFMJpPuPwwfuF75/X59h1ksFtOTL4bDYc0IFl3NSruWSm5hk5OT+hROMpnUg6ZYrVZSqRQOh4OJiQkqKytJpVL6VuHSXKzFYqGqukrXHQoGsVptGE1aXNVCoaA/dIxGoz41oqoq1dXVCKFF6fJ6vdjtdkZHRhEILBaLPpRPJDTn/mw2q88dFwqaCxlCYLdXMD4xTl1dnZ6pd64hXarmsFG9Eko/z/DwMIqiXHQv+Ef9jnw+z8DAAD6f74O5VPHBjpqrdZELobkWjYyMTPMdnYs3leSTjXSpmgec/zy7lCGpq6sr+/dN/U6TyURra+tF9VyO1ouVudT3gtYzL/VQZzqXNLCS+cQVz6nu3LmTz3/+89TX16MoCi+++OJFyz700EMoisKPfvSjae+HQiG2bNmC2+3G6/Xy4IMPEo/Hp5U5fPgwt956Kzabtsf6e9/73pVKndOUjMbUVBfnu+5cahDxUdyJ8vn8NFcm0KI16T3TYrmSMUun0ySTyQs+N9P5C4WCPlyeeqx0/tI5LseNptQ25XSputbcdyRzjys2qolEglWrVvGTn/zkkuVeeOEF3n333Qt6IABbtmzh2LFjbN++nW3btrFz506++tWv6sej0Sh33nknLS0tHDhwgO9///v8wz/8Az//+c+vVO6cpHRTRyIRnv+f/9G3m6bTad0o5XI5MpmMPp9VWkzJZDL6Ys/Ura6ZTIZ8Pk9fX980wzf1eMmYnTlzhoPFXEDpdJqB/gFeeeUVIpFI8TPavFfJCP7vtm0cPHiQs2fPsvOtnTN+d6FQIJ1OMzY2xs6d08tkMhm2bt2KEILu7m727dtHPp/X5xJL9Zn6gJmYmOCll17SpwdKbTO1HdTiYlHJBS2dTuvHS+1Y0pXP5+nt7Z0x86dEUk6uePh/9913c/fdd1+yzODgIH/1V3/Fa6+9Ni36EMCJEyd49dVX2b9/P+vWrQPgxz/+Mffccw//8i//Qn19Pc8++yzZbJZf/OIXWCwWrrvuOjo7O/nBD34wzfjOd86dO8dkOMzIyAgTExP09fVRW1vLsaPH6FjWQTAYpMJuRwChYBCfz0cmk9X3UAcCtZzr69MzjLpcLsYnxvnc5z6HxWKhv6+PY8eO0dq6gAMHD2CzWmlrW0gikdBdiMbHxjh48BCZTIY333yTluYWJsbHMRiNbPx/GzEYDGTSGYaHhmltaaW/v4+tW7fS0dFB9/vvU1NTQ09vL81NTQwNDdG6YAEDAwO89Nvf0tDQiNmsXWKqqnL48GES8TjxWJxdb+1kMhwGoL6hnkg4zJL2dhYU47729/UzOjJKcCLIub5zDA4OUl9Xx5EjR1i5ahXDw8O4XC5yuRzJRBKD0QBCaEFVDAY8Hg8DAwM0NzczODiI2+2mv7+f++67D7vdPm2+WCIpJ2V3qVJVlfvvv5/HH3+c66677oLje/bswev16gYVYONG7ebdu3evXua2226bFkR306ZNnDp1Sl8VPp/SjpOpr7lMKpUiHA6zYsUKdu3apd3kQtDc1KytpNvtmIwmGhoaGejvZ82aNQgB1dXVmkN9IsHp02dYtXIlVosFn89LPBbDbrPrK67BYIhIJEokEsFus5PP5zl+/Dg2mxVV1XpsFosVi9WC0WikLlBHT3c3mWyWJe1LAK1db9xwI+lMmpERLWhyOpVmfHSMyckwiUSShvp6xkbHWLx4CQ6Hg+rqajKZLL09PfgrKwkFQ6gFldOnT2O12kgmEgwPD7N69WqEECxZvASHw8mxY8cQQttHHk/E6ejo4J3du1ELKuZiWzidLhDgdDjx+/yEgkFWrlyBUAWVlVW4XS5CwRDd77/PmtWrMRqMVFVVaW1g19pgpp1HEkm5KPtC1T//8z9jMpn42te+NuPxkZERampqposwmfD7/bo/28jIiN5jKVGKUTkyMjJjzMWnnnqK7373u+WowsdCLpdj8eLF+Hw+HA5HcXeTgZHREVavWU1rayv5QoHqmmo+tX49JrOZJe1LUBQFr89LoVCgoqKCeDxOoK4OZ7HXZrPZ9F5YXX0dFosFh9OBv9KPqqpaxP6xMRobmwDNQXvRwkWoQnMvampuYmJsXA8xZzabyeXz3HjjjVRVVeH1+fTdXpXVVfqupI5lyxgYGKC6uloPO6dl4Ixx400bGBgY0IIlj4zwqRvXE4vFMFvMrFi5ArPFTOuCVj3iVS6Xo729HafTyftnzzI6OoqKYCI4wcpVK2lqauLkyZM0tzSjGBSsNhvXLb8Os9mspd0OBLBarWQyGZqam0in0zQ0NOiRnwC9fhJJuSmrUT1w4ADPPPMMBw8e/NiHVd/61rf4+te/rv8djWpR3ucqbrdbd8tYtWoVfX19xGIxFi5cqDt1lwICl2KgXoqpkfNLBAIBPVTcVKZ6EpgtZhYXd9OUaJiSEsRkMk3b4XKpIMJ+v3/av4DuzN3R0QF88HA8n6kBOaZ+x4qVK3H29JBJp1lQzAAA6MGaS+5fEslcoaxGddeuXYyNjU2L2VkoFPjGN77Bj370I3p7ewkEAnr+nxKloBwlAxAIBBgdHZ1WpvT3TEYCrm6Ep3IzU8iz8/MYybk+DSHEBaMW2TaSuUxZ51Tvv/9+Dh8+TGdnp/6qr6/n8ccf57XXXgNgw4YNhMNhDhRXnwHeeOMNVFVl/fr1epnSCnKJ7du3097efk2kW5BIJNcuV9xTjcfjnD17Vv+7p6eHzs5O/H4/zc3NF+zdNZvNBAIBfQjZ0dHBXXfdxVe+8hV+9rOfkcvleOSRR/jSl76ku1/9yZ/8Cd/97nd58MEHeeKJJzh69CjPPPMMP/zhDz9KXecssud1cWTbSOYd4gp58803BVo0uGmvBx54YMbyLS0t4oc//OG094LBoLjvvvuE0+kUbrdbfPnLXxaxWGxama6uLnHLLbcIq9UqGhoaxNNPP31FOiORiABEJBK5os9JJBLJTFyuTZF7/yUSieQyuFybIkP/SSQSSRmRRlUikUjKiDSqEolEUkakUZVIJJIyIo2qRCKRlBFpVCUSiaSMSKMqkUgkZUQaVYlEIikj0qhKJBJJGZFGVSKRSMqINKoSiURSRqRRlUgkkjIijapEIpGUEWlUJRKJpIxIoyqRSCRlRBpViUQiKSNlT1EtkcxlriQmu0zlIvl9kEZVcs0zkyFNJpIoClhtNgb6+3F7PCSTSdLpNA0NDVit1gs+J42s5HKQw3/JJ5ITJ05w8tQpBgcH2fH6DlLJFMGJIAcPHiSZTM62PMk8RvZUJdc0QghyuRxjY2MAVFZWYrPZsNlsZLMZ/H4/gfo6+vr7WLduHcFQEI/HQy6XY3x8HCGE/hmJ5HKQRlXyicBg0AZlpSF8Npclm8sRi8VYvHgxhUKBcDiM1+vFYDCgqioGgwEhhBz2S64ImU1V8omidLnH43GEEAghyOfzeL1e8vk8AFardTYlSuYol2tTZE9V8onE6XRe8J7FYpkFJZJrDWlUJZ8o5FBecrWRq/8SiURSRqRRlUgkkjIijapEIpGUEWlUJRKJpIxIoyqRSCRlRBpViUQiKSPSqEokEkkZkUZVIpFIyog0qhKJRFJGpFGVSCSSMiKNqkQikZSRa3bvfykaUTQanWUlEonkWqBkSz4ssN81a1SDwSAATU1Ns6xEIpFcS8RiMTwez0WPX7NG1e/3A9DX13fJBpiLRKNRmpqa6O/vn1exYOerbpi/2uerbph/2oUQxGIx6uvrL1numjWqpUjvHo9nXvxgM+F2u+el9vmqG+av9vmqG+aX9svpoMmFKolEIikj0qhKJBJJGblmjarVauXv//7v52W+ofmqfb7qhvmrfb7qhvmt/VJcs4n/JBKJZDa4ZnuqEolEMhtIoyqRSCRlRBpViUQiKSPSqEokEkkZkUZVIpFIysg1aVR/8pOf0Nrais1mY/369ezbt29W9Tz11FPccMMNuFwuampq+IM/+ANOnTo1rUw6nebhhx+msrISp9PJH/3RHzE6OjqtTF9fH5s3b6aiooKamhoef/xx8vn8x1kVnn76aRRF4bHHHpvz2gcHB/nTP/1TKisrsdvtrFixgvfee08/LoTg7/7u76irq8Nut7Nx40bOnDkz7RyhUIgtW7bgdrvxer08+OCDxOPxq6q7UCjwne98hwULFmC321m4cCH/+I//OC2Qx1zRvnPnTj7/+c9TX1+Poii8+OKL046XS+fhw4e59dZbsdlsNDU18b3vfa+s9Sgr4hrjueeeExaLRfziF78Qx44dE1/5yleE1+sVo6Ojs6Zp06ZN4pe//KU4evSo6OzsFPfcc49obm4W8XhcL/PQQw+JpqYmsWPHDvHee++JG2+8Udx000368Xw+L5YvXy42btwoDh06JF5++WVRVVUlvvWtb31s9di3b59obW0VK1euFI8++uic1h4KhURLS4v4sz/7M7F3717R3d0tXnvtNXH27Fm9zNNPPy08Ho948cUXRVdXl7j33nvFggULRCqV0svcddddYtWqVeLdd98Vu3btEosWLRL33XffVdMthBBPPvmkqKysFNu2bRM9PT3iN7/5jXA6neKZZ56Zc9pffvll8e1vf1s8//zzAhAvvPDCtOPl0BmJRERtba3YsmWLOHr0qPj1r38t7Ha7+Pd///ey1qVcXHNG9VOf+pR4+OGH9b8LhYKor68XTz311Cyqms7Y2JgAxFtvvSWEECIcDguz2Sx+85vf6GVOnDghALFnzx4hhHbxGgwGMTIyopf56U9/Ktxut8hkMlddcywWE4sXLxbbt28Xt99+u25U56r2J554Qtxyyy0XPa6qqggEAuL73/++/l44HBZWq1X8+te/FkIIcfz4cQGI/fv362VeeeUVoSiKGBwcvCq6hRBi8+bN4s///M+nvfeHf/iHYsuWLXNa+/lGtVw6/+3f/k34fL5p18oTTzwh2tvbr0o9PirX1PA/m81y4MABNm7cqL9nMBjYuHEje/bsmUVl04lEIsAHkbQOHDhALpebpnvp0qU0Nzfruvfs2cOKFSuora3Vy2zatIloNMqxY8euuuaHH36YzZs3T9M4l7W/9NJLrFu3jj/+4z+mpqaGNWvW8B//8R/68Z6eHkZGRqbp9ng8rF+/fppur9fLunXr9DIbN27EYDCwd+/eq6Ib4KabbmLHjh2cPn0agK6uLt5++23uvvvuOa99KuXSuWfPHm677TYsFoteZtOmTZw6dYrJycmPpS5XwjUVpWpiYoJCoTDt5gWora3l5MmTs6RqOqqq8thjj3HzzTezfPlyAEZGRrBYLHi93mlla2trGRkZ0cvMVK/SsavJc889x8GDB9m/f/8Fx+aq9u7ubn7605/y9a9/nb/9279l//79fO1rX8NisfDAAw/o3zuTrqm6a2pqph03mUz4/f6r2ubf/OY3iUajLF26FKPRSKFQ4Mknn2TLli26rrmqfSrl0jkyMsKCBQsuOEfpmM/nuyr6f1+uKaM6H3j44Yc5evQob7/99mxLuSz6+/t59NFH2b59OzabbbblXDaqqrJu3Tr+6Z/+CYA1a9Zw9OhRfvazn/HAAw/MsrpL89///d88++yz/OpXv+K6666js7OTxx57jPr6+jmvXXKNrf5XVVVhNBovWHkeHR0lEAjMkqoPeOSRR9i2bRtvvvkmjY2N+vuBQIBsNks4HJ5WfqruQCAwY71Kx64WBw4cYGxsjLVr12IymTCZTLz11lv867/+KyaTidra2jmpva6ujmXLlk17r6Ojg76+vmnfe6lrJRAIMDY2Nu14Pp8nFApd1TZ//PHH+eY3v8mXvvQlVqxYwf33389f//Vf89RTT8157VMpl87ZuvZ/X64po2qxWLj++uvZsWOH/p6qquzYsYMNGzbMmi4hBI888ggvvPACb7zxxgVDmeuvvx6z2TxN96lTp+jr69N1b9iwgSNHjky7ALdv347b7b7AeJSTO+64gyNHjtDZ2am/1q1bx5YtW/T/z0XtN9988wVua6dPn6alpQWABQsWEAgEpumORqPs3bt3mu5wOMyBAwf0Mm+88QaqqrJ+/fqrohsgmUzqQdZLGI1GVFWd89qnUi6dGzZsYOfOneRyOb3M9u3baW9vn3NDf+DadKmyWq3iP//zP8Xx48fFV7/6VeH1eqetPH/c/MVf/IXweDzid7/7nRgeHtZfyWRSL/PQQw+J5uZm8cYbb4j33ntPbNiwQWzYsEE/XnJLuvPOO0VnZ6d49dVXRXV19cfqUlVi6ur/XNW+b98+YTKZxJNPPinOnDkjnn32WVFRUSH+67/+Sy/z9NNPC6/XK37729+Kw4cPiy984QszuvusWbNG7N27V7z99tti8eLFV92l6oEHHhANDQ26S9Xzzz8vqqqqxN/8zd/MOe2xWEwcOnRIHDp0SADiBz/4gTh06JA4d+5c2XSGw2FRW1sr7r//fnH06FHx3HPPiYqKCulS9XHy4x//WDQ3NwuLxSI+9alPiXfffXdW9QAzvn75y1/qZVKplPjLv/xL4fP5REVFhfjiF78ohoeHp52nt7dX3H333cJut4uqqirxjW98Q+RyuY+5Nhca1bmqfevWrWL58uXCarWKpUuXip///OfTjquqKr7zne+I2tpaYbVaxR133CFOnTo1rUwwGBT33XefcDqdwu12iy9/+csiFotdVd3RaFQ8+uijorm5WdhsNtHW1ia+/e1vT3Mpmiva33zzzRmv7QceeKCsOru6usQtt9wirFaraGhoEE8//XRZ61FOZDxViUQiKSPX1JyqRCKRzDbSqEokEkkZkUZVIpFIyog0qhKJRFJGpFGVSCSSMiKNqkQikZQRaVQlEomkjEijKpFIJGVEGlWJRCIpI9KoSiQSSRmRRlUikUjKyP8HLRnEj6LUvasAAAAASUVORK5CYII=\n" + }, + "metadata": {} + } + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "hkIo5__zIMGm" + }, + "source": [ + "#### Now let's use these images and let's see what magic nlp can produce in a line 🪄" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "ExecuteTime": { + "end_time": "2023-10-19T21:44:27.240581100Z", + "start_time": "2023-10-19T21:44:20.469009900Z" + }, + "jupyter": { + "outputs_hidden": false + }, + "scrolled": true, + "id": "1NXhj4L1IMGn", + "outputId": "e7e00473-9bb7-4ec5-a44e-27e63065bfd7", + "colab": { + "base_uri": "https://localhost:8080/" + } + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Warning::Spark Session already created, some configs may not take.\n", + "Warning::Spark Session already created, some configs may not take.\n", + "| | col0 | col1 | col2 |\n", + "|---:|:------------------------------------|:-------------------|:---------------|\n", + "| 0 | | Number of. | |\n", + "| 1 | | Series B | Purchase |\n", + "| 2 | Name of Shareholder | Preferred Shares _ | Amount |\n", + "| 3 | | | (US$) |\n", + "| 4 | WuXi Healthcare Ventures | 882,861 | 4,999,994.99 |\n", + "| 5 | 6 Dimensions Capital, L.P. | 3,354,875 | 18,999,999.08 |\n", + "| 6 | 6 Dimensions Affiliates Fund, L.P. | 176,572 | 999 997.87 |\n", + "| 7 | Graceful Beauty Limited | 4,237,737 | 23,999,999.73 |\n", + "| 8 | Tetrad Ventures Pte Ltd | 8,828,618 | 49,999 ,995.19 |\n", + "| 9 | Hikeo Biotech L.P. | 1,589,151 | 8,999,997.78 |\n", + "| 10 | Pure Progress International Limited | 1,765,723 | 9,999 995.64 |\n", + "| 11 | Kaitai International Funds SPC | 882,861 | 4,999,994.99 |\n", + "| 12 | Taikang Kaitai (Cayman) Special | | |\n", + "| 13 | Opportunity I | 2,648,585 | 14,999,996.29 |\n", + "| 14 | CJS Medical Investment Limited | 3,531,447 | 19,999,996.94 |\n", + "| 15 | SCC Growth IV Holdco G, Ltd. | 5,297,171 | 29,999 998.25 |\n", + "| 16 | YF IV Checkpoint Limited | 5,297,171 | 29,999 998.25 |\n", + "| 17 | HH CST Holdings Limited | 1,765,723 | 9,999_,995.64 |\n", + "| 18 | ARCH Venture Fund IX, L.P. | 441,430 | 2,499 994.67 |\n", + "| 19 | ARCH Venture Fund IX Overage, L.P. | 1,324,292 | 7,499,995 .32 |\n", + "| 20 | Terra Magnum CST LLC | 353,144 | 1,999,995.73 |\n", + "| 21 | 3W Partners Fund II, L.P. | 882,861 | 4,999,994.99 |\n", + "| 22 | Huifu Investments Limited | 882,861 | 4,999,994.99 |\n", + "| 23 | King Star Med LP | 1,765,723 | 9,999,995.64 |\n", + "| 24 | Total | 45,908,806 | 259,999,931.98 |\n", + "| | col0 | col1 | col2 |\n", + "|---:|:------------------------------------|:-------------------|:---------------|\n", + "| 0 | | Number of. | |\n", + "| 1 | | Series B | Purchase |\n", + "| 2 | Name of Shareholder | Preferred Shares _ | Amount |\n", + "| 3 | | | (US$) |\n", + "| 4 | WuXi Healthcare Ventures | 882,861 | 4,999,994.99 |\n", + "| 5 | 6 Dimensions Capital, L.P. | 3,354,875 | 18,999,999.08 |\n", + "| 6 | 6 Dimensions Affiliates Fund, L.P. | 176,572 | 999 997.87 |\n", + "| 7 | Graceful Beauty Limited | 4,237,737 | 23,999,999.73 |\n", + "| 8 | Tetrad Ventures Pte Ltd | 8,828,618 | 49,999 ,995.19 |\n", + "| 9 | Hikeo Biotech L.P. | 1,589,151 | 8,999,997.78 |\n", + "| 10 | Pure Progress International Limited | 1,765,723 | 9,999 995.64 |\n", + "| 11 | Kaitai International Funds SPC | 882,861 | 4,999,994.99 |\n", + "| 12 | Taikang Kaitai (Cayman) Special | | |\n", + "| 13 | Opportunity I | 2,648,585 | 14,999,996.29 |\n", + "| 14 | CJS Medical Investment Limited | 3,531,447 | 19,999,996.94 |\n", + "| 15 | SCC Growth IV Holdco G, Ltd. | 5,297,171 | 29,999 998.25 |\n", + "| 16 | YF IV Checkpoint Limited | 5,297,171 | 29,999 998.25 |\n", + "| 17 | HH CST Holdings Limited | 1,765,723 | 9,999_,995.64 |\n", + "| 18 | ARCH Venture Fund IX, L.P. | 441,430 | 2,499 994.67 |\n", + "| 19 | ARCH Venture Fund IX Overage, L.P. | 1,324,292 | 7,499,995 .32 |\n", + "| 20 | Terra Magnum CST LLC | 353,144 | 1,999,995.73 |\n", + "| 21 | 3W Partners Fund II, L.P. | 882,861 | 4,999,994.99 |\n", + "| 22 | Huifu Investments Limited | 882,861 | 4,999,994.99 |\n", + "| 23 | King Star Med LP | 1,765,723 | 9,999,995.64 |\n", + "| 24 | Total | 45,908,806 | 259,999,931.98 |\n", + "| | col0 | col1 | col2 |\n", + "|---:|:------------------------------------|:-------------------|:---------------|\n", + "| 0 | | Number of. | |\n", + "| 1 | | Series B | Purchase |\n", + "| 2 | Name of Shareholder | Preferred Shares _ | Amount |\n", + "| 3 | | | (US$) |\n", + "| 4 | WuXi Healthcare Ventures | 882,861 | 4,999,994.99 |\n", + "| 5 | 6 Dimensions Capital, L.P. | 3,354,875 | 18,999,999.08 |\n", + "| 6 | 6 Dimensions Affiliates Fund, L.P. | 176,572 | 999 997.87 |\n", + "| 7 | Graceful Beauty Limited | 4,237,737 | 23,999,999.73 |\n", + "| 8 | Tetrad Ventures Pte Ltd | 8,828,618 | 49,999 ,995.19 |\n", + "| 9 | Hikeo Biotech L.P. | 1,589,151 | 8,999,997.78 |\n", + "| 10 | Pure Progress International Limited | 1,765,723 | 9,999 995.64 |\n", + "| 11 | Kaitai International Funds SPC | 882,861 | 4,999,994.99 |\n", + "| 12 | Taikang Kaitai (Cayman) Special | | |\n", + "| 13 | Opportunity I | 2,648,585 | 14,999,996.29 |\n", + "| 14 | CJS Medical Investment Limited | 3,531,447 | 19,999,996.94 |\n", + "| 15 | SCC Growth IV Holdco G, Ltd. | 5,297,171 | 29,999 998.25 |\n", + "| 16 | YF IV Checkpoint Limited | 5,297,171 | 29,999 998.25 |\n", + "| 17 | HH CST Holdings Limited | 1,765,723 | 9,999_,995.64 |\n", + "| 18 | ARCH Venture Fund IX, L.P. | 441,430 | 2,499 994.67 |\n", + "| 19 | ARCH Venture Fund IX Overage, L.P. | 1,324,292 | 7,499,995 .32 |\n", + "| 20 | Terra Magnum CST LLC | 353,144 | 1,999,995.73 |\n", + "| 21 | 3W Partners Fund II, L.P. | 882,861 | 4,999,994.99 |\n", + "| 22 | Huifu Investments Limited | 882,861 | 4,999,994.99 |\n", + "| 23 | King Star Med LP | 1,765,723 | 9,999,995.64 |\n", + "| 24 | Total | 45,908,806 | 259,999,931.98 |\n" + ] + } + ], + "source": [ + "dfs = p.predict(image_path)\n", + "for df in dfs :\n", + " print(dfs.to_markdown())" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": false, + "jupyter": { + "outputs_hidden": false + }, + "id": "xOFrxc_-IMGn" + }, + "source": [ + "#### Now let's predict on other images 🖼️" + ] + }, + { + "cell_type": "code", + "source": [ + "! wget https://nlp.johnsnowlabs.com/assets/images/ocr/table_regions1.png\n", + "image_path = '/content/table_regions1.png'\n", + "img = mpimg.imread(image_path)\n", + "imgplot = plt.imshow(img)\n", + "plt.show()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 626 + }, + "id": "Ziw4VTHLgPvy", + "outputId": "6ba253c9-6f7e-472f-8646-240b4798ede4" + }, + "execution_count": 12, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "--2024-01-08 01:16:46-- https://nlp.johnsnowlabs.com/assets/images/ocr/table_regions1.png\n", + "Resolving nlp.johnsnowlabs.com (nlp.johnsnowlabs.com)... 20.231.5.26\n", + "Connecting to nlp.johnsnowlabs.com (nlp.johnsnowlabs.com)|20.231.5.26|:443... connected.\n", + "HTTP request sent, awaiting response... 200 OK\n", + "Length: 345554 (337K) [image/png]\n", + "Saving to: ‘table_regions1.png’\n", + "\n", + "table_regions1.png 100%[===================>] 337.46K --.-KB/s in 0.06s \n", + "\n", + "2024-01-08 01:16:46 (5.64 MB/s) - ‘table_regions1.png’ saved [345554/345554]\n", + "\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAV8AAAGiCAYAAABAucVGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9d3Rk2XXmif5ueG+BgPc2va9KU5VlWUWWo2s21XIUW/M0j6I4kqjXS8M1vdQyo2aPZtaSulukpo1aptVsOpEiWWJ5k1WVld4DCSDhEbARQATC+7jvD+Q5FUAiDTKRBRQVX4tdiYi4957r9tln729/W1FVVaWMMsooo4wPFZqNHkAZZZRRxj9FlI1vGWWUUcYGoGx8yyijjDI2AGXjW0YZZZSxASgb3zLKKKOMDUDZ+JZRRhllbADKxreMMsooYwNQNr5llFFGGRuAsvEto4wyytgAlI1vGWWUUcYGYFMb32984xs0NzdjMpl48MEHOX369EYPqYwyyihjXbBpje93vvMdvvrVr/Jv/s2/4fz58+zatYunn36aQCCw0UMro4wyyrhnKJtVWOfBBx/kwIED/Pmf/zkAxWKRhoYGvvKVr/C//+//+waProwyyijj3qDb6AGshmw2y7lz5/ja174mP9NoNDz55JOcOHFi1W0ymQyZTEb+XSwWCYVCeL1eFEW572Muo4wy/mlDVVVisRi1tbVoNLcPKmxK4zs/P0+hUKCqqmrZ51VVVfT396+6zde//nX+4A/+4MMYXhlllFHGTeH3+6mvr7/t7zal8b0bfO1rX+OrX/2q/DsSidDY2Ijf78fhcGzgyMooo4x/CohGozQ0NGC32+/o95vS+FZUVKDVapmbm1v2+dzcHNXV1atuYzQaMRqNN3zucDjKxreMMsr40HCnYc5NyXYwGAzs27ePN954Q35WLBZ54403OHTo0AaOrIwyyihjfbApPV+Ar371q3zhC19g//79PPDAA/zZn/0ZiUSCL37xixs9tDLKKKOMe8amNb6f//znCQaD/N7v/R6zs7Ps3r2bl19++YYkXBlllFHGRxGblud7r4hGozidTiKRSDnmW0YZZdx3rNXmbMqYbxlllFHGzzrKxreMMsooYwNQNr5llFFGGRuAsvEto4wyytgAlI1vGWWUUcYGoGx8yyijjDI2AGXjW0YZZZSxASgb3zLKKKOMDUDZ+JZRRhllbADKxreMMsooYwNQNr5llFFGGRuAsvEto4wyytgAlI1vGWWUUcYGoGx8yyijjDI2AGXjW0YZZZSxASgb3zLKKKOMDcCm7WRRRhmbDT+jfQf+yeFOG1zeb5Q93zLKKKOMDUDZ8y2jjDvEZvGYyrg7bLaVS9n43iVUVSUajXLhwoVNd1PLWBvsdjt79+5Fo1nbQvB2971srMu4FcrG9x5w9epVnnnmGaxW64a/aIVikXwuh9Fo3NBxrAZhpDb6Gq2GXC5HR0cH7733HgaDYaOHU8Y/IZSN7z2iUChgMBipqaneQA9YIZlMEAwGaWhoQFGUTeSNKxQKeYrFInq9fqMHswIKfv8ExWLxrveQzWbp6emhtbWVkZERtFotLS0tOBwOisXiJroPP5sQq5XNOLHfDmXje48oFovs37+Pv/u7v7vhAVjtxbtfD8m7777Ln/zJn/D973//lt7v7cZ0J2Mu/c3tzkdVVYLBIJlMhoaGhlv+9lZjuBnu5Xrm83k+97nPEQ6H73ofmUyGqakpDAYDfr+fbDZLRUUFBoOBkydPcubMGWpqatDr9dhstrs+Dixdl4WFBUwm012ddygUwuVyrRpe+eCaK+L/VkWhUCAajeJyue7p2t9qLHeKfD5PQ0MDDz/88F3vYyNRNr7rAK1Wi81mkw+jeJBVVSWfz6PT6dbd6K7cn9lsRqfTYbPZbmp8VVVFVVXpkSmKglarXfW3+XwejUZz0xdVVVU0Gs0dGd9kMinHdjuIa1coFOTfK8cpvrvZ2OHOjLK4N3eK1SYFm83G448/jl6vp6WlBY1Gg8FgQKPR8MADDzA0NMRjjz1GKpWivb39lvsvFAqoqko2m0Wn06HRaFBVFa1Wi0ajIZ/Pc/r0aQ4dOnTH51g69hMnTnDgwIEbnkdVLaKioKCiqgriq9X2n0wm6e3tZf/+/Xf9TIux7N+/H71ef1f7UVWVeDzOa6+9fldj2AwoG991hnhBM5kM3/3ud2lrayOXy3H48GH5MgmDoigKxWJR/lugWCyi1WrlvsRvJiYmqKiowOFw3PX4IpEIb775FpcuXeKxxx6V4wLkeMbGxhgcHMTlcnHw4EF5fDGu6elpXnrpJf6X/+V/uS+evKqqfO9738PhcHD16lWee+452tra0Gq1DA8P884775DL5TAYDPzKr/yKHF9fXx9btmyR1+7DWIoqioLVagW4IWacSqXIZrPy/mYyGb797W+zsLCw7Hf79u3jkUce4dq1a0xPT6OqKm63m+npabLZLE888QQul0seT5zXWs9PURQ5YS7fVkOhAIlEHodNf0vjK7a9cR9rg5jY78XzXTqXu958w1E2vvcJ58+f59KlS/ziL/4iwWCQ//bf/hsmkwm/34+qqlitVurr6+np6cFsNmOz2bDb7bhcLi5dukR7ewfRaASDwcDo6CgOh5Pp6Sn+5b/8l+zcufOux2W329mzZzcvvfRTfD4ff/AHf4DH4yGbzdLQ0MDIyAg6nY7e3l6+8IUv8OKLLzI7O4vX66W3txej0YjJZGJiwr+OV2s5FEUhHA4zNzdHb28vO3fu5O2336ampoY333wTRVFk/Pidd97h2rVrdHR08K1vfYv/5//5f3A4HPfV8MZiMXK5HG63+6ZGaNky/jq0Wi3Nzc1UVlYu+21lZSWqqmKxWKisrMRisWCxWJibm8PtduP3+3E6nfd0TqXbrrafSCTHf/0vV/nffmsnZuOK78W5lBj9jY6x3u58PgooG9/7BLfbTSaTYXFxkXA4zPj4BNlshmQyic/nI5vNMjo6SiQSIRwOk0qlqKiooLW1FVVVOXPmNOl0mueff54rV64QDoex2ezY7fZ7GpdWq0VRFPL5PKqqYjQaqaio4OWXXwGWvOzp6Wn+1//1f+Uf//EfKRQKHDlyhHg8TrFY5OWXX+GTn3wBjeb+PvCFQgG3243JZGZ8fILFxUUCgQAWiwWNRkNNTQ2nTp3izJmz6HRaRkdHsdnsdx0PXQsWFhYYGBjgwQcflB7pajCbzRgMHyQZdTodjzzyCPCBwSgNZTQ1NS3bvra2dh1HfSuoLEZUBvoLLIZzmKqWvF8xNJWlKeSjaeI2L8rG9z6hq6uLX//1X2dycpLGxkZ+8Rd/Ab1eTzQalQYwmUzyN3/zN/zar/0aZrNZxgsXFxfR6/XEYjGqqqrw+XwAOByOewo5CDidTn7t134Nn8/HZz7zGbRaLVu3bsVgMKCqKrFYDK/Xy2/8xm9QKBRYXFzE6XSyfft2nn32WbLZLEePHr3ncdwMqqrKOGp3dze1tbXMz89TVVVFLBZjYWEBrVbL008/jcfjYXx8nLa2tnuKQ94pxORkNptxOp23/G0ikSCTyci/b7aM33goLC6kqak1MDaawOV0otcraLSgUYqo6kd7eb9ZUTa+6wgRZxT/3bJli/xutRc1mUzya7/2a+zevfuWsa/W1tZbHvNm47gZ3G63TNqsXAKvJ+6WZqUoClu3bl32WX19PQA1NTU3/N7r9QKsKRxzLxSwYrFIPp+/7b5sNhsmk+mOjimem5XxdfHdfYUK8wtx9u+voq8vyrvvBtm2zcXHnq7EoNOgKML3LWM9UTa+64BQKMR777131y/JiRMn7un4qqpy5coVFhcXef/99zcdnzYcDpPNZpmYmNjooSxDoVBYM81MURQqKiqYm5sDlheQrCwmiUajJJOpZdvPzc0RCoWW7a+pqQmLxcLY2Bh+vx+73c7ExASPPfbYPYeZ7gSqCtPTCwwNX2Ih2InFOsXklJW2tkN0dd//4/9TRdn4rgN6e3v5P/6P/2PDji9KnScmJvi93/u9G4os7nRSWOkxr1dlWi6Xo1gsbrrqO1WFa9eu3XJlsRoikQixWEzSws6fP09HRweDg4MoisK2bduwWq1kMhlyuSzz8/NYLBYAbFbrEhuDD3xJnU6PqqoUCgVCoRCqqlJVVYXZbL7h2MlkUhr+tSIUCjE3N3cDRS+fV+jri/A//sf/za/8yv+X11//n2zZ8ihvvlmPw1mBRlGXxqpAOp1mYWGB2dnZuxqDwMLCAnNzc2ui+q1EMpmUuYvNEb5ZG8rGdx3w0EMP8Z3vfGdDH4Bjx47x9a9/nR//+McydluKO+Hjrvztehnfubk5MpkMjY2N97Sf9UahUOCTn/zkDdSvW0FRFOx2O6Ojo8ASV3hxcZFgMEg4HMZsNpNIJDCbzUQiEZLJJPF4HJPJhAqYbTasNhugUnqHVJbCS01NTTInII5Ximw2SyQSuat7Eo/HiUQi1w3edfOvQiqt0NPTx6c+9SQ//vE3ee655+jtHWB6OsDwsJaqKlBUjTS+8XicaDS65uPLc1VVEokEkUjknlZpyWTynqoTNxpl47sOENSnjTS+gpSv0+nQ6XTMzMwQDodxOBzU1dXddmzCiyhN6GWzWSYnJ9fsGa6EXq+/obz4Zp75WiaNO43b3mwfgve6FqiqyuLioiwYsVqtPPnkk2i1Wtrb22VBiEajobGxkcrKSpqbm0kmkygqS/FTdYk7IBgFHwxPucETXOnVuVwuOjs7b3leNxt3MBiko6PjhmPMzmZIJqb54q/8Ms8//zH27TvAH/3RH1JRmSKyaObI4QY0GkUmiTOZDB0dHWseQ+lYFhYW6OjouKcii0QiwcjIyJq33SwoG9+fUYj46tmzZ2lpaaG5uZlIJEIoFKK6uppEIoFOp5PMisrKSnQ6HZOTk3g8HqqrqykUCrzxxhtMT0/jdrtxOp3U1dUxPj7OwsKCXBY7HA6mp6clDUyj0ZDNZtmxY8cdvVgftWWjx+MhnU5Lvqsorli5nF9ZEFEElOuOmnr9/1NZEtVWFBUVhVw2uyzZtp7xe0VRKBQKaLU6lOuebyabpb8/iN6g0tHRzv4DuwB44YXneenld9FpG4nFijid2htWQvfKO/4o3fP7gbLx/RmF8MD0ej1arZb333+fxsZGgsEgIyMjZLNZPB6PNJbhcBhFUchmsxw8eJBMJoOiKLhcLsbGxhgbG5Ofnzt3ThqIQqFAsVikvr6egYEBcrkckUiEBx98cNVxlVbtZbNZjEbjDTHqbDYrDdqtvNtisUixWESn05HJZG6IKYvP1hqCuRXEdS3l996syCKdTpPNZj8YT7bIW28ECC8WQFVYokoXefCQi9YWG9lchldfeRVVVXE4HNhsNvbt27duRkpVVd5880327ttPMhGjtrqOb33nf/K3f32FJ596FJv9gxjzoUOH+du//e/s2pXjpZeneOH5eiwWzfX9yB2yjBC8dDHWNKa7PbdykUUZmxZVVVUsLi5y6NAhTCYTRqORmpoanE4nkUgErVaL2WyW8UWNRoPZbGZycpJcLse1a9fYunUr3d3dOBwOJicnqa2txWg00tzczJUrV3jwwQeJRCJ4vV5isRi7du0iGAyi0WiWaV0IlBrB998/QS6Xpa2tjXw+T0VFBYVCgfn5eUwmE5WVlRSLRcxms0xuabVatFqtjDuKRJ7BYKBQKFBdXS3pWoLJUFlZSTabxW63k0wmMRqN0uDfDQqFAoFAgJaWltvuw+FwyEQbgF6vYf/+CnIf2GMURcXlXvJyZ2dmcblctLe3Mzs7y+Li4rqqoolrNTIyTLFQYGx0nNdefYPP/9xv8vgTWwmHw3i9HhQUzGYLBw8dZGbmGNu2f45vfWuIX/5CJ0u++nXtEkApq7bdNcrG9z5gM8gINjY20tTUhKqqBAIBtm/fjtFoXFY1tRq7obGxkWKxSHV1NVqtlh07dpDJZDCZTNKQ7N27l4qKCurr62+Q9LudeIxARYWXV199FYfDwfj4OIVCAbPZTD6fx2g0otVqaWxspKOjgx/96Eek02l8Ph8ajYbFxUV8Ph/5fJ5YLEZNTQ3BYBCHwyELG4pFFa1Wg8/nY2pqiubmZkZHR9m9ezc7duy46+sqjHswGKSmpuYGr70UIuEmttMpKpWVH4QmFHVp8S9oD42NjTIpWV1dvfSbkv0LXZC7RTabxWKxcODAAWKxOL/6xS/yS7/8RQJBI5FFPwP9g3z86acoFlVC4TCf/Wf/jP/f7/wOL7zwDDOTCuHFLDar8oH9VZBJw4+m77mxKBvfdYaqqvT09FBZWUlVVdUN30ejUaanp2lpaaG/v59du5ZibMVikQsXLrB3795VPcaZmRn5st8JBFFf7HM15HI5FhYWyGazNDU1yX0Lg5rJZDAYDBiNxmXnIrip+XyeCxcusGfPnjsaU+n22WyW7du3y3GmUimcTueyMEhDQwMajYZisUhdXR3hcBiLxYLP56OhoYGJiQkcDgd6vR6dTkcqlcLn8xEOh+U+dTodHo+HXC5HLBaTIjh3C51Od8cShiaTCb1ej9lspq+vT1LElt3BW6wOBFKpFEVVxWI2L/Ok14p0Oo3b7UajKPzH//gfaGxqwOut4uTJGI89Wo/R2EQ8GWdsbIJcNoPH4+UXf+EX+E//7zf5zGd+l57LEQ4dslFUQFWWdNBudh5l3B5l43sfMDU1hdPpIp/P09fXRzwep1AoUFlZydzcHLFYjJaWFk6ePEkoFKKiooJsNsv4+DharZZ8Ps/8/LwsJ1ZVlUgkQm9vr0yOTU9P89BDD63KBS1NiIyPj+N2uxkeHkan05HL5WhtbWV0dJSpqSm2bNlCf38/XV1d6PV6du/ezcjICMFgkPHxcT71qU8xPT3N1NQUdrsdo9FIPB4nHA7jdrsZHByUJdFarZZQKMRjjz2GxWK5Jd94+/bt5PN59Hq9rExb6YULw1xbW8sjjzyyTMJSURS6urrWdE/y+fyq1+tOcbMwighnpNNpGWP+QLZxKW7+2GOP8YHZXZv3Ojk5ST6fp7m5+Z7im4lEApvNxsL8PAP9A/yH//BnxOM6OtoXaWtrZGraTzi8SCqZ5IEDD3Dhwnn279/P//jWt2hsNPGjH/nZvr2N6UmFUEsBr1v3QQve5bSNMu4AZeN7H7C0HI6SyaQZGBggkUigqioDAwP4fD75Ynq9Xubn54lGo8RiMbRaLSMjIyQSCQwGA6FQiHw+z6OPPkpfX58sPY3FYlLz9VYQxP3Lly/j8/mYnp4GYHR0lNnZWRnztdvt9Pb2oigK27dvZ3x8nImJCex2O1qtFrfbzVtvvYVWq6W6uhqTyURvby+f/exnefPNN7HZbMRiMbZs2YKiKHdk4ISOBSx54H6/X8pGrsRDDz3E1NQULS0tN3wXjUZJJBLLyo4LhQIjIyMyBFIsFmlsbJRdPtYTxWKRkydPUldXx9jYGGazGavVys6dOxkfHycYDDAwMHBPx5idnSWfzy9L3t0NxsbGqK6u5qc//elS8jUwz+h4kURykWvX0sQTcUZHRgEVj9tDPJHg/IULKMCVnvcxW7z8+38/wPjYHMePX+Azn/bi9tzdmMbGxrDZbPdUZCEkOz9qbBmBsvG9D9i1axeZTAaXy8WDDz6I0WiU3NBoNIrdbken03HgwAHsdrskrGs0GnK53LIkmPAOS3V1L126RKFQIJVK3ZKKpCgKBw8exGw2Ew6HZTx3eHhYak9UVVVRVVVFJpPBbDaj1+vp6uqira0Ng8GAoii43W4+/elPA0tKXYIv6nQ6+bmf+zlUVZWqbGsJjUxMTBCPx5mZmcHj8RAOhxkYGJBMAlVVcTqdLCwsMDQ0RHNzM8FgkEAggMFgIBAIUFlZycDAAN3d3dhsNqqrqxkaGuK9994jkUig1WpZWFigrq4OnU63qgG/FyiKgs/nw2Qy4fV6cbvdknPtdrux2WxSe+JukU6nyefz97yfqqoqamtr+eu//hu++MVfweP1cLknTnNTDRVeG26Xk54rV9i2bRserweH08GlS5c4cuQhhoeu8ZnP/HP8kzA/n8ZoaGRkNMzH2rzXJc9WhCFuA6fTidfrvSfjm0gk7kkPeKNRNr73AUIEBj4QfRHKZKUJLyEh6PF41rR/t9tNsVi8rcKZoiiydU9FRYX8vKKigmQyKalmKyG2SafT0riXvvil0od3qz2Qz+c5ceIEJpMJs9lMZWUlqVSKaDTK2NgYnZ2djI+PE41GpVf73nvvMTo6Sl1dHaFQCK1WSzabxWw2c+LECZ588kmi0Sh9fX2oqkpvby8WiwWHw8Hg4CCpVOq+GN/t27cDN0pCLtH8dFRWVt51IQF8YHyFCNLd7svn811nhBTZ0r0Fp8dLIZ9g14FaKn1LND2r1UpHRwdutxtYCtfU1NTwJ3/yf9PR0cGRw0f4r395nObmKIvhVtweL3q9YA3fGXdXVVVcLpfklt/t+Vgslnsy3huNj+7INyk+jOXP7aQMBW42FqvVitVqlS+3YA1YrVby+bzk77700kt84hOfoFgsotFo0Gq1kkt7r+ep0+nYs2ePpImJGHFXVxehUAi3240KWC0WYrEY9fX1bNu2TVaLtbS0kEqlMBgM5PN5SU/TarXU19dTUVGBVqvF4/HIVkYiHrte9+h21XdLVLN7jzGLgoR7GbeoKltighSxWq3kciqRSJpK3werp2effXZZ2Mjn8zE4OEgymcBisRJPJjl//gI//OFP+MQn/pipqQaam02sVfjsXgs1yjzfVfD1r3+dH/zgB/T392M2mzl8+DD/1//1fy1LjqTTaX7nd36Hb3/722QyGZ5++mm++c1vLsuoT0xM8KUvfYm33noLm83GF77wBb7+9a9/pGe6zYpAIMDrr7+Ox+PBYrHIEEkikeDtt9+WZaW7du26YyrZnUCUyZbC7XbLcua2trYbvl+tCWcikcDn88kY8v79+9dtjPeClXq+G4FSmtrCwgKhUAir1YreYGB+IYvJaMVk+sB4rWSD1NbWYjKZOHjwIGOjo1RV+UgmE+zbt5uJidNcvNhEY2MDYgG1ngUtP+tY94DJsWPH+PKXv8zJkyd57bXXyOVyPPXUUyQSCfmb3/7t3+YnP/kJ3/ve9zh27BjT09N85jOfkd8XCgUp2v3+++/zN3/zN/z1X/81v/d7v7fewy2DpViz1+uV9fLV1dVEIkstjFKplIxlRiKRjR7qqrBarWuKh35YBmGpk4Xh9j/8ECASU3Nzc9f50gojo3Hq6rVohBe6ynZ6vZ6qqioeffRRzp0/Jws/nn/+OYzGOSYnkyRShRsJHBtPdd/0WHc38uWXX17291//9V/j8/k4d+4cR48eJRKJ8Jd/+Zd861vf4vHHHwfgr/7qr9iyZQsnT57k4MGDvPrqq1y9epXXX3+dqqoqdu/ezR/90R/xu7/7u/z+7//+pnmgV2Ijsq53I6a+ElVVVXz84x+X1DBB8RIdisUx7kaE5mbYaI9oPQphbrePJUnJ3D0fZz0gSrnHx8dpbGyiWFDo7Qnz2CO1HzDElNVTZqqqsnXrVqampvH7/ZhMJrZt287f/d23qK7R0nM5ysEH3R9sWxZfvyPc9zW88JZEUuncuXPkcjmefPJJ+Zvu7m4aGxs5ceIEBw8e5MSJE+zYsWNZGOLpp5/mS1/6Er29vauS+jOZzLIl3r1I3q0VuVyOUCi0oQZFNHUMh8ObbnJaXFwkm80uExHfDCgUCvfVOIoJbDNAFMz4/X72H9jP9GyKYrFAXaMF7oCia7PZaG1t4cyZM7jdHrxeL2aTkdYWLe+8M4fJrLBzpwOtcn2CLtve2+K+Gt9ischv/dZvceTIEZkRnp2dxWAw3NB4sKqqSgo0z87O3lAdJv6+mYjz17/+df7gD/5gnc/gzpDNZtfcEWG9EY1GpfHdrJ0s7qXA4X5gvYxvJBKROr5CIlEkNVcT9rkb3GtpcTqdxmQyMTk5xXPPfYo33wxw6FANRv1StdpSrfDN96/RaDh69Ch/+Id/yFNPPYXeoKe5pYXI4hi/8IsP8T/+7hpul4HGJhMaVSO935uNuTQWfa8o83xXwZe//GV6enp477337udhAPja177GV7/6Vfl3NBpdNTlzP2C1WmVyaCMeAlVVmZycxGKx0NraelPP905pQOsNu91OJpO5q/txM8Wwu/ntygo6wbIozUesFYVCgTNnzlBbW8vY2JikAe7bt4/Tp08zODjI8ePH73r/sJQQLRQKTE1N3fU+/H4/vb299PRcYWBgmCuXjfgqrUQW87ff+Dry+Txzc3NEIhGOX3+n//4Hf49Wr6e6RuEv/uIEH/uYCaOxeNtnraenh0wmc89FFivbNH2UcN+M72/8xm/w4osv8s477yzjvVZXV5PNZllcXFzm/c7NzUkxkerqak6fPr1sf6IuXvxmJYRa1WbAyhf+VsZite9uJi5+K1Hwlchms/j9fjQaDU1NTctitzdD6X4GBwdpampifHyc5uZm6U0HAgGpqVBTU0OhUMBkMjE1NYVWq5WVdDqdbplehMD09LT0FIVGcOm5xuNxQqGQ5MzeynMaGhqiqalpmfzkatd0fn4ep9N5X1YE4vrabDaKxSI2mw29Xo/JZGL//v0MDg5y5MiRu56UxcR6r+XFly9fpqenhyef/Bgf//jTzM5d4NFH92E2KXcco81ms/zn//yf2blzJ0ceegi7zc63v/NtHjpyiKKqQaebpKLSwa6dThSWNONvtletVsv+/fvv6Z7E43Fee+21u95+o7HuxldVVb7yla/wwx/+kLfffvsGUvu+ffvQ6/W88cYbfPaznwVgYGCAiYkJ2VH30KFD/PEf/zGBQEAWJ7z22ms4HI4butpuNtyJ53gzI3Gn290J3nnnHRobG7FYLIyOjpJKpcjlckSjUfR6PU6nk+npabq7u4lEIjgcDvnf+fl5xsbGGB4eJpFIYLFYGB8fZ9euXZjNZgYGrvHoo4/Q19fHxMQEVquV7u5ujEYjr732Gnv27EGn0606Xr/fTyAQoLGxkXw+T09PD9XV1YTDYVwuF3Nzc8TjcTwejyxBDQaDeDweMpmM/F2xWGRwcJDJyUmOHDnCzMwMhUJBymWGQiGMRiMNDQ3Mz88TiURIpVJYrVZCodBNxYbWCkVRZFeHlZ2VRcLtbjm64vqt5PmutYMFLPVvu3jxIt/85jcpFhW02qX/LSmTLSXabrZfsQ+9Xs+v/dqvsbi4iEZRqKisIBqNohYVdDo4eLCSV1/1s3WbE71OvWnRxXqIsn9UQw2lWHfj++Uvf5lvfetb/OhHP8Jut8sYrdPpxGw243Q6+dVf/VW++tWv4vF4cDgcfOUrX+HQoUMcPHgQgKeeeoqtW7fyS7/0S/zJn/wJs7Oz/Ot//a/58pe/vGm825shk8mgqqpsGS4etEKhwNzcHCaTSVYPCRSLRVl2LLQNxHapVIpEIrGsQm2l8V7tIRR6ElarlbfffhuLxUI6nZalr5OTk5jNZl566SU6OzsZGhoiGAzS2NjI2NgYHo+HbHap+WNPT48sdXY4HGi1GvR6PclkUpb6dnV14XQ6pYSi2+2+6cths9nQarXMz88zNTVFKBQinU7LiiWNRkMsFpMVcF1dXQwNDREIBNDr9czNzbFjxw50Oh0LCwvEYjGGhoZkc8impibS6TSFQoHJyUkWFxc5e/Ysjz76KCdPnqSzs3Nden/drshCp9OtqlVxt/u/U2Oz2nMxfr2zSW1tLZGoil7nuM7NvfOyYEVR+MQnPsF3vvMdCoUC1ushm0Ixj0Y1UOUzUcgXuHIpyu49DrSa63o7YlwlJcjlIov7YHz/4i/+AoBHH3102ed/9Vd/xa/8yq8A8Kd/+qdoNBo++9nPLiuyENBqtbz44ot86Utf4tChQ1itVr7whS/wh3/4h+s93HXHxYsXCYVCPPDAA4yNjeHz+Zifn8fj8XDmzBm2bt1KOp1GVVXpFY2MjFBTU0M2m13W3qezs5NIJMKVK1dke3HRp03wcIWgzUo8+eSTDA8Pk8lkOHDgAAaDgXQ6LfUhhoeHsVgsHDp0iLm5ObZs2SIZGxUVFTidTlRVpbOzE7fbzejoqJQz3L59O4VCgW3bttHY2CjDBalUimeffZbx8XHsdvuqCba6ujop3B6NRqmrqyMSiRCJRGhtbWViYoKKigosFgtHjx5FURRyuRxWq5Xa2lq0Wq3Ue9iyZYsMe7S1tdHW1sbs7Cx1dXX4fD4qKytlZ43m5mYymQz79u1b1oXjfuJek2R3e0xRkVia1Bro76eqqmrpemZVtFrTdeO7NsOlKIrUFTGZzSiKQjqdQq83oNPBpz7dyne/M4xOV2TnTtf1kIYY3JoP9zON+xJ2uB1MJhPf+MY3+MY3vnHT3zQ1NfHTn/50PYd235HJZEgkEoyOjlJZWcnExAR9fX0YDAbZQPLixYsYjUb27NlDT08PuVwOo9HI4OAg4XCYqqoq2Z3WbrdjuV5ee+rUKVpbWxkZGaGrq4vJyUm5/N62bdsNYxHKWoDUBCiFx+PBZDJht9ulV13KMBE0KeG5ie8URVkmRu7z+W645+L71SQlS5NuovS39LPSpXtpTqBQKCzTGy7NIwjVMo1GQ3Nz8w3nKgpIPmxks1lyuTtPaK0X3n33XbZv347X62V6elq2mxfa0flcHr1+qYGnMIi3sokrPUu3200oFKKurg6DwUAymcLhcFJEpcJr4JOfbOG11/xs3+ZCq1NvHfz9J4xyre46IhqN0t3djcvlYn5+HkVR2LlzJ5cvX+bQoUMEAgFgSf81m81is9mw2+0ynldbW4ter6empkZSgwwGAxUVFVitViorK8lkMnR3dxMMBqmrqwPubtkl2vQImUJRQCFYACMjI2g0Gtra2m7wpITa2f1APp+XHmPp8vmdd95hx44d6PX6pfJYvZ58Pk8kEpHX0mQySc1i0bvufuNWRt1ms2E2m+7rMefm5jCbzTgcDgqFgrx/o6OjMm6eSCSIRqOSkZNKFbFY7p4L7vF4CIVCNDQ0YLVaiUajVFdXo1EVigpUVRnJZvMshLL4fIalZs2U7e9KlI3vOkJ4gbW1tczOzsqY6xJBvfUGrYLu7u5b7k94jkePHgVgYWFBCqw/88wzN03k3M4wipc3kUjw2muvkc/n2bVrF3Nzc8zPz7O4uEh3dzfDw8PMz88zNzcnPfFkMsnHP/5xGdO+k+Pd7hzFmEQXEJEgFPFjs9mM3W5nZmZGevxOp5Pe3l50Oh0WqxWNomA0GsnlcszNBdi6dQv79u1blzHeDOI6ilCO+C8sTWbRaJRU6v5RoYrFIhcvXqSmpobm5mbeffddDh48iM/nw2q1MjAwIEucDQbDdWaJQjyexmbTLBnD65dlLREBi8Uiz6uiooJgMEhnZyeqAhoV0Cp0dHq4eCnMk09UodGoFNckOPlPA2Xje59QSom7nfTjnaJUv2A9jInNZsNoNErt4StXrkhlM4fDIRNcIv5bV1fHuXPnluJ9pvX36GBJwlB0/qiqqmZ2dgav10smkyGfzxMKhaR3F41Gqa2tpVgoEI5EpKqZw2EnFovdl/GthKqqnDx5kvr6esbGxnA4HBgMBrZs2SL1kVOp1D3dLyEpudKQCzaQqBxUFIXe3l7eeecdfvEXf5FgMEhrayvvvPOOjI+n0ynmFyIYDHpSqTSKRkVVlTtuQiHGks/nicfjOJ1OZmZmSKfS1/vRFUFV6Oyw8A//MMHBB10Y9CpFuN6teQmZTEbu616ui5i0P4pJt7LxXWfcDYVs5fbrub+bHUM8sE8//TSw5Kk9//zzADLWKzz1fD6PwWCQMdX7Wan2xBNPUCgUeP3113n44Yc4duyYTN5qNBp27NghdQr279+PTqeTCTQxznw+/6GJbIuXPx6Py0rH+vp6stksV65cYXx8nJ6enns6xtzcHIVC4YYJpb+/n+bmZsbHx+nv76ezs5N//Md/5MUXXwQUBgb6aW9v5+LFi/zKr/wKw8PDGI1m+vvTVFQa6emdub4nEfy9PTKZDCMjI5hMJk6cOEEmk+H8+fPLtIxVVIoFHQsLSd566xK1tTcaxuHhYQwGwz0XWaTT6bvefqNRNr7rgGKxSDqd3tDZN5vNUiwWJdVtLVjt96UJLr1eL71NjUaz5nY2Qnfjdi+KGIdWq+Xxxx9Hp9PxxBNPyO8FPUyv10uDWyoEJOhw4re3uyf5fP6eKWcajYZDhw6hKArd3d3LKFTbtm3jypUrHDhw4J7E1P1+P/l8/gbOfD6f58CBA1RUVDAxMcFjjz2GzWbj9OnTvPvuO3i9Xk6cOEldXS3PPvssZ86cZt/+/UxPz7Bzl4uONpuMNSi3y7pdRzKZxGQysX37dvr6+ti5cycnT57kwIED1wcNKFBUQVFCzM4m2bu/Du11PrEGBRVVjv1exNTj8TgLCwtr3nazoGx81wHxeILBwcENNb6Tk5Mkk0nZ0HIzYWFhgVwut+m8lEKhIOPK9wLhZa+8/1qtFs098nxLCy1KISZD0RqptrYWRVFIJBI8/PBRzp07y1e+8pWlzsfF4vWil6VtE3Gw3pBwWxsPzGQysXXrVr7zne8QDAaXL/3VpRBDV7eTc+eCZLMK5hX0/PV4V+6VK7zRKBvfdYDDYZdt0DcK8/Pz2Gw2tm/fvumMbyAQIJ1O09jYuNFDWYZCoYDNZrvrpNjtiiySyeQ9i6mvVkygqkueo1iym0wmGYPv6enhwQcf4Mtf/nUqKiqWOj4vlbFd3xZi8Qxmi2aZuV2L6RXjMBqNdHZ28t3vfleGgkrsLw67Fo9Hz9RknNY2G5JWrN64r7Xio2pwS/HR7T63ybDRD8PNji80HiYmJkgkEiwuLsrvVFXF7/ffNEwRi8WYnJwimUzeVDdYIBAI3NKIrTY+UcYsEka3C5cUCoVlspT5fB6/308oFGJ6epqRkRFGR0cJBAKEw2EKhQITExOMj49viK6u2+3GtqIzxHqh1PgKFItFBgYG6OrqoqqqSjZiRRFUW4VMpohWm8Fs1i5jOtwtdu/evdSOfpXlv0aB7dsrOX1qAVVEdzaHwuamQNnzXUdstAEWKPWQAF577XWKxQL79u3DbrczPz+PxWJhZmaG/v5+Dh8+LCujotEoXV1daDQazp8/z8LCAocPH2ZmZoZisUgoFKKlpYX5+XnGx8fZu28fi+Ewfr8fRVE4fPiwTMitVmQhoKoq/f0DaLUa3nrrLXbt2kVdXR2xWIxoNLrU2jwYlHFsIdQjDKvL5cJqtfLKK6/Q2dlJPp+nUChIudITJ07wxBNP8NJLL2G32/n5n//5Va/RveB2k0U4HCYej9/zcVaD4IGXIhQKMTs7u6yoRrkeY136P5VopIDZbMSgU6S3e33xvqbji+tnMpno7Ozi2rVr1NbWLrOtKiptrTbeeWeSYDBLtc9QJvuWoGx8f8ZhMBiora1henqa8+fPs2XLFvL5PIFAAKPRSDAYlNV1jY2NTE5OsmPHDs6dO0c+n2dhYYGJiQkuX76M0+lEp9MxNzdHMBiUxQziZQ+Hw0xPT6/ae201CFqYwWBgcXGR8fFxvF4vgUCAUCiE3++XbY1EWfXJkyepra1l//790gDkcjlJhzOZTLIXXV9fHy6XSybkMpnMh6oNcrMS6/VAMpmU5d4CSwyRh6VSnKJcDzfImIJCMJimstKORnPdCZUVbndf+3vgwH4uXLhwg6SAooDZovDw0Xpef93Pv/i5NnT3v+7lI4Oy8b2P+DBKWu9E7/aBBx4gmUySTCapqKhgeHiY/fv3E4vFqKioIJ/PoygKHo8Ho9EokzhXrlyhra0Nl8vF7t278fv9OJ1OamtrZZVZXV0d4+Pj1NTUSG/0Vudf+pnb7SIWi7F37168Xq8syy7dR7FYlPxmm83Gjh07CIfD0qvesmWLLH0uFouSEvfQQw9JOcZcLkd/fz8tLS33xfjmcjmpFSGq6jQaDalUas3MkFKsvH6lFX9CoU2wUpLJJC+++CL/7t/9O/kbuG57S4gMk5ML1Dd4QVFRVOWuK39LE2zbt2/nxRdfXHb+S1j6vrPLxnvvTi95v9Ur8hF3afNLr02Z51vGMqxFWvJOP1/r8cU+PB6P1FFQFEUqjpX+ZuUxq6qqqKqqWqagVllZidvtxm6309XVJX9/p57uymtSWuE3MTHBzp07b+opinGsTNodOXLklse807HdLYrFIidOnKC+vl6W9LrdbimuHggE6O3tvadjzM7OUigUlom+Dw4OUlVVxX//7/+dyspKOaksLi7e0OhU2LeRkTHGxhRsthS9vVPLvrtTpNNphoeHl4U8UqkUQ0ND/Nt/+2955plnPlD0u77vogpOZ5of/egqR44YUZQiIyMjWMwWtPfgCqdSqQ3vDn0vKBvf+4hz586RyWTYu3evbC9TWoI6PT0t9RlUVZUc2lOnTvHQQw+tuk/xu1sZ5+npaVkiLAynqqrLjie2f/311+nu7ubKlSu43W5mZmZwu90YDAZ27NjBm2++hc9XSW1trSTSLywsYDabWVhYYHp6elkIQIzxVroKIr5cOgEItTPhyZUqckWjURKJBPX19cs0H8Qx+vr6yOfzTE9PU1VVxdDQEG1tbUxPT3Po0CFGR0fR6XRMTk4utcBZZ1F1s9lMPp9Hr9fj9XqlxkRdXR1er/cGnd+1QhRwlO5nZmaGhoYGTp48KXVBfumXfona2tobd6AusRw0uhmyWT1dXXWYTHe3Kkun00QikWVjUVWVr3/96/z5n/85ly5d4lOf+pQ4rDS+brfCf//bMYzmStwuhYrJKaqrq9Ddw71IJBKMjY3d9fYbjbLxvY+Ynp4mlUrh8/m4cuUKZrNZci4bGxsZHx+XYuSBQACPx8POnTuZn5/n3XfflUvXmpoaAoEAxWKRhYUFPvGJTyzrALESxWKR4eFh2c9tYWFBVn75/X5cLhdbt25FURTm5uZwOp1SBnN2dpbW1lZ++MMfotPpCATmsNmWhxJCoRCtra0Ui0Xm5+d57bXXcLlcciksjJ7QtViJsbExLl68SH19PVNTU1gsFsLhMB0dHfj9fiwWC5lMBpPJhEajke3O5+fnWVhYIBgMYrVaefbZZ9FqtWQyGaampvD7/Rw5coSrV6/S3d3N3Nwc77zzDtFolO3btxMOh2/QS75XaDQaWWDQ2dm57LulCUmRzWPvFhcvXiQSifDwww/Lz6xWKxqNRoZorl27xpEjR1a93ioq0ViRq70mPvOZVqpr3MtKfdeCVCqFw+G44ZycTief+tSn+PGPf8yzzz6L0+nEZDSBslS+jAqPPFLg5Ikon/tcC3aHHbfHc08TodFo/FDEk+4XylSz+wihdTswMCArebq7u4nFYjgcDoLBINeuXcNgMDAzM0NlZaXkh/r9finMIrw2n8+H0Wi8rVaEEG6PRqPE43H8fj92u52FhQX6+/sxm82SYqaqqoypFotFcrkcxWKRzs5OZmZm0Ol0ZDIZZmdnmZiYIJfLScHzmZkZjEYj09PT1wVt5igWi8zMzMiOFashlUoxPz9PKpWiUCig1+sxGo0MDQ3JpJjwwkOhECaTiVAoxNDQEMVikUQiQTqdZmxsjFwuRz6fx+VyYTKZlim1ud1u2a5KyH2OjIysm+6DKH5Y7X/i+MIY3uq3t9qHEBs6d+6c1B8WOtB9fX1s27aNn/u5n+OJJ55YZng/YDGAqiqMjSXJZ2Ns3+pEo6iyc8XdjGm1z3U6HYcPH8bhcPDrv/7r/MVf/AXq9f+nKCqKAg8+UIHFbOTtt+YoFlez/msfixjPRxFlz/c+orm5mfr6ehwOBwsLC1it1uvsgyXpyOeff558Po/JZKKyshK73Y5er+e5556T1KnR0VHa2trw+XwYDIY76uNVU1PD5z//eWlIZ2dnKRaLPPPMM9LYBYNBAJ599lnMZjPPPPMMVquVj33sY5hMJim8nUwm0Wq1ZLNZ2Wmivr4eRVHo6urCarUSiUSwWCwy/NDW1obT6bxpsUcul8PlctHY2EhHRwd2u11Wa8ViMWw2m9y/0EJWFEXKSD7wwAPAUnyzWCyydetW+V+LxcILL7yAwWBg69at7N69W3J829ra0Gq1N7AE7heWUc3WWvJ9/b+5XFZyoaPRKG63m/n5eZLJJN///vf555//5xx96Cgf+9jHACgijO7yaO7Y6CLtHQYUTZH79dpXV1fz27/92wQCAb75zW+SzWQxiASnAooOnvlELX/9N8OYTFkeOKDIMWtAUuJueLo/osb1digb3/sERVGWiYGvFvcr/b7Ua3G73TIu6rm+NBPe6Z3M8qKZqPBsP/3pT6PX65eR8oU8pKIsSTGaTKZlMVhhOEUiJxKJYDQal9rGXK8ME4k70WdPoDRpttryfvv27XR2dspjlp5X6XWw2WzLYr+xWAyTySR1LGpqaq5XVS2/JuJaiRWCSADZ7fbbXrv1hNVixWQyfmBJ78SGXNceF5uEQmHy+Ty1tbWMjo1hdzj53ve/z8svvcQLn/wUu3fvA40WvU6z5GVe37ioLCmVKUAhB3OzcZoab7xW6w3hHKRSKUZGR5aSqiXHNJnhueca+cafzzIfylNdpUNRPrhApfQ3WFsy8KOGcthhE0Oj0dxzckhRFMxm8w3VUKqq8uMf/5irV68SDocJBoOyEm5xcZGRkRHm5uY4deoUxWKRH/7whySTKXp7e/nJT35yT5oIWq0W8/UWNGs5j1deeYVQKERvby9vvPHGTcMaG4nShKAIiQDLqslU+cHy/wlamPD+FFTGxsepq6tj3969nDt7lr7eHk6eOMF/+29/xa9+8f/D8fcivP7qNJHFAqiQThf5/vcnl1rCq6AWIRzOoWDAYtMuG8H9gKIoNDU18cwzz/K1r32NP/3TP5XVbxqW7HBdnYGdO418638MMDqSQlWXQiMf2OAPxqjC9e9vfsyN6FKyHih7vh8B3A9vRVEUWltbOXPmDJOTk+zZs4eTJ09SU1MjOx4Xi0XMZjMPPPDAdf6vFpvNdtdSgCsr3ko/vxMIFoHFYpF85M2MfGFJNW0103Czz5ZWHoCqoKpw5fJlOju72bFzO//+z/4DP/jBP/Bv/s3vYzRX8vc/GAM0uFwGvve9UX7+59t5++1ZZudy/N3fDbFvXxXXroWZC+R54AEHGo3KB23i1/eZKr23iqLwL/7Fz/HYY4/y4x//mC984Qv4fD4++cInefjow7jcLppaCuw/0Mq3vzPM4SM1bN3iwOvRobneURn1etmHol73hJeux7JRfzRtrsTmfno/YrhfM/B6SETe7Hfbtm0jHo8Tj8epqamhqqqKbDZLoVBg9+7dhMNhVFVl+/btXL16laqqKhwOh5RiXMvYbvbbO93H9u3bGRwcxOfzybjwWsdwvyDGMDs7i8vlwmgyYbbYKRYdzM7lAQW1WESjLW3XtJTg1FynHhQLKsVCgblgjEBgkXPnrvDyS2d44onn6Lli5pFH/jeGhgJc7fXw3rv97N1XyUMPedFqFX7ykyz/8T8O4PNp+eK/bGPSn2RsNMmDD/poarJgNGo4dWpkiXkAS3oP93DdSvnfq8FgMNDU1MRv/MZv8LnPfY7Tp0/z3e9+l//3P/2/bN26FZPJzCc+UWD/fj09PWO8+UYUq9XN9u0emlpcWMxaFBUUjYLZrMdq03L90kkDnEoXKRY+uoGJsvFdJ3zUqmwUReHgwYOrjjscDmM0Gtm+fbv8bOfOnfK3pQ0v7xTrYSBbWlpkTHE9iifWy2iL/eTzeS5dukRnZye1tbW8995Jvvfdy/zwB1OAhkJBQatVKRSL6LQGFEVDMpnFaNKj0UAmnUdVi+QLKplMFJ1Og9vdyvH33qaq2ovH7aaqSot/8g0qKw0MDeWYmTZTVIuEQmkURUc6U+AH3z9BOpNGo9EwPlGQCdPp6WkGBweX0bMymQxarVb2vgOkLrKqqvJzMdnmcjkCgQB9fX3Lzj+VSslEZjKZxGw2k06nMRqNpNNpWXU4PT3N0NAQ586d49VXX0Gj0WA0mlFVPfG4mXy+EoejBa3GRr6QR6fTotWo1NX70Gn1FIpLoYtCsYhazNLWluPTn1HRaj86755A2fiuA7LZrGyYuRFQVZXFxUU5jnuVlFRVlaqqKubn59dlbAsLC5ItsZmQz+fvqfx3JbRaLdu2bcPj8WAwGHjoyAF+518lePCBgyiKEBhXSMTjS81RjUaSiSR6/RJ1L5POoKJiMJrIZpLkclk0Gg1TU36cDhetrS3yWIVigUgkgtvjQS2ohCNhPB4Xi+EINpuNaDSKTqcjm81iMBiIx+OMj4/zwAMPLAvXxGIxDAYDRqNRxvF1Oh3pdJpisYjJZCKVSskS9HQ6zeTkJAcPHpT7EPdYdMFeWFjA4/GwuLi4bCyw9K6oqkpfXx9HjhxBq9NSzKtAkWw2Ryadweqwk88tFZfY7DaCwQUsZheFQoFMNo9Wo5DPFUhlMoTmp9BobvTAPwqOUNn4rgPy+TyJRGJDjW86nZYlqBshn3griG7NpeWxmwGCznevKGWJlLa01+t1PPbIQxhNRgxG4wctJKs8H8Qrvc4bw68qoCwxNjKZNFVVviV+tV6PyWzket+JZWwZp8sOKDhsS/sTRRCqqpLNZvF4PFRXV2MwGFBVFYvFgqIoyxggN2ODiH2I6sOamhoURbnutRqvCyQ5btiP+EyUtot9aDQayeLRKBoK+gJGkwmn1iDPDQV8la6l/1a4QFEpqpDNZMgXCqAudTJJpz3E43E0Go3ssH0/21ytJ8rGdx1gsVhoamq6gfz9YUDM+OPj45jNZpqamm5o7f5hx0RXxmIFPWwziamLThBms3ldZB+X3XcViqrKpUuXZHujAwcOsKxTz820dFeILVy6eJmCWmRocJC2tjYOHTq8rBV7SanBEitghVBOoVDg5MmT5PN52WJKURQee+yxOzZSYh+5XE56rqLMfcuWLbS0tNzyuRfi76dOnSKTyZDL5eQ+FEUhHA7zwAMP0tHRvox2Jk9EWWJD5HM5Tp86RTKVYmFhQVIy4YMJ0G63y27fmx1l47tO2OzLnMHBQXK5HG63exnnuFAokM/nJZ+3UChw7tw5WlpasNvtywRUVFXl3Llz7Nq1i76+PlpbWyUvN5vNStnHldjs12bdcd1utLS0fLASUUosya3S9CsuVXNLM4lEgmKhgMftltzdWx23FDqdjvb2dhYWFtBqtZL+thamiFarXbYPEa7R6/V3zJ3W6/W0tbUxPz8vFeCEGpzL5cLpcCyvWqP0KqnXi2x0tLW3EwwGsdvtuFwucrkcuVzunptxbgQ+WqPd5NgII7PaMVd+Fo1GOX36NJ/73OeYnp7m5ZdflnoKFRUVsky4srISnU7H1NQUer0eg8HA6OgodXV1zM/P4/P5uHzlCtu2bWN2dpaenh7cbjdut5tQKERHRwcdHR3LxrEZmAir4cO4V5WVlbJkfLnHu9zI3AyqquLz+VBVdVnzzJuNfbVPVVWlrq5umYBTqfEV3mexWJReuuhJV+rh1tXVyT5xpd7mrcZzq3Gs9r0Yi9xvyZmJ72pra5edy0d5Yi8b33WEeLAXFxfR6/U4nU6KxSKxWIxisYjb7V73Y97Jwyey3fF4nKmpKbkELRaLsq2Q0JdIpVLo9XpCodBSWa9GI73cy5cvY7kuDmQwGHC73QwNDeH1eqXQ+q0gXtpUKkU8HpfFH6LKrvR38Xhceuo3O8dwOIzT6ZSxvttdC1EGvd6qZrfDvRqI9TQwsViMU6dO4fP50Gg0pNNpGhoayGQyjI6O4nA4cLvdZLNZKioquHz5MnV1dRiNRmZmZqQ4vaIoUkjoTq79vX6/2u8+yoYXysZ33RGJRPjxj3/CAw8cIBaLYTabmZubY2hoiAcffJBisUgqlcLlcpFIJKioqCAejxOJRNDpdFRVVREOh2XnBfG3x+NhYWEBh8MhRdDvNGZntVp57rnnSKfT7N69m8nJSTwej5RBTKVSkhIk+n7p9XqSyaSMH2ezWZqamkgkEhiNRvbs2UMikWD//v1Eo9FbajmsxPDwMOPj48RiMbZt20ZNTQ2hUIhAIIDBYJB6DufPn2fPnj0ycTM+Pk5zczO5XA6bzcZLL73ECy+8gN/vx2w2y64aWq2WmZkZbDYbsVgMj8dDOBymv78fl8vFrl277rsBXg/DsJ77WNnOKRwOSz1crVZLdXU1hUJBtoMSWiSFQoGFhQXi8TharZZYLIZWq11VPe3DOI+fJZSN7zpDp9NRKOTRarWcOnUKq9UqjZpIfIRCIfbu3Yvf72ffvn0MDAzIeFpraytjY2NMTExQXV1NTU0No6OjUn6xpqaGRCJBQ0OD5OKufDDFiyaOq9frqaiokDX3nZ2dq26TSqXuuOzX6XRKWUuXy4VGo7ljuUadTofH40FRFHp7e0mn01y5cgWPx0OhUMDn8xEKhVAUhZMnT1IoFHA6ndI4OJ1OqTUBS404/X4/dXV1zMzM4PP5OHv2LD6fj6GhISwWC52dnRQKBYaHh6mqqrorrnLptVoNt0s63QnuJlSz2nFvtg+Hw8ETTzyx6j5W6o8Ui0Wp25HL5bBarTI8cDNGza0oX3dzXmu5bqsdZzMb7bLxXWeI+FxdXR2Dg4PYbDZMJhNarRatVksgEKCuro76+nrGxsZwOp2yfQ8gCe9VVVVLDQlVFafTKTmWbrebWCxGa2srVqv1pg9XMpnkzTffYsuWbqqrqyVJ/o033qC1tZXu7m6KxSKjo6M0NDSg0Wh47bXXePzxxykWi1JlTCwp8/k88Xgcq9WK1Woln88vC2cID9npdMqQwmqiN7BkfBOJBB6Ph+bmZgqFAi0tLZjNZiKRiGwLpNfr0Wq1LC4ukslk8Hq90vPW6XREo1FgSbSoWFyiHjU3N6PX6ykWi9hsNhxOJxVeLzMzM1LoXMQ07xXimt4py2W15XlprHO1366Mr95qX7c63mrL9ZXHLqXMwdKzKIT7xf0V35XGhW9m/G83KZSe2+3OVcSjV9vuo4qy8V1nuFwunnzySQBeeOGFW/72M5/5DAB79+5d9vmuXbtu+O3s7Kxs3yPEu2+FbDZLKpVkZGSEK1euyHCCqqpcvHgRnU6HyWSS2g7xeJxiscibb76J0WhkdnaWzs5OBgcHsVqt5HI5LBYLO3fuJBAIMDY2hsFgYHZ2Vnqq+XyexsZGRkdH2bt377IKuVK0t7fT3t6+7LOVL2upMPnKl7LUMCmKsur+PvvZz6IoCrt3777ttbobJBIJ/uEf/oGWlhaqq6tlYkxMoiKTn06n5eR59uxZMpkMBw4ckMbsxIkTBAIB2tvbsdlseDwecrkci4uL+Hw+/H4/yWSSrVu3SknNwcFB7HY7Xq8Xg8FAOp2WcqWqutT5Q6/Xc/z4cR599FE5UYnQkthGp9Ph9/upr6+X+y4UCkxMTLB9+3ZyuRwDAwM0NDRgsVjktoVCgWw2y/j4OOl0mp07d8p7I7p6vPXWW7JbdiaTwWKxkM/n5Qonn89z+vRpnE4ni4sRPv7xp3nnnXdobGyUYSFx38+dO4ff72fnzp0sLCwQCATQarUcOXIEh8OBqqoynp9KpTAYDMRiMaanp+/b/V8PlI3vBuFmBgVWp21VV1dTXV19x/tXFEV6kiaTScb2hNyk0+nEYrHgcrlIp9PU19cTCARIJpPU1dUtoyQZDAYsFotcdtrtdmkcrFarTMA5nU5ZcLKyrbkY090s2VcuKRVFkTHi0l5yd7q/9UAul2NmZoZt27bR39/PqVOniEZjtLe3USwWmZqawuFwMDo6yuc//3nq6uqYm5sjnU4TDAZl37VIJMKRI0d4/fXXMZlMctKbn58nn89jMBgIhUJcvHiR7u5u4vG4jGdrNBrZr629vZ1HHnmEQDDIu++8g9FolKGbWCzGyy+/TFVVFcFgkFAohE6no7q6mrm5OV599VV8Ph+ZTEaWE2/bto18Ps+FCxd4+eVX6OzsYGFhAa/XSzqdlonafL7AzMwM+Xwep9PJxz72MXK5HOfPnycSiWC325mZmeHnfu7n5ORut9t57LHH5MT1ne98h2PHjjE9PY1Go2X79u0yJi80rbu6uhgbG2NxcZG5uTna29vlMxaJRPjud79LQ0MDMzMzstBCp9OVje8/FdzpCy8eQrGEFi2F9Ho92WxWZpJbW1vXtN9SOJ1OnnnmmZsuX8WS7bnnnpN0IvEbVVWlN77SIxX//tznPrcqy2B6eloa6NWw1nNRVZXTp08TCATo7u4mGAzidruZmpoilUoxPT1NQ0MDHR0dH+oSVKPRcPDgQemNaTQaYrEoc3Nz6PV6mpub0el0cvKDJeqZ6L4hrrVWq+X48eM0NDQQjUaxWCyoqorD4cDn8zE3N0csFsNutzMxMYHNZsPn88mOHUajke7ublkmrb8eKrJYLJIJIpbrWq1WGiYhqJTP58nn81RUVKDXGwBVdvrQaDQ4nU5SqRQej4eqqipZrRiPx2ltbZXVa6lUisXFRVRVRa/X09nZKSePjo4OTCYT6XSa/fv3U1VVhclkkt769u3bCQQCdHZ2kkqleOedd6iurmb79u1oNBpcLheTk5NkMhmcTic2m42DBw8yMzMjk8CiynPbtm2yY3VpF+zNCEXdrETMe4TIwEcikdu23bkbqKrKyZMnOXr0KM8//zx///d/f8cvv6qqfP/735dGL5FI0NraytzcHLAkYL5jxw7ZsPJO9vv222/zx3/8x7z44oursg5KjeRa+JG3i+ndSXIjEAiQyWTuqsJNVVVeffVV4vE4iUSSurpaJicncbvdRCIRtFotDz/8sOyusRbk83mef/55gsEg77///h2zNUSsVNy/QqHA6dOnKRQKHDhwQBo8wRIRsW9hdEUbJvigyEUwPHK5nFxyi8lNxNdXxuFFqe5K4yo8WGDZOESBhKD3Aavye0X8XBxDjEnc73PnzpFOpzl06JBMsooybeGxlp6LGIf4fKUzIGLn4toWCgWSyaSktRWLRSnSU7pNKpXCbrfL0mWR9C3lMpeuHm8WU14vrNXmlD3fDcKRI0fkg6jT6YjH47S3t1MoFGRo4G5xM/bDzMwMyWQSm80mK5REnEwIqwg1KhG7815PViWTSaqrq1lYWMDlcslkl6Is1fiLtkMrj78ec/vu3btlu6VkMsmDDz4ol/WRSOSeG1TeDRRFIZFIEAqFGBsbw+v1ksvlOHv2LF1dXQwNDWGz2di2bRuKojAyMoLBYECj0SzrMCwSsaqq0t/fz8zMDO3t7bhcLlwu17I48kpDEolEiMfjkrkhrrX4fSKRkGEjMbGITtB1dXVy9SOEdASFEWBoaIjKykpcLpccn+B+P/DAA4TDYebm5pbtp/S+C90HMUnNz8/j9XqlERYhDZPJRENDA/F4nJGREWpra+no6JDbimttNpulR+5wONBoNITDYYaHh0kmk9TX1zM6OkpNTY0sFNq7d++aKHEfNsrGd4OwktazshWPwHrO0sePH5exX4fDgclkYmpqioqKCnw+H2NjY1RWVjIyMkJVVZUUQLl27Zo0si6Xi3g8jsvlYm5ujubmZiYm/Hzuc/9s3VgEK1F6bYShFQk5EQffiKx3MBjk/Pnz0ijlcjm6urro7e3FaDQyMjJCR0cHOp2On/70p3R0dMg28E1NTQQCAbZt2yZDJqLLdV1dHS+99BLd3d34/X6OHj1Kc3Mz58+fZ35+Xi7zfT4fg4ODNDY2Mjs7S2NjI/Pz83R3d9PZ2Sm1FLLZLHv37qWmpobvfe97ZLNZWltb8Xq9jIyM8MILL5BMJjl+/DjRaJSWlhYuXryE2+3iF37hF/D7/Vy4cIG5uTmOHDmCx+Ph+9//PtlsjoaGejQaDUVV5dlnniGdTvMP//AP5HI5tm7dSqFQIBAIYDabmZ+fZ8uWLezZs4e+vj6y2Syzs7Nks1kmJyeZmZmRwkQjIyOcOXOG9vZ2BgYGqKioYHx8nMOHD7Nt2zZUVeXMmTMsLCxgMpkYHR0lk8ngdrsZGBigtraWiYkJtm7d+qE/F3eKchuhdcRaOIl3+r+7Oe5q4xBLtcbGRpqamuQLf+DAAVKppYy8KGdtaGjA6/XicrnYtm0ber2e+vp6Ojo6ZKmpaARaVVVFTU31qsdcD693Pa/TemJ2dpYrV65gMBiorKzkn/2zf7YkE3ndyxSdkhOJBFqtlqamJpLJJLFYjMnJSRYWFojFYgwPDxMOh4GlYhi73S7522fPnpWNM2GJtz0yMsLExMT1MSx1qO7v78fv98t9joyMAEhZR51Ox8zMDFqtFp/PR21tHTqdjsuXLxOLxchkMiiKwszMjJT/7OzskL3wRBfrQqGAx+ORK53q6mqMRiOXLl2SzUxFVWJFRSXBYJCxsTH6+vokR120fhIrrbGxMVm40d7eLidTv9/P2NgYfv8kzc3N9PT0SBW3YrHI8ePHyWazmM1mjh49SldXF0ajUToAohXWZkY55nuXKI35vvDCC3zve9/bUM7hsWPHbhnzBTh//jxbtmxZs+TehQsX6O7uvmupvkAgQDqd3lSqZrAUp7zbmG82u9RVuKamBo1Gg9VqZXJyUi7p5+bm5ASl1WqJRCJyMgqHw7hcLvlsCoGaYrFI/LrWby6XI5PJsLCwQENDAyaTiVAoRCwWo6enh+3bt8uilELhurav2000GpUlwqlUimQyyeLiIvX19RiNRilsI4xpKBSiubn5+rETBIMBampqZAKrsrJSeqYejwer1Yper2d+fl72GIzFYlK7QcRrxbnGYjGZ/DJfL00XnVDGxsbQarV4vV7ZVVtoPi8uLhIKhXA6nZjNZlKpFKFQSF6LJWaEBpPJhNPpJJlM4vf7cTgcGAwGwuEwVVXVOJ2OZfcNyjHfnykIL2cjje/09DTJZFLGFleDy+ViZmZmzft2OBx3tZ3A/Pw82Wz2g2aSmwT5fP6uG4GKLH46nZb3XcRyVVWltrZ2WdWfoOHlcjkpkrNS60Oj0ciX1mAwYLVal8WzPR4Pbreburq6G3Q0hJdauk+z2YzZbJbfATKmKyC8yaWQkhOXyym/E4wVg8EgmTcCwpjCkqSqSAgWCoVlTJeVRiiRSMhkWOk+BXujdFylesUWi2XZeYhrLRKCVquVrq4umSxceZ6bEWXjuw7Q6/W3FIC5GdZTlclut8tx3IztAKtzZu9mfGsZuxDyWWls1vP814JStsDdajxks1nOnDnD3NwcLS0tkpEgGBhms5lr166xe/duqd9x/vx52tvbKRaL2O12WVwxNTVFa2urvD6jo6OymjAajZJKpdi3b5+8r319fVIjWavVkkwmyefzNDc3MzU1xc6dO6W+xeDgIDqdnqamJTpje3s7ExMT1NbWMjs7S01NDZOTk7S0tDAwMIDX6yUUCsnf7dy5E4PBQC6X49y5c+RyOerr6yW/2Gw2c/nyZRobG/F6vfj9frq6uhgfH6epqYnx8XHq6+tpaGigWCzy3e9+lwMHDlAsFmWoq7m5mWw2S09PD6lUSlIt5+bmsNls0oMXnrFQzotEIhw/flzqini9Xs6ePUtTUzMdHe0bkohdC8rGdx2g1+ulVoEwcqX0GWBZMkrQcoRXVEoBE/8VtKLS72+FUuMrst1if+J4K8tHbxUzLaXrrDbGYrEoaVO3gtAByGQyy14GkQUvHV8pBar0d7c7nthXKUVqtd8A0kjeq/GdnZ0lvLhILBajv7+fxcVFWlpayOVyRKNRXC4Xer2eN998k+7ubtnp5Ny5c9TW1nLs2DE6Ozs5c+YMMzMzaDQaKQ7e29vLtWvXaGtrY3p6mlwuR11dHQ0NDSSTSV566SWZ1a+trWVkZISmpiaOHz+O3W6XFLXBwSEZrz116hSKstSaZ3h4mLa2NsbGxmhububixUv4/ZOYzSZ+8pOfUFNTI3/X2NiIz+cjnU4zPj5OoVAgHA6TzWaJxWJUV1ezuLjI7Ows9fX1nDp1imw2y6VLl2RoQIQLBG/4ypUr2O12kskkhw8fBpYms4sXL2K3O1AUSKczzM7OkkwmZIhmZmaGlpYW2tra0Gg09Pb2ynsRCCyFS6LRKGfPniGZTPDQQw/dc0ut+4my8b1POH78uOQiVlVV0d3dLTmh4+Pj5PN5urq6JFdTVVVZ9qkoCm+99RZPPPEEWq1WGhXBmyxtgHg7w6yqKv/wD/9AU1MTGo2G6elpWlpaSCaT7NixA0VZknMUxR2lHtyVK1d4/PHH5XfCWOVyOaanp5mfn2ffvn1LLW50OinKvhrlTIxFYGZmhtHRUbq7u7ly5QqJRIKnnnqKQqGAqqrLDKSiKDKhtGfPHmmsxe/EC97X18fhw4fl9RITYCkf9pVXXuGpp56655fS5/NhNplkJ97Z2RkaGxtJJpNy2T04OEhHRwfz8wu0tbWRy+UwmUwEAgGOHj1KdXU1iUQCq9W6bFXg8/kkBWvbtm2Mj49TWVkpKVeirFYUKjQ3NzM4OMjevXuXdTFpbW25zn9eYofMzs5Kr7Gurg6NRoPX62XXrp1UVFTw5ptvcvDgQWw2myzXFgUiRqOR/fsPoKrLG2lWVFRgNBrJ5XL4fD66u7vlPWtvb5fcYoGdO3eSyWQIhUJs3bqVyspKeZwDBw7IcuGliXYpNr2wsEA4HObo0aMy4QfQ1dXF6dOn6ejowOFwSGpcNpuVcqebme1QNr73Ca2trbzyyissLi7S0NDAqVOnCIVChEIhduzYQW9vryyV1Gg0NDU10dTUxE9+8hMc11X933//fbn8dLlcjI2N0dDQQHV1tXx5bgfBR02n0/h8PsLhMB0dHezcuZMzZ85gMpnYs2cP7777rkzwAFI9LZPJ8N5771FVVcX4+LgsUbZYLFy9epVoNEo0GsPlchIOh3nmmWdum5hTVZXx8XEuXLhAe3s72WxWFiAcO3aMYDBIR0eHzMRnMhlMJhPj4+N4PB6uXLnC3NwcW7ZsIRqNsm3bNhwOBwMDA/T29rJt2zaSyeQSBapYJBQKYTZbcLtdkhZ2r9Dr9Rw9elR6zjt2fKBjIVYYbW1tssiiFMIgCKGkpqYm+RuNRsMDDzyw7PeluhUajYYjR44sOw5AU1OTnGTEdw0NDfL7TCbDjh07AGhubgZg27Ztcr8LCws8//zztLa2yoIK8TsxQbe3f9AxWlVVtmzZcsN+BLZs2XLDKqRQKNDW1kYmk2Hr1q3LJmmj0ciuXbsoFovSARAdqqenp9m/fz8+nw9FWRKYSqVSFAoFDh8+jNVqpa2tTY5bFKmsx32+n7jvxvff/bt/x9e+9jV+8zd/kz/7sz8Dlh663/md3+Hb3/42mUyGp59+mm9+85tSzQpgYmKCL33pS7z11lvYbDa+8IUv8PWvf/0j0yqkuroah8NBbW0tdrudgYEBbDYbuVxOZkRnZmakuLcwpiJ0MD8/z+zsrCS3+3w+EomE9BTWQkPT6/Vs376dYDCIzWaT4QThhQkvRui0zs3NMT8/L6uHJicnqaqqYmFhAaPRSD6fl1164/E48XiMzs4OZmdnZYHGrRCLxVAUhdbWVgYGBpaFW9ra2mSGPJFIYLfbKRQKVFdXc/XqVVluK1TfMpkMwWAQr9dLVVU1iUScRCKB2+1mbGwMvV5/PcteYHZ2dplHfC8IBAIcP36cw4cPE41GpZiLUKtrbGzE7/czMTHBJz/5ScbGxshms6TTaWw2G62trfzwhz+kpqZGCprbbDaampoYGBiQVW+CIhgOhyUVTeggiyIDkYi6cOECu3fvJhaL4fV6JQ/b7/ejqksdqYXeg6IobNmyRVa//e3f/i1PPfUU0WiUdDotl/hTU1MUi0Xq6+uZmZmRqnDFYpGOjg6uXbsm++A5HA5JORsZGZEGWFTxTU1NsWfPHi5dusT27duZnp7GbDZTKBSoqKjA7/eTSqXkc7plyxYikYh8h/r6+qQSX01NDZcuXcJkMtHe3s6pU6c4dOgQTqdTTm73i3e+XrivluzMmTP8p//0n9i5c+eyz3/7t3+bf/zHf+R73/seTqeT3/iN3+Azn/kMx48fB5ZmyGeffZbq6mref/99ZmZm+OVf/mX0ej3/9t/+2/s55HuGMIparZZPf/rTwNJDIOg74u9f//VfB5CxXbHUr62t5ejRo7LsU7x8er2e1tZW+fCvJVH1mc98RtKZ6uvrZVWVUKPS6/V8+tOfvsFLEV7u5z//eemJiPCH0WiU3osIh7S3t99RZZ7VamXfvn3A8ti4Xq+npaVFelyl3ouiKPJ4e/bskefQ0NCw1AVXo+Gppz4mk0MGg4Hdu3cv8wRFLN1sNt8zBzmfX1pav/vuexQKeQKBACaTicrKSoaGhmhsbMRisUj9hLNnz1IoFKSQfnNzM1arlWAwSCqV4uLFizQ2NlJfX8+FCxekyL1o9ZTL5TCbzYyNjWG322ltbeXNN99kcnISr9dLPB6nsrKSl156CVhiNVitVubn5xkZGcFsNksO8fDwCE1NjTQ2NmK1WmWV2Ntvvy2TWoFAgGAwSDKZZH5+nv7+fkwmE5FIhGAwKLsh9/T0SGqdaI4pQg0//vGP8Xq9GI1GqbMgume89NJLxONxFGWp43NPTw8mk0ka6lwuxyuvvALAc889Jz3esbEx5ufnefjhh6/zoxXZqFRMbsVikbm5OcLh8Kpe+WbBfTO+8XicX/iFX+C//Jf/wv/5f/6f8vNIJMJf/uVf8q1vfYvHH38cgL/6q79iy5YtnDx5koMHD/Lqq69y9epVXn/9daqqqti9ezd/9Ed/xO/+7u/y+7//+6vG68TyVEAQ0zcSpbHZlYmd1Tx4l8vFI488smy7222zGjKZjFRFE0s6AeGVikSYeClWqpCV0n7ES6HVapeVqq48N7FkFH/fzMDd7PxguUcvqvHEeefzeSkaI1Dai0yURovl5/1sIe5w2NHpdHR1dTE7OyvZLnV1dZjNZqnCVVFRgU6nk3F2Ua2nKArd3d3kcjmKxSJ1dXWytc/u3btRFIWJiQl8Ph91dXXXl/AaGhoa5OS3Z88ebDabjBfrdDoaGhpIJBLU1tZKj7RQKOD1erHb7czOzvLYY49iNpsJhULo9Xp0Oh2//uu/LotCllpGXWHr1i2k02lGR0dxu91cu3aNbDbLoUOHpNKdULZzuVw4nU5MJhOquiRr2dDQIPWfhWgULIVRWltbmZ6eprKyEpvNxuzsLMeOHePpp5+WCUZRTZlOpykUCtTX19PW1sbc3Bxms1k6Ay7X0nEdDgeXL1/G7XbT0tJyQxXpZsN9M75f/vKXefbZZ3nyySeXGV9BVxGatwDd3d00NjZy4sQJDh48yIkTJ9ixY8eyMMTTTz/Nl770JXp7e9mzZ88Nx/v617/OH/zBH9yv01kzSuNxqyEcDpPP51EUBbvdTiKRQKPRkM/nicViOByOZbzGlfu+FQYGBojH4+zevVsKkohjpVIpqc/72muv8cILL3Dt2jXJWXU4HPT395NMJsnlcuzdu1dm6mOxGCaTCa/XK6lGVqtV7vPEiRNUVVVRVVUlDX6pstTNrkmxWKSnp4fW1lZJwxodHWVgYIC6ujoZ2y1V8nK73SwuLqLVaiXtymg08sYbb7Bnzx4Zl87lctjt9nWntDmdTj75yU8CsH379mVUPqFj3NbWJtkl+/fvv2Efq2kWF4tFuru7UVWVjo4OmVQshdhnS0sLra2tN33OxDmXJp1WS0CJ4wijD8jiEVVV5ThFrz4xgaiqysMPP7xs/LfS9RDfiee6dCwejwev10tnZ6dcrazsNiK4vWJ7MS4RGy799+3ev82A+2J8v/3tb3P+/HnOnDlzw3ezs7MYDIZlBGqAqqoqZmdn5W9KDa/4Xny3Gr72ta/x1a9+Vf4tZt6NxK04sq+++iqZTAaj0YjNZqNYLEppPIvFwu7du+VDtlbDodFoGBoa4t133+XAgQMyJglLBQ82m00a4Fwux9WrV5menpaqXFevXqWxsZGhoSHZ68vr9RIIBNDr9Tz33HO8+uqrqOoHXTaElzowMEB9fb30VFYKxd+MAXH58mXGx8cpFos8+eSTDA0NkUwmuXz5siwgcTqdzM/P4/F4eOSRR3j55ZfR6/Uyji3CCufPnyefz8u+bo899thdXcdbIZ1O88orr7Br1y5CoZBM+InYvd1up7m5mVOnTtHV1SWru65duyYTaCL+LCao9957j/n5efbu3cvMzAxTU1PY7XYeeugh6e3HYjHeeOMNtm3bxvz8PPX19Zw/f56WlhYmJyeprKyku7ubgYEBtm7dKruNjIyM0NDQIClepY1EE4kEV65cYWRkRIYIstksW7du5erVqyiKwlNPPSWZEqqqcurUKZqbm69/r8FutxEOhzEajQSDQZqbmwmFQjz66KP09/fjdrvxeDxotVr6+vpob2+XHryqqrIL9nrep40seroTrLvx9fv9/OZv/iavvfbaqoLa9wv3qgT2YUIYLSHlVywWMZvNUlZQCJTfLRwOB1VVVVIVq7m5mf7+fpxOJ16vF1VVZXNPvV6Py+XCYDDIeJ/wbEQzysXFRSorK2WLH51OJylBOp0Os9mMyWQiGAzKyiyh33onUBSFyspKcrkclZWVshFmKpW6rjO71BZIxDZF9Zg4P0GZSiQShMOLkurl8/mYn5+/6+t4K6TTaaLRqNQvVlWVyspKrg0O0tLcLIse+vv7GRoaQqPVYrfZlpUyezweDAYjzzzzCZn0rK+vZ3x8nGAwyOTkpCxyGB0dxeVyYTQacTgcHDv2DouLYT7+8Y/LSamvr49QKERLSwsXLlxkZGREvoN9fX0AUu/2kUcekR52IpFgcnKSubk5qqqqWFxcxOv1SifI7/ezuLiI1Wplenqa9vZ24vG4bE46OjpKOBzCbrfLXoETExMysTw5Ocnly5dJJpNS0P3y5cuyIWxdXR1PP/30pjeW6411N77nzp0jEAgs83gKhQLvvPMOf/7nf84rr7xCNptlcXFxmfc7NzcnRTWqq6s5ffr0sv0Krdu1dHP4sHGnFVvCkyhdGq3cdi0P4srlVUNDgzRQYr+i0aY4pthGq9XysY99TH6u0WhuWEqKz8UyUVEUPv7xj8t/l1aMlR7zTs9BUZQbxrB7927ZTkkkHTUazbKWNc8888yyayDGIDzKm/GN14rS6yv2pdPp8Hq9ZDIZmpqaiEajjI+PY7fZqKqqIpVKAcjuH4qi4PV60Wq1LCws4HQ6pTETfGCLxSI1IVwuF3a7naNHj8pyWYPBwOLiopRnrKjwSmGdQ4cOUV1djdPpvB4n1+J2uwmFQnR2drK4uChXMNHokui7yWTC4/Hw2muvSZGkw4cP89Of/hRAKoQlEgnppQrp0NraWnQ6HefOnWPLli3EYjHi8bhMcl28eFEabKvVysLCAk1NTczPz9PW1iYF6G02G5FIhLGxMclFvx/YjCGIdRfWicVijI+PL/vsi1/8It3d3fzu7/4uDQ0NVFZW8j//5//ks5/9LLAUo+zu7pYx35deeonnnntOdqIF+M//+T/zr/7VvyIQCNyRh/thCus8/fTT/Nf/+l/X/Rhrwfvvv8+f/dm/5+/+7r9vuqqe+fl5MpkMdXV1Gz2UZSgUCvzSL/0y0WjklsI6pdVxpchkMjK5B0tJylKhdFG0UiwWuXz5Mlu2bLnh2S0UCmQyGRwOh8z0lyZnVzNGopeamKxKxdYFC0SIi587d47du3dLIR1RDCPGa7PZ5HmI4wmNBrEN3JgwXnlNxApOFL2IJqxi1ZLL5RgfH8d2fXIS5y7Or1TM/X5BUZSbVkCuBzZcWMdut9/QONFqteL1euXnv/qrv8pXv/pVPB4PDoeDr3zlKxw6dIiDBw8C8NRTT7F161Z+6Zd+iT/5kz9hdnaWf/2v/zVf/vKXN2VoQTQU3EgsxTyLGz6O1SBiy5ttbEvVdHcW3onH4/zFX/zFXQvxAJI69WHj9ddfv+GzjdLV2Ehs375dOnybARtSsfCnf/qnaDQaPvvZzy4rshDQarW8+OKLfOlLX+LQoUNYrVa+8IUv8Id/+IcbMdzbwmw2b3hyTyRLGhoaNp3nazQayWQyG36NVqJQKGAymWSHhFvBZrPxW7/1W5ty+VrGnWGzFV18KMb37bffXva3yWTiG9/4Bt/4xjduuk1TU5OMPX1UsBrN5vLlyzLW1dzcfMfLnmKxyPDwMHq9nkQiQXt7+7K6/Ts5/uzsLNPT03i93mWFC6JThWixMjk5KQsESrePRqNcvdqH3b7UtFHwPdvb25c9yKIFjYhnimz+SrpP6fiKxSIXL15Eq9XS3d19w4QxOjoqRck7OzuJxWKyYuvy5cvs2rULrVZLKpVieHhYtp5ZeZxsNks4HJalqXcDsd16Tmqly/ZS6cnbbaOqKjMzM1JERqvVrtqsVFVVrl27htvtprKyUnKwxTms9qyW9mq7l/MS0qYiz/BhQJyDUJW72TXZTPho1Op+hHHt2jXq6+uJxWLMzMwQiUQoFoskk0kikQj79+/H7/czOTmJwWCQcdFQKMTg4CBdXV0sLi5KwezDhw/fUYWboiy1Vx8dHeXChQscOXKEcDhMMpkkFApRV1cnBVlEnLCnp0fqprrdbgqFAjMz0+RyFfT390vCe0NDA8PDw0SjUTwej2yZMz8/L0n9XV1dtx1fX18f+Xxels6K/nKpVEpKDo6Pj8uy5nA4THNzM1euXCGVSsn4qOAkm0wm/H7/MqGiLVu2MD4+zpUrV9i6dask3q81oVkoFHjvvffkcWpqapiZmaGiokJ2ghCxTliiRFZWVpJOp6V2hdFopLa2lunp6evJwSLJ5FLJuNVqlVoJAwMDzM/PoygKbrebdDq9TGwomUzS39+PwWCgurqaEydOyJbulZWVkhImWBMXLlygsrISv99PZWUlBoOBhYUFFEXBarVSWVnJ3NwcU1NTfPKTn5SVbD09PdTX1zM/Py8blopCDaGeF4lE2Lp1qyxoSSQSvPjii8RiMVKpFDabjXg8zoEDB4ClxPnIyAjV1dWyW7O4foIGKUqZt2/fjk6no7e3Vz5rggNus9lwOp3Sqbhw4YIsynA6nfT09NDW1obP5yObzXLhwgUaGxs3VcJ+c/nhP4OwWq2yjDIUCnH69GkuXLggM9eiF5qqqly6dAmDwcDg4CAjIyO4XC5mZ2cpFAqcPXt2WVPBO4EoS47H45w6dQqz2UwwGMRut3Px4kWGhobIZDKoqsrVq1el7sSJEydkCa5IuBgMBpmAEYUbly9f5vLly2g0GoLBIDqdDrvdzuDg4B2NL5/P8/DDD1MsFrl06RJTU1Pk83muXLlCLBajWCwSCASkQRWGTXh/gUCAQqFANBplfn6eq1evkkgkrov9RAmFQgSDQebm5vD7/XcUXrgVZmdnWVhYYHp6muPHj2MwGBgZGeH8+fNcvXqVoaEhrl27xsjICMlkUuruivY8s7OzHD9+HKPRyNTUFIHAnPTML168KGUzFxYWyOfzTE5OMj4+zszMDH6/n2vXrjE4OMjExASzs7PodDoCgQCRSISLFy/S39+/bLxi9RKPx5mcnCQajTIxMUEulwOWJviJiQlOnTqFxWJZlvRaWFigt7eXN998UybuTCYTZ8+exWAwMDw8zNWrVzl37hxzc3My8SYSbna7naGhoRue2+npaS5dusSxY8cwm83yubxw4QKqqnL27Fnm5gKcPXtW5ghEq6LLly+TSCTo7e3l/Pnzy3RBTCYTvb29pNNpJicnGRgYkIn/ZDIp78tmQtnzXUesZhiPHDnC9PQ0TU1N5HI5nnjiCSkjKNTLisUitbW1dHV1yW6wZrNZJnd0Op3MHq8lW1tdXY1Go5FqUQAHDhzAZDLR0tKC0+lkZmaG2tpampqaWFhYwGKxsG3bNil40t3djcPhYMeOHfj9fsxmMw6HA7vdzqc+9SkURcFisfDggw9Kce87LYM+ePCg9ESrq6vR6XSyQ4LdbsdiseB0Lqml1dXVyaKTgwcPLiudFrzT0so7cS9EW5m9e/feUycNUaUmElUajUZKFwolMKvVSiAQwGq1LhPwEV4fLBmndDrNgQMHUNWlzsTpdJru7m5JzxP7s9vtNDQ0cPXqVdLp9LLQk6qqsh1PVVWVpKyVTjCis4NYBQiKZ01NjUyCCmqfqqrL1NQ8Hg8HDx7E5XKxuLgotRQeeughEomEbLCayWRIJBLEYjEp5L9nzx6532KxuExmtKamhoceekh20H7ooYcAePDBBykWizQ0NOB0OnniiSdkGKm5uVlqjxgMBg4ePCjpd2K/HR0dMmwmqhqrqqpQVRWTybSsaGmzoNzD7S5RSjV7/vnn+fu//3v5+cpMstA3Ld22lI4kFMS0Wu0ySk9pXFB8fjPD+/bbb8sebnfDCBFaD4lEArPZfMM+BKXpduNYbb+BQIBMJrPperjl8/k76uFWWvorzlvQqkrpUkIMSUgawgfXSfy3dF/FYnGZNsVKmhksGRLh3QstW0FhK70XmUyGQCBAZWXlqvd/5fO3GhdbfC4mjZVi/ze7NuIalP5OKOetB8d6tWtT+o6JMaw83u3KrtcbG041+6eOsbExvF4v165dw+PxSE+kWCwyMzODzWYjFAqh1WrZvn27jB/GYjFee+01PvaxjwFLYuPV1dVks1mOHz/O448/Lj0u8aCJ7q1rMYQiIaLT6eQkIF7mV199leeff55isUg6nZbfCVH4999/nyeeeGKZARLi7uv9QJdOPEJgXaPRkMvlpGiQMGCAFP2B+/NyqarKwMAAOp2OWCwm4+8//elP2blzJ3NzcySTSTKZDE888QTRaBSdTofNZsNgMJDJZJZ1FMnn80QiEbLZLDU1NRQKBd544w2efPJJ9Hq9NGgvvfQSzzzzjFxii3Y8PT09PPHEE7LZpqqquFwumTRLp9Mkk0kURcHj8ZBMJpfFjGOxmOxzVprsKxQK9Pb2SkF1nU5HKpWSwjh6vV7ygku7goj7UigUpASA8I5Ln1VYStCK+ye2NZvNUmRI7FMY8Gg0ypkzZ2SZeDqdJh6P4/F4yOfz8n2qqqqSnn6xWMRischGn6IKczPR68rGdx1RLBY5d+4czz//PIFAgL6+PpLJJF/4whfQ6XRMT0+j1+vxer1ks1nm5uYIBoM8/vjjnD59mkgkwqlTp4hEIlJeMp1OMz09zQ9+8APq6uqIRqNkMhl8Ph+BQICHH374Bh2MWyGRSPCDH/wAl8sls8KizFMkA9977z05cQQCAex2Oz6fj7m5OV599VX5QkUiER555JE1HX+tEDKj4XAYk8lEOByWBmhxcRFY8jiOHj16Xz1r8dImk0kGBgZwOBzEYjFqamp49913ZeJqdHSUH/zgB+zbt4/h4WGamprYunUrr7/+Om63m8nJSQqFAp2dnYTDYSYnJ6murqa2tpbFxUVeeukl7HY7mUwGs9kswyiFQoFYLEZzczPvvfcexWKRl19+GZfLRSqVktVkyWRSJsk0Gg3t7e1YrVZ+8IMfyLLv2dlZfD6fbHm0bds2FhcXSSQSJBIJbDabDPUkk0muXr2K2WyWIYaFhQW8Xi/hcBiLxYLZbJZdTCoqKrh69SoWi4VUKiWr9QKBAJ/+9Kfp6+sjHA6TyWSk17+wsCC/6+/vl5WAqqqSyWTI5/OMj4/LPnM2m43FxUWpZJfJZLDZbFy7do14PC63eeGFF+jv7ycQCODxeHC5XOzevfu+PSNrRTnhto4QsVq/3y87s3q9Xnp6emQHBdFCRZSlarVLHkAwGESr1TI3t5SEEZqqIoNdXV1DIBCQjQRFNlzQxdYCj8cjtRLEPgOBAAaDAVVdEm/P5XJL3lwqxdTUFDqdTnpWi4uLVFdXYzAYpHG4HxAv1/z8PNFolOrqaiorK9m5cyfxeFxqOlitVlkJeT8hlrpNTU1S2Fyn01FRUSF7+Pl8PqqqqjAYDNjtdubn56VYUj6fl4I2gv61lFRdKp0X9KjFxUV8Ph8LCwvLPERhaEU8XKPRSN0Nq9Uq9Tzi8TjFYpHGxkYZWhBlzuFwmLa2NslNFxq/YslsMpnw+XzSAQCk0yBaJDkcDvmMin1WV1czMzOD1WrFZrNRKBQwGo1otVoSiYRMxIkEr9vtJhAIkM1mZduktrY22ZJIxInNZjPV1dVotVrGx8elZkg+nycajco4sPhbxPgtFouMyYsGrqUKe5sB5ZjvXeJmMd/5+XkpPCOWjkLcW8R+hU6B0Bz2eDzLWpCXxhBF0qK01FMI2gjvSFEUjh07dtuYb+lSXizNSuNmIjkhlrGl2wlPpFTDoVgsygTQrRTc7ibmK44vymRLm3mKa1FaWlsaD7zTpeVaY76lYQNxTwRPtzReKlgDYmyi3Hdl7z0RMll5H0r50SJhVSgUlvWmK415imOW6myIZ07cO5FsFPsVYxThHCE5Wjo2wT9OpVLSKIqQyGrXp/Q5EX+rqsqJEydQFIUHH3xQit2L8IUwyuLell5j0RtQnKPYn7j/4h6UXrPSaye+E8nq2z2r94pyzHcDkM/nicfjANLwrSxDXZlpV1VVGgyx7a0g6EEr/04kEgCS9xqPx++pjPdmY1l5/Nt9XgrRC+5eqV43YysIz2atEFoKdwpFWWrk2dDQsGwiWAlhJAwGA+FwGJvNxsLCAm63e5nS32oVV4VCgampKRoaGqTYuKApihZTwoiL3wqRG4FcLie7CSuKwvj4uPTYV0KMa2Wir3SiMJvNslhnNQ0Gcb6hUAiv13tD0uuRRx5ZlmQW78hqYvfiuMVikdnZWTnmlUUoItk5OTkpPfxSFItFFhYWqKioWGbcNxM234g+ghDcwo1EMBgkk8kwNTV11+3Q7xdEmGWzQXCW7wT5fJ5XXnmFYDDI3r17qa6uJhgMsmXLFtkYVbAcFhcXyefzuN1uyZ1+77332LNnD6lUiu7ububm5mR8VavVSonPQCDA2NgYZrOZt99+m0984hN4PB76+vpwuVyMjo7K3oDvvPMO8XicpqYmWltbmZqaYuvWrVy5ckVec7vdztmzZ6WoTDabJZvNUigUcLlczM/PSy3nuro6pqenaWtrQ1EUpqampKco2gjt3LmTaDSKyWQiHo9jtliYuS6rKUR60uk0uVyOdDot48b19fX09/dTKBRwu91kMhmKxSKtra2Mjo7KDtQOh0MaytOnT8t+fJlMhkgkgtPplHKdK+9HIBBg69atMnQXiURkuE9VVTwez33NT6wVZeO7DrDb7XR1dW1oJnV2dhar1UpnZ+emEx8SYYfNqO0gKupuB41GQzKZxGQy0dfXR19fH42NjeTzed566y3sdjvxeBydTofBYECj0dDT0yMTU5WVlVy4cIGKigppAN955x2ppex2uwkGg9TW1qIoCu+++y52u12uLITnNzg4iE6nk81D9Xo9Y2NjjI2NySSaRqORFZX9/f2Sinbq1ClgSadieHiYnTt3Mj8/TyqVQqfTEQwGCQaDNDU1EYvFOH78uOwCImK3p0+fZn5+HoPBQGNjIzMzMzQ0NEiWhIjBipBCKBSSHbyHh0cYGxtlz549TExM0NXVRaFQoL+/X4bgtFqtbMSp0+kYHR0lEonIqryrV6/Kdy2VSmE2m+nv76evr2/ZOARt0mKxYLPZCAQC7N69u2x8f9ZQGn/7sA1wKZ/0ZuNQVVV2pDUajZjNZtk14GYQccjVzkdVVUZHR2lubl71Nys5rSs/3wxYa6pDURQ6OjqW9ZUTlL9du3bJzhmjo6OSlSJ6stXX1xOJRGhpaSEQCGA2m2lubuaxxx6TSaWFhQXZ3FQI6wcCAUKhEJWVlVRUVGIw6Glra5NdrsWSXAgELS4uSkNuNpuJxWJ0dXUxMzMj47FOpxOXy0VLSws2m00yK4Quh2hCaTabZQPScDhMVVUVmUwGt9st2Qoi2SvimyIJaLVaSSQSskmA0AB+4IEDdHS043Q65XYikSgYDrAUNhEJTIPBgNPplLoeojhJMDnE2Eupb6KgSXTBFhPV7Z75Dxtl47uO2AjjUnrMW00A6XSad955B6/XS319PRMTE9jtdlmR5XQ6WVxcxOFwkE6nGR8fZ+/evTgcDoaGhnG5lrol1NQssS7OnDlDJBKRyz2RKS+tnS9NfghslvzuWu+Voig3pSmV9mITExLcWAigKMqyvmWl2wlND0VZ6s2mquoyadbu7iWtDMGiAeR4Vhb1NDU1LftM9D4rhcfjkd+J387OztLc3IzX65Vi8audS2nseOXkL/69Eqq61OlDVKGVCh0dPnx41WtVKBSYmJigoaFBnlNnZ6f8/mb3o7TdkdhnS0vLppr8oUw1+yeD0sx4JBLh/PnzXLp0CY1GQ39/P8PDwwwODjI3N8e7775LLBZDp9NdF2cJsLCwwNmzZ3n55ZdlsvDatWscO3aMZDLJxYsXb1s7L15OERdc+fntthP/DgaDN92mUCjcsnVQMplkYWHhriYBVVXp6elhdnZWMkZEWCCVSnHt2jVmZmaWbSOSX7c7nlhBZLNZ2fKnv7//pjFpVVVJpVIEg8FVjcpqn01PTxMIBG7Yj/htdXW1NFylhlCckzjfmZkZydQoXfmIf2cyGXp7e0kmk/j9ft5//32GhoZWvQZTU1NcuXJl1ZzA1NQUBoOBqampZWO6EyMqGA4CIra9mVD2fP+JQKvVsmPHDqxWq6RH2WxLUpFCA/jSpUtUV1djMplk3Li+vl42cuzs7MTr9RIKhdi6davMIudyObq7u5e1dL8VIpGIXBJarVbm5uZobGyUVWBCDMhqtaLRaLh27Rq7d+8mFAphsVh49dVX+fmf/3mSyaRsDiqMSCaT4dixYzz++OPo9Xq57FxYWCCdTnPy5EkeeOCBNdf5iwq306dPs3PnTtl9uq+vD7fbLa+T3++nubmZiooK0um0FE8SPc/y+TyJRIJDhw4BcOnSJWw2G1NTU7S0tBCNRhkcHGTLli0MDQ0xMDAgvV1FUQgGgzidTjKZDNFolLq6Ovr6+tDpdBiNRskLFvHi7u5uEokEAwMDpNNp/H4/Bw8eZGZmBofDIYWWRGNNUYnp9XolW0NUn0UiEdlcNRqNyo4XVVVV+Hw+2QcOlpKs3d3duFwu3nzzTRoaGnj99deprKxEVZd6CBoMBmZnZ9Hr9ZjNZmZmZiSFsr29nTNnzrBlyxb0ej0XLlyQEpUXL15Er9cTCoXweDxMTU3R3NxMLBbDbreTTqdJp9OykKO6uprh4WE8Hs+qq4CNQtn4/gxiNQ/DZrPd0El4JR5//HGAGyhJoqxTLIdh9S7EK2O9N/NQAoEAPT09KIoiNS1GR0cxmUyEQiGam5tl88bJyUn0ej1nzpwhk8kQj8elStaxY8fYunUrw8PDssHkjh070Gq1vPvuu2g0GhoaGvB6vbz77rvkcjkymYwU81kLMpkMly9fxmKxMDk5iVarlVKICwsLtLW1EQgEqKiolPKFZrMZi8XCyMgImUwWj8dNIpGQJbNarZb+/n5J/j9x4gROp1OyVYQYzrVr11BVVXa67u/vx2azodfrpVqZmIR27NjB2bNnaWxsZH5+nq6uLkZHR4nFYphMJgwGA1euXCEYDMpYq0hqVVRUyMq7RCJBfX09sOSBarVaRkZGZLHDwMAAjz32GCdPniKfz1NZWcn7778vxXVEp2IRFzaZTLI79/T0tCz13b17NydPnmRkZIS9e/cyOTmJRqPB7/fj9Xpld+q33nqLjo4Ostksg4OD7Nmzh9HRUfL5PLlcjlOnTsnwmSgIGh4exul0EgwGN12BBZSN788sxLJrcXFRxvdKye+CgC6U0kQBiMhsi32UyjjqdDouXrxIZWUltbW1svBBkP9FlZHQM7gZhMdtNBoxmUwyuWc0Gpmenkar1dLY2Egul6OmpgaTyVSiI+uhWFxaTlZVVckQQn19vWQRCMaA6I2m1+vx+XxYrVZJPVorjEYjO3fuXJZoMhqNks8tVMCy2Sz79+9jdnYWr9crlbpEUkgI5Yjk1K5duzCbzbKgIRaLycll165dJBIJXC4XY2NjOBwO2a3EYrGQSCSk5oKqqsTjcXw+H48++ih6vV6yAkSisLa2ViqBxWIxLBaLbPFlNptlZd2hQ4cIh8PU1tbKHnNms1mqoYmQi6qq7N+/D7fbjaIoHD16lHQ6LVdX4rkRSno7d+4kn8/LxKJYOT344INYLBaZQxBhLdEoVKfT8fjjj2M0GrFYLHR1LSntPfXUUwwODqKqKi+88AKjo6M0NTXJUmSXy8XCwgLNzc34/f5N5fVC2fh+KFjPJNOdJg16e3tZXFxkeHiYtrY2kskkqVQKq9VKLBbj8OHDzM/Pc+7cOaqqqmRVjl6vZ9euXbjdbsbGxrh8+TIGg4FUKkVzc7Nsgjg+Pi69y8bGRnQ6HeFwmHg8Lls/3Wxp39zcLEWwBVRVleLabW1tcsIoxc6dO5d52A888MANySZVVaUoeel3K5M6a4WiKHR3d6/6nZi4nE6nZECUetdikltJ9M/n88u6Ma+E1+uVhQ2rrVoEf1VMljc7P5PJxP79+4GlGLQwfAIrG5uuJSRTGlddTai8tOu13W5fVlkpxnCzcdfV1UmRndKKsb1798h/u1wustms1G5QFIWKigoKhQIej4e2tjYAKioq7mrSvZ8oJ9w+RCSTSSYmJmRcTEB0dl2ZLLoXo62qqmwPNDExgaIsqUSJ5ZfVapVEe0F8DwaDVFVVMT8/Tz6fZ3p6mvn5eamINTQ0tKzMU7QEF90aAoGA9MQWFhZu+rCvdl7CeB04cAC3232D1136u5UYHR295YsVDofx+/1run6rjTmVSpFKpaSHnc1mSaVSnD9/npGREWZmZjhz5gzpdFoWcBQKBRYWFm5opZXL5XjllVdIJBKkUinZYFRcy0QiweTkJO+//74UmS/lI8fjcS5evMjJkyfJ5/PyWGKsQtWsUCiQSqVIp9MsLCxw7Ngx5ubmyOVypFIpKaZT+ltxfPF3oVAgmUwuWzmJcR47dkwWGC0uLhIMBuXxstmsFLkR8Pv9XLx4UcagxbmLGG0mk5Fje+2111hcXJTjEfubnZ2VvGCj0SgFhYRofigUYmZmRmpApFIpZmZmOH/+/D09A+uNsuf7IUFVVX7605/y8MMPk8lkGBsbW6b98P7777N//35ZWVQsqlRXVzEzM7OmZJZAR0cH7e3t0qsQ9foGg4FoNCqTWQ0NDWzbtk32+NJqtfJYBw4ckL3SYClpJ8RVpqam8Pl8PP/882QyGYxGI/v27UOn06HT6W5ZZdfT0yOlCoXX7Xa7mZ2dRavVSoJ8a2urpMMZDAYZ7xWJJ4/Hg6qqnDt3jlAoJNvPiHJZsWx++eWX2blzJ319fRiNRhKJBDt27FjT9SwUCrzyyivEYjG2bt1KJBIhHo9LIv+1a9c4cuQIExMTy4yOWFqXllarqsrx48cJh8OcPHlSnpfFYqFQKGC32xkZGZHxztdffx2NRoPb7eYTn/gEer0ev9/P0NCQHEMikaC5uZk9e5a8wh/96Eckk0lZYZZKpairqyMUCsmWUIuLi1gsFinx2NDQwPj4OG63W9IKdTo9RqOByclJHn74YdnLz+/3y2f16NGjAAwPD5NOp5mdnSWdTtPZ2Sknl0984hOoqsp7771Hc3MzPT09vP/++3R3d5PNZgkGg5jNZhkOE2Xur7zyipzkvV4vRqORwcFBHnvsMUwmEyMjI1RWVnLp0iUppr9161aGhobweDz4fD76+/upqanZdJ5v2fh+SFBVVWaOHQ4H77//PuPj49jtdg4cOIDFYuHixYvY7XYZw5ubmyUSidx0uXsrlGqXrlzWCR1Ut9uDz1e5anxWVVWpgZpIJDCZTOh0OtleqLGxkaqqKtnuR6fTodVqMZlMzM/PL+sysBKDg4PYbDZUdanJ465du3j//feprq6WCReTyYRWqyUQCPDee++h1+vp7OxkbGxMGrLx8XEp1jI8PMzQ0BD19fX4/X7sdjsVFRXo9XoMBgO9vb2SqbFly5Y1hx9EVZnf78doNLG4OI7X65XJpomJCSnJGY1GsdvtzM3NyUnIZDJx9epVtmzZgqoutQoSlWhCr2F2dpZUKsWePXvw+XzEYjFsNhu1tbVMTk7KJBYgE5Ver1fq85YquxUKBWpra0mlUrK4oK6ujsXFRRYXF/F6veRyOSoqKuT1nJmZkffa6XQSi8XIZDI0NzdLdoxYQaVSKXw+HzabTYYPnE4nGo0Gl8tFOBzG6XTKSVo8g0JRT8hr1tbWcuHCBTwej2xFlc/nsdvtMm8hlP3sdjvj4+NSE0Kj0TA7O0t1dTU2m02umGBpZSGumchDbLakW1nV7C6hqjeqmt3shRaXeGpqivn5eZqamhgeHkZVVSmmHYlEZHNGsbSfmpoiFArx7LPPyhjozY5R2skin89z/vx56uvrlzWTjEaj1NbWEolEpGdVW1uLzWYjGAxKZSyRLU4kEoyNjeF2u2lsbCQSiWCxWAgGg1RUVGA0Gvn7v/97UqkUDz/8sKzOevfdd3nggQfo6OhAUZRl5cWqqnLlyhUqKysZGBigqamJubk5vF4vi4uLGI1GKYQtXiYhPSgmAqEUJpS2RBzRYDCQTKZwOOwyTLBr1y4uXbokJzW9Xo/T6cTn81EoFNbcyaK0AKBU/WtllwtBwROJSEVRiEQisrggm83K7gxixSFWQUIjQojRiKRoPp+Xwjzi2RGrGtGZWKiKvfzyyxw9elReI3HNxDmsHHPpeQljKlolCRlHoaAnji3GLjoei1CR2KfYXkzM8IEQk7hner1ebpPP5ykWi7zzzjs4HA727NmDVqvl1KnTtLW1Ul1dTSaTkasJoVUhIJ51McbS6yue7XvtznwrlFXNNjHq6upkcmPfvn23/X1VVRXpdFqWY94phKLTzMyMbLXu9Xql8M7k5CQ+n08KoIhYrfCADAYDtbW1DA4OYrVaCYfDko8pDKHH4+Hpp5+WYtaXL1+WYtoAp06dkoZ9JXbs2IGiKDIp1dLSctvrcLPzLJXfLA2vlBovsRS/V5QmqVZTJFsJYXBKvd/SiULwk9PptOS8+ny+ZYk5wTKBDxTUVFWV6mrCkKyU1Hzqqaek3q8o4S0d02qIRqPk83k8Ho/Uc66rq0NV1WUrqVIjJs5BXJPSe+D3++UkLSAmllKjLyYioWf81FNPLTvW4cOH5L6F15tKpSQ7YiXy+bws9xax6s2mdwJl4/uh4G5mWlVV74qPCktJiMrKSgqFAmazmcrKSqkWZTQaaW5uRq/XU11dTTweZ/v27TJuKF4MQfNyOBzy33NzAbZv304gEJCx14MHD8rCgUQigUajoa2tDZPJtKpkoFiGCg97tTiceJlLtWGFVxWLxXC5XBSLRY4dO8YTTzyBqqq8/fbbHDp0CL1ez/vvv09DQ4PUVijdJ9z9/ZicnFxWRitWKyK0sbi4SHt7O8FgUFK0mpubZeIzFouh1+tJpVJ4PB6am5sJBoOy8iybzVJVVUV9fT2JRILOzk6i0Shzc3NSuEcUQxw/fpx9+/bJUEp3dzfT09PMzs5SU1NDPB6nsrKSM2fO4HQ6sVqteDweUqkULS0tJBIJ/H6/1IRoaWnh0qVLkhlx7do1rl69KlkWw8PDtLS04Ha78Xq9vPbaa7S3t5NIJDAYDLJ5aHV1tUy2DQwMsGXLFtnOB5BFNDU1NVLUJ5fLUVdXJzUjotEoVVVV1NXVMTw8TDabxel0oiiKFC+amZkhGAzy4IMPyuc2Eongcrkkt/rgwYNS2SyVStHR0bFmR+Z+omx8fwah1+s5fPiw/LtUI2AtWBkrFloEpTHoOxVIF55of38/k5OTUhqxoqJCelizs7PMzc1JYZn29nYCgQDFYlHyc61WqwydiI4NZ86cwe/3S+UroUB27do1vF6vFIxJJpN0dXVJkZb29vY7vhaZTIbTp0/LZE5pFl/wpPUGA5cvX6Gzs4NTp07R0tLC0NAQLpeLZDJ5vVeZBY1Goaenh7q6Ovx+P1arlVQqJZkpFy9elB2AT5w4QUtLC6Ojo1y9ehWbzcbhw4dlsQQsFcUIT3NycpI333yTffv28d5779HY2MjIyAg2m41IJMLw8DANDQ2yjb3gIg8MDMhJcWZmRjIYent75dK+p6dHxpkXFxdlrzYhYyrirGIyKBaLDA8Pk0gkpLSmKEyZmZlhamqKiooKTCaT7Gc3OzsrOd319fWEQiHOnj1LU1MT8XhcdlNubGzk4sWLdHV1cfnyZRoaGuS4fT6flFhdWFiQCd6bUfY2CmXju0lxL3Gpu/XsisUi4+PjNDU1yZjgymXqWve9MqUgKrzMZjM9PT08+uijFItFfD4fPT09skMvIL3C3bt3E4vFiMViOJ1O/H6/7K5QKBQYHR1Fp9MxOTlJfX094XCYZDJJd3c3165dI5fL0dTUxNjYGN3d3QwNDa1Z4cpgMMh2N7W1tXg8HhYWFuT3g4OD1NbUsH/fPhYWFnj00Udl48aZmRlaW1vJ5XJYLBaZHNNoNDQ1NTE/Py+FX0QCz2KxSG7x9PT09eKCLhkeamtrkxxfwZmtrFxKntbU1GC322lpaWF4eJjt27czPT1NTU2NLOgQk5vVapXslLm5AF6vV4YK6urqyOfz2Gw2SQerqKigu7ubvr4+NBqNjCkL9gwslaTbbDap71tRWUnwuoCT0HAQnTZ8Pp/UHRbnJVplqarK1q1bZWsgIZpfV1eHxWLhscceI5vNyjGLSVvQHY1GI263m+bmZqn2tplQTrjdJdaScPswsB6t4ycmJnj9jTd4/LHHyGQyDA4Osu+6MdmyZctddSlWVVX2omtsbJShCdEGSCxDTSaT7PgrXmJRwiuSMrC8/U6pfKGowspkMjIOKZJ3hUJB6tzm83l5XqqqrinhdisMDw9TW1u7aqjldkgmk2vqQv1h4V6KUjZyDKIK72b3opxwK2NTIZvNcubMGWxWK6Ojo0xMTGCxWJibm+PMmTM0NTXJhMjdQCRibtXwc7WqtjsxZsLLAm7Lhy4Wi+zdu1dOAHeKJerfnNSmhaWXfHBwkK1bt9La2ko+n5eaCXeaVVdVVSbaBJXrVr8Vx72XrL0IAc3NzS2Li6/U5ihlDIjvc7kcIyMjNDQ0yHsjmB+lSchbjVHsf3JyUiblBDOm9DczMzMsLCzQ3t6+rP2SiL+L1VmpSP/i4iIzMzN0dXXJz4LBoIynb6Z2QptnJB9x3E5M5n4fd+Vnax2HEOcWlKLuLVuwXCe9d3d331F2/07GttEo1a5YC8QLHwqFMJvNxONx2dVCxH5HR0dpbGwkFosRiURkd4gDBw7Iicvv9xMIBKR31tTUxKlTp3jkkUewWq2yg4XQeAiHw/9/9t47Ss7zOg9/pve2U3Zndne2dyywKIsOEoVFBFVISVRoS7YsO5aPEzluSSyfYyU/+SSSldg5kZxjW1IsWbYkR1QzKZEiCZAgQIDoC2zvdXbqTu99fn8M7tXMYgEsQZCCbdxzcABM+dp83/ve996noLe3F36/H0qlEg6HA2tra3jmmWcgFAoxNzeHbDbLTr579+5FsVjE8PAwxGIxgsEg155phSGRSBAKhVjIyO12szMF1aCJ1EA42p6eHsjlcrzyyitcO966dSscDgdisRg6OzvR1NSE1dVVhMNhjI+Pw2QywWQycQNNIBAgmUyipaUFWq0WOp0Or732Gurr63Hy5EnGA1NTrVLxzOVyQSqVIp1Oo729HZcuXUJ3dzer8fX29kIsFuPNN9+ExWLBxYsXodVqmTw0PT2NxsZGHDhw4J7eT+8kHgy+7zgEAATcSPhFBMF1isUi0ul0Fdby7WxjfWOOtkFQsLvxYSuVSkwb3axf2nsVJBCz2SCvsUQigbq6Oqbizs7OMrLE6XRiaGgIdrsd4XAYIpEIKysraG9vh1QqxfLyMquSCYVCVmOj43C5XEwIoCbiyy+/jM7OTiwsLKCmpgYSiYSPY2RkhMszBKtLJpOYnp7G9u3bmQG2trbGmW5zczPTx1OpFEMMFxcX2Uk7Go0inc6gWCzg8uXLaGxsZIRLGU+dxMTEBBYWFqoySpfLhcXFRQgEAvapMxgMWF5eZilRrVYLrVbLmT65bhC2XS6Xs+jQhQsXMD8/j+3btzOrbmVl5SbFM2JDkhLcxMQEamtrkcvlWBT+bibddzMe1HzvMqgTfeTIEZjN5l+4P1k0GoXT6UR3d/ddTgICADe7ErzjEAiQu8HYu53S2S8qaAl9p5pvqVTC3NwcBAIBlEol2wTRkpZqtuTuS0QLmgwJ4rewsMBqZGQHFAgE0NXVBbVajdnZWej1el6S2+122O12BAIB6HQ6lsUk1tn8/Dw0Gg2i0ShKpRJaW1shFApx/fp11NXVoVgsIpFI4K233sKxY8fg9XpZkY6aXoRmEIvF8Pl8sFqtSKfTrNpG4klyuRxOpxORSIRLCrFYHDU1Bmg0GtTU1MDlcrFOBZmIejweZrYRqYgYbOSF5/P5uDYvFosZikjXNhKJQKVSMUba5/Ohra0NEomEHTjIz45YhkSTJqEdiURShY2+1/F2x5wHg+9dBjXcjh49uin79Adx/8bOnTvx5ptvvq2GG7HSqJZ9qyAUCfBzEsKdgvbn9Xq5flypXvZ2tkHHSllvZf228rOVpar126+sAa9XZ6usE1eqrFVKlFbW1jf67nsV73Zp8EHD7T2Mvr4+vPbaa/z/UqlsG05CMeSHRm6ulSwhoOyrRo0EgmBlMhkolUqe9YkWSkFcd4IlCQSCu2qEEZWzcsAhfd47BTWJ8vk86urqbhLRIXFvm822Ya2YXGc3CsK7klMwUa7p+AKBAAQCAcxm803Ih7t9qAhudbsgNAh5nl24cAF9fX1QqVRVAxAJA8nlcmSz2arfns4hm82yfi8NUtSdp9+cWISFQuFGCSDNy2eiCxcKBchkMkZ40P1AxxAKhVBTUwOxWAyLxYJXXnkFR48e5XOl8hQ132w2G2fpQLlpRmgROo9Tp07hySef5Dp3JZXa6XQyOWR8fBxarZaxzAS3K5VKMBqNXFp4J7/bP/d4MPi+g9BoNGwHQ7GysoLnn38eXV1dTHPM5XLI5XKwWCzIZrPYvn071tbW8NJLL7Fuw8mTJ5HP5zE1NYUnn3ySl5larRYOhwNbt26FSCTC2bNnIRCUbbMDgQCUSiVr4NLSTSKRIBKJoKGhgU0xyXIlFovBaDSiUCjgwoULOHDgADweD7RaLa5evYqdO3cytpPsZLxeL4tU19fXw2634/z585icnITNZuPGRjweh9FoxPLyMrOYnE4nWltbMT8/j46ODiwsLCAcDuOhhx7C9evXYbFY4HK5YDAYkM/nMTc3h2eeeQYvvPACuru7EQwGIRKJYDKZcPnyZSZRdHd3IxwO3xj4BRgc3PWuPsSFQgFvvPEG6uvrkU6nb2gOXOR6dn19PVZXV3mp29DQCJGorEHgdDpx5MgRGI1GTE5OYmZmBgKBgH8XmUyGYDCI2tpaKBQKpNNprK2tQSqVQqFQoKWlBRcuXMDWrVtRKBTgdrshEAiQTqfR2NgIr9cLg8HAdOJdu3ahWCzi3LlzjNU9fPgwvF4vvv3tb/OkSM7IYrEYLpcLnZ2dyOVyOHjwIEqlEq5du4aJiQnGEMtkMoTDYZRKJZw6dQoKhYJxyWNjY2hsbEQsFuOBd3h4mO3cAWB0dBR+vx8GgwEWi4Vtrf61xoPB9x4EZQ+lUgk2mw02mw3hcBhXr15FU1MTVCoVJicnMT4+DoPBgN7eXtTU1LDjL6l4jY6OsuLV1atXkcvlbwiDl5lhhIGtdG+4dOkSAoEAC5FfunQJCoUCjY2NcLlcLJ5z+vRpNDU1IZ/Po7a2Fi0tLVAoFDh16hRrQEilUrz11ltYXV1lJhedn9frhUgkQigUQktLC1paWuByuZBOpzE5OYmFhQW0trbC6/WyNOGpU28gFovC7/dDLpfjzJkzDLRPJBIYHh5m5TSn08lZIFFF3W433G43rFYrVldXOSOTSCQsTRiLxbiBRBnduzEIC4VCaLVaBAIBJgaEw2EWRZLJZIyA0Ol0CIWCKJVKsFgszLyjOqnVasXs7Cw6OjqwtraGWCwGk8nEzUm5XA6tVotwOIxCoYBsNou2tjZezlJ9mQTsZTIZdDod5ufnoVQqEQwGWYg8Eokw0oDIEzShyeVyWK1WTE9PQ6PRsC3RxMQEurq64HK5kEgkYLPZkEgkeLKj7NjtdiOXyzH1ORaLlQX1EwlotVpYrVao1WqWBC0UCtDpdEx0CYVCTCb51xgPar53GesvW+UATPRTr9eLmpoa+P0B2GxWZLNZ5HI5dhWgZglll36/nzu48/Pz3CCg0oBSqcTly5dhtVpZdzcSicDv96Ozs5O1TuVyOcxmM+ukGgwG+Hw+WCwWhEIhaLVa2Gw2XLh4EV1dXXDeoGRWLnktFgtmZmaY/tvS0sLKWq2trYjH49yZX1lZQTKZZO830iPo7OzE4uIi2tvbIZFIkE6nsbq6Co1Gg66uLly6dAlqtZobIvTwHjp0CAsLC7DZbPB6vXA6nZxV+f1+CAQCzsS7urrY/oaW5ff6YabfmhpTldunBhEpklGJSCgU8kBKQuEKhYJLNKQKVigUMDQ0hMbGRtTX11e9TmWBylovrXqISEL7oe1SKYnKE/R/+hz9hpXbW3//hkIhVhCjfQA/x/PK5XLeFpVWKs+d6sKktFY5qZZKJTbhJOeU92rwvd9qvg8G37uMyqYICT9v5vNcH0QFvuAWuNy3g9dd/9lKab2NXr/tcQoEEGz287c4j03tpyJudaz83o39rN/GRt97OyESidDY2Hjbmu/bfUQ2Qovc7hhJxvHtnsM9RaW8y1F5rJVqdO9l1nu/Db4Pyg7vMEZHR7G4uLipz1YOIJWD1ntx+71b+9nonO7lNu/lZzcKuVyOj370o7cdfO/FIHe7B/69wJ++k3O414P83RB2/iXGg8H3HcYjjzzyiz6EB/Eux9sdeO51Nnqrwe/t7OedHNO9OJ+NtvGvtdZL8WDwvUexETbS7/cjHo9DrVZDp9Pd1tcMKC8/HQ4HmpqaNrwxw+EwisUie5dRPW5tbY3t1TeKOy3LC4UCgsEgjEZjleoYRbFYRCgU2tDVlgaGeDyOeDwOiUQCo9FYtcSjhqDdbq+ypb9dfTYSiSCfz78tJ93K4323siuyCCoTDMr263ROwWCwCgpG+O9Kt16CEGq1WiiVSpa7lEqlXLMGqn+zzQ5+pVIJwWAQOp2O4V/RaBQ1NTVV1zmZTCISiUChULDLb+X7+XyeSQrrf59IJAK5XM6KcuSAolarb9LVINeRSl2GB/HzeDD43mVsZtY+ceIEbDYbjEYjO6haLBYW0/Z4POjr6+MH8pVXXoHf78fg4CCLZPf29kIgECCRSODy5StQKhVsUU5mluQau2fPHgSDQVgsFrb8iUQibKVO1M/W1lYEAgGo1Wp4PB74fD40Njbi4sWLzJdPJpNQqVRwuVxoaGiA3+/H4uIi+43F43H09vZCJBIhnU7j+vXrSCQSqL+hwbq2tga1Wo10Og2hUIjp6WnWbyXKbVdXFwKBAEwmE1KpFNra2pj/PzQ0xBbsarUa8Xicj4kmHLFYDKPRyLhnwldPT0+jq6sLRqMRBoOhqgkKgDvwnZ2d7PCwmfD7/fif//N/4k//9E9RLBbx+c9/Hn/0R38Es9kMAPjRj34ElUqFa9eu4cCBA/D7/fB4POjq6sJbb72FQ4cOIZvN4urVqygUCvj85z+PiYkJ/N//+3/x6U9/Gtu3b0coFOKBt6amhpldpGUbCoVgNpshEolY+zgWi0EkEkEikeDLX/4yfuu3fgu5XA5DQ0O4cOECfvd3fxdGo5EF1l0uF/7iL/6CccFf+tKXkEwm2fw0mUziL//yL/GZz3wGKpWKXa/j8Thefvll2O127NixA0qlEp/73OfwzDPPQKfToba2FhqNhqUfFxcXoVQqYTabodfrGf/8TgSa/iXFg8H3XYydO3fi5MmTMBqNLDpy8uRJvP/978fFixeZLkrdchK1GR8fR6lUQktLC2vqDg0NQSAoZx6zs7Ps0Ds1NQW9Xg+RSITz588jFosxvlYmk6Gjo4MzJ/KQ83q9PFAZjUZks1nMzc1xtj4yMoLu7m74fD4A5Yw7FApBIBBwJ16lUqGvrw9AWXCbaLQT4+MMnSIIGTWTvF4vxsbGYDKZIBaLsbS0xHz/xcVFNDc3QywW4/r166wtnMvl4HA4mMufTqfZDYI656Q9u7q6CqfTiVwuh4sXL2LHjh2cvc3NzcFisWB0dBR6vR75fB7xeBwKhQK7d+++I8kil8vh9OnTcLlcyGazTHWtdOIgIgZRX0km8yMf+QguX76M1tZWRKNRvP7663jiiSegUCgwODiIr371qxgYGIBQKMSf/umfYufOnVhcXGS3XoFAwALlFy5cwGc/+1kUCgV885vfhFgsxuLiIkqlEg98hUIBU1NTWFpaQjgcxl/8xV/AarVCIpHg13/91yEWixEOh/HII4/g8uXLOH36NE6ePIkdO3bA7/fjscceQzwex1/91V9Bp9PB5XKhvr4e3d3dSKVSeOONN9DW1nZjUkxgeXkZbW1t+MpXvsIOxIVCgSGHuVwOarUa2WwWvb29+OVf/uV/9SUH4MHg+65GLpfD3r17IRKJoFKpGFcZDofR19cHj8fDMDKhUIj29nY2+yMGFC2fiTVUW1vL2UQsFoNSpYLZZGIGFFl/19bWMjOJlvelGxq3HR0dVQ6/arWaB3mVSoX9+/cjn8+zOIxYLK4SOZ+YmOAHTCgUorW1lQkTmUwGYrGY8ZuUzRL7q6WlhTMwsi2vr6+v6g53dHRgbGwMAwMDyGQy6O7uxvT0NKxWKxM/qOwCgAkK5LBMy37KeoGy24NSqURzczM7/+r1etjt9k2XKHQ6HWQyGYaHh6HVaiEQCBh+RsfT0NCAQCCAXC7HmsVUBiG9g/b2dnzoQx9iZptEImW9Ya1Wx5Y+5bJEEIODuxCJRNHb24vR0VFEIhHO/nU6HV9HYg4Wi0WerOg4k8kU+vvb2ADVarXimWeewcTEJFZXnchksujv78dPf/oii8VrtVrWagiFQlCpVJBKpewuUb4XFWhtbeVrQufR1dXFE7JWq0UqlUI8HsfAwMCDgfdGvCtQM6fTiT/6oz/Cz372MySTSbS3t+Ob3/wm41tLpRL+63/9r/j617+OcDiMAwcO4K//+q/R0dHB2wgGg/id3/kd/OQnP4FQKMRHPvIRfPnLX76tHmxlvJc439tBWG5Vb11f06tsqtDr77R2WQXVukEhlUqlG+rmbhauRdYwKpUKVqt1w1o31aI3c13eLhTu7Xxuo31U0pErY7OwOKqJl0pl40uVSsW1/Hg8zgMquVATW5AkIkulEhMT6HjoHhUKhYhGo4yjJWEe+j75t2m1WpRKJSQSiSqKNQ30Px9wk/we0YNptZVKpVi6UiQSo1gsYGxsDBqNBn19fYjH41Vux4QPrqQmq1QqngjoGqZSKXz729+GUCjEs88+y5MwHadMJuMa8L92bYd7PviGQiFs374dR44cwW//9m/DbDZjdnYWbW1taGtrAwB86Utfwhe/+EV861vfQktLCz73uc9hdHQUExMT/MM88cQTcLvd+OpXv4pcLodPfepTGBwcxHe/+91NHcd7NfgSDdNqtbLeAL0XCoWwsrLCs30l0Jw+IxQKceHCBa6fxuNxqFQqaDQaOBwOpoKux0nSg0Gi4HRzZ28oiMnlcoyMjPAA6fF4sGXLFjalDAaDvCQXCoU4f/58lVZB5cBFOgKV/wbAdWeDwcDHMDMzg2w2i56eHjidTrhcLuzdu5e3Rxngm2++iYcffhgCgQChUAgGg4F90g4dOgSgGvtL55xOp5HP5/mhrnS4qBxk6b3123A6nZifn8dDDz1UJYzzrzkbo/sqnU5z3Rd4e4NU5fNAbiX3G3vtX/zg+9nPfhbnzp3Dm2++ueH7pRsU3D/8wz/Ef/yP/xEAmAL5d3/3d3j22WcxOTmJ3t5eXL58mbPll19+GcePH8fq6ipsNttN2yWOPUU0GkVjY+O7PviOjY1hYmICEomEsxliqjU0NCAWiyGTycBut6O3txeTk5NYWlriTnhDQwNmZmbw6KOPIhaL4fr166itrcX+/ftx4sQJiEQitLW1obm5GRcvXmSDQDJdVCgUWF5eZiop6aRSBuXxeNDZ2cnusdu2bUNdXR2ee+45tLe3I5lM4ujRozh9+jTMZjPC4TB3zIFy5/vYsWM4deoUVldXsWXLFiwsLCCVSqG9vR2BQADHjh3DtWvXkE6n4Xa7cfz4ca4NJpNJtLW1cd1v586duHz5MubnF9DV1YlIJAKv14vW1lZkMhnMzc3BZDLxtSsUCjCZTFhZWcHevXvh8/kQDoeRSqUgEolY60Gj0SASiSCTyaClpQXZbJZpttSYMpvNCAQCiMfjkMlksNvt6OnpuWuW1T8XgsPbjXdCWvnnEPfL4HvP8TgvvPACdu3ahWeeeQYWiwXbt2/H17/+dX5/cXERHo+nCh+r0+mwZ88enD9/HgBw/vx56PV6HniBMp5WKBTi4sWLG+73i1/8InQ6Hf95r/R1V1ZWAICJFslkEkqlEhKJhKmwlNUJhUKsrq6yTTgp7FM2StklZR6RSASpVAqrq6sMQ5uenmY9gFgshmAwCJVKhVLp52pRwWCQ92G1WpHP53lblRbyy8vL3DQi2FAymUQ6ncbi4iIWFxdRV1cHoDy5GY1GOJ1O+Hw+JBIJ1oPIZDJwuVwsKC6VStkxQafTwev1wuVyoba2FtlsFg6HAyKREA6HA36/HzKZDA6HA16vl/UHHA4HXC4XYrEYpqamUCqVoFKpuNFFEolEnY3H46xP63A4ODsvFovw+XyIxWJoaGhAJBJBsViE1WpFMBiE0+l8x/dANpvF8vIyN9w2Ep2vXO3Q/91uN7syLy8v32RrtNHgXigUsLS0hFQqdcvjqcxCb/X6+uOpbBzebt8rKyu33C4Anrxvt53KfS4uLiIcDsPpdMLhcGBqagoLCwuYnp7G4uIiVldXMT8/z1Tn9ce50bkRsoj+X1mWuZ/inme+VDb4gz/4AzzzzDO4fPkyfvd3fxd/8zd/g09+8pN46623cODAAXZTpfjYxz4GgUCA733ve/jCF76Ab33rW5ienq7atsViwec//3n89m//9k37/UVlvplMhrNMAFXLcoGgrGU6OTnJCk6UzVWaRCaTSej1ehSLReRyOQgEAna5pRKCTCZDJBIBUH7YaYbV6XSIRqO4du0aOjs7YbVakUqlWG6QHHOz2SxSqVQVVAwo66uShCOhCKimSWUNtVqNEydOoKurC2azGalUCgKBgBspdF4ymQzZbJaXm7FYjJf0VAeVy+UIh8N8faikQteEmoKVv6VMJmM1tmKxyL+1XC6vKoGcOHEC73vf+wCArczJ5UEkErFiGFmld3R0IBwOs3Pw3d4DiUQC/+f//B984hOfwN///d/j137t1xAIBKBQKFi1jDzahEIhNztPnTqFo0ePYmRkBJFIBK2trWhubobT6URvby+jXurq6hAIBBihEQ6H2XnY6/VySUUikaC1tZURH9lsFi0tLfD5yq7ELpcLPT09GB8fZ9QK/Z7T09PYsWMHstksbDYbZmdnGZKn0+mYhv0P//AP2LVrFwwGAzfXZDIZ1tbWYDabMT4+Dp1Oh4aGBp4gPB4PGhsbWQOZ1Pja2trwzW9+E7t378bq6iq2bduGV189gcOHH8bVq1fR29uLlZUVhEIhNDU1oaamhiGMZrOZ74FUKoVMJgObzQa1Wo2RkRF4PB60t7fz9bbZbKirq9sQu3yv4hdOLy4Wi9i1axe+8IUvAAC2b9+OsbExHnzfrZDJZHfl2vtOgwY3amZQFkuDskKhwM6dO3lA28gksVJWj86hVCpBoVAgkUhwo4ZKARRmsxmlUgkmkwkPPfQQxGIxRCIRi67EYjHORLPZLDQaDWu/UuOSjkWlUjHWk/ar1Wr5PKhGGgqFIBaLodfrGU1BTSTSCCavMDre9cvY9Rbele8Hg0HOnCtDLpfzxCUWi296iIrFIvbv3191jROJBGpqavj3iUQiMJlMSCQSjH54OzjfW4VQKMTWrVvx8ssvs2XPpUuXbkh3FiGRiDE3N4fjx48zxtfhcECtVvM1lkqlWFxcxMLCAurq6pDP5zExMYFisYjx8XG0t7djYWEB/f398Pl8WF5eRjQaZQwuDYTFYhEzMzNwuVxoampi9bSlpSW+DzKZDKampmAymRAKhbC2tgaBQIDl5WV4PB7odDoMDw/z6oVMQikpGBkZQW1tLXu/UX13ZmYGer2eewwrKys8sY6NjbG/HU3qra2tTEoRi8U34IkytLS0YHJykj3k6uvrMTAwgPn5ec6qySpJpVIxDp1WWeFwGNlsFiMjI9wMXVtbQyQSwd69e9/x732v4p4PvlarFb29vVWv9fT04Ic//CEA8DLW6/VWZb5erxcDAwP8GcKYUuTzeQSDQf7+/RIjIyMQCoWYmJjA008/jWQyiWQyCZfLhdXVVZRKJTz55JNIpVIIhULQ6/XQaDTwer08iNHNRzXcVCoFpVIJv9+PqakpPPHEEzh//jx6e3uRz+dhsVhYpk+n03H5gAaleDwOrVaLN998Ex0dHZDJZPB4PDAYDJx9kg0OAMRiMYjFYqysrCAYDGJwcBCRSAS5XI6XfUeOHIFarcbzzz8PsViMD37wg1hZWYHX68WxY8fw/PPPM3RrYmICzz77LMOLlpaW2E2WWE9AudwUCARgMBgQDodhs9nwxhtvYMuWLairq+PMOZPJwGKx4OzZs5BIJFAqlWhoaODMu7a2Fmtrazh16hR2794Nq9WKeDyOc+fO4eDBgzCbzXjttddQV1fHDTvSF7bb7Xf8jTdDje3o6EBHRwfLZ7a3t0OtVrMYPmVpPT09WFpaQn19PZxOJ6RSKZqamrjsRL8NYZr37t3Lk1pXVxcMBgO6u7uRTCbR09PDZRvqIWg0GlitVhiNRi7heL1e9PT0YHl5GXK5HE1NTZDL5QiFQrDb7TCbzYzK0Gq1EIlEsNls3Pj1+/2Mxujs7IROp0MwGGSvOSr19PX1MT6ZyD9EBnniiSfg8/nQ29uLtbU1vq69vb2w2WycYLS0tHBfSCqVoq6uDkajESqVCjabDclkEhaLBdFolMcZtVqNZDIJnU4HvV4Pr9eLhoYGpNNpGAwGLqURGeZ+iXs++B44cOCmcsHMzAzLDba0tKCurg6vvfYaD7bRaBQXL17kcsK+fftYD3fnzp0AgNdffx3FYhF79uy514f8jkIkEiEajSKXy+HNN9+EUqlEOBxmBEAoFMKrr74KvV6PaDSKwcFBuN1uXL9+nZfjJpOJTQxNJhN8Ph+USiVjdIFybdnv96NUKuF973sfRkZGkEqlcPz4cbz11ls8+BJWl0oSo6OjkMvlUCgUMBgMnAEtLCygoaEBXV1dOHHiBEqlErq7uxEKhXDt2jUkEgmUSiUuY1y9ehVHjhxh00ly1p2bm8OhQ4cglUohk8lgs9lw7do1ZDIZXL16Fel0BoGAH8FgkKUVOzs7MTIygsbGRl6u5vN5aDQaCIVCXLt2DU1NTSzKTRm2QqFgx17CuFKD7+rVqxCLxZiYmEA0GsXS0hLcbjeWl5dRW1uLTCaDQqGAV155BVarlX2+rly5gh07dmxa3GY9LBAo29u3t7cDAP/d2dnJ7zscDn7wa2pqmB5usVggEAiwbdu2m/ZDmXxnZ+dtYXsbTR6EKqKgQYpo66Q5favzA4CHH36Y/9/Z2cn73bFjx4b76O7uBvBzs1UAOHLkCMLhMJLJJGw2GxobG1EqlaqOmcwI6Hjo/9u3bweAKlgkuSFvFFu2bOFjPHz4cNX53K/Nw3s++P7+7/8+9u/fjy984Qv42Mc+hkuXLuFrX/savva1rwEo3zy/93u/h//23/4bOjo6GGpms9nw1FNPAShnyu973/vwm7/5m/ibv/kb5HI5fOYzn8Gzzz57y5vmFxVKpRJarZYV/fP5AhoaGuD1emE0GmG1Wnn53dDQAKD8sNbX13NdtVgsslMFOQyQ+4NOp4NQKERjYyOKxSIMBgPEYjGKxSK73pK1DQAeBIlGarPZ4Pf72YmAttfQ0MC1s97eXh4MqGlFtNVcLof6+noG79vtdlitVgwPD1eZKtbU1EAul8PhcGBwcBBqtRq1tbU39A8UnNWQQ4PZbOYaNy0vlUolTCYT01MtFgtbKlGtsKamBna7nTVniXUnFAqh0+mgUqn4vGgSon1Q9kOoFGL4bQZLXSqV2X/Dw8N46KGH2FctHA5zuYkwsZUPO11reo+wvysrK4jFYhgYGLglHtnpdKKzsxPFYhFXrlyByWRCc3Mz46gJ3lcpR7lR44wmltXVVYYexmIxpmpXQgqHhobQ0NDANPCRkRGYTCbU19ffBOvbaB+V/YxSqcy6IxJPqVTCuXPnMDg4CKlUikgkwj0BmnipJEETTmXvofJvurZUXpuYmMCePXt4e+l0GktLS8hmy+QR+u79NBC/KySLn/70p/jjP/5jzM7OoqWlBX/wB3+A3/zN3+T3S6UyyeJrX/sawuEwDh48iL/6q7+qyhaCwSA+85nPVJEsvvKVr9yXJIt3Y9v34iZ5u9t5JzjIO+1ro23Pz88jGo2ip6dnU+IrlfuovP6bPd7bHeOdjj2fz+O73/0uT4Ctra1YXl5GOBzG008/DYVCgRMnTiCRSKC9vZ1XKUePHoXX68X58+dRX1/P5aJgMIh4PI6enh52AybsdbFYhEajwdzcHD7xiU8gk8ngueeeY5F8wie73W6IxWI0NTVhcHAQoVAIExMTcDqdqK2tBVBudn3gAx+AXC7Hq6++eqPsI0Y6XS7XkOtxoVBAc3Mz5ubmuMFHdd2BgQG0tbXhjTfeQLFYhFqt5kEPKEMr3//+9yOfz+PFF1+EVquF2Wxm94tEIsGTfyqVQnd3N65fv45AIMB6JDSZOZ1OdHR0MNJpenoa165dQ1dXFxwOB/R6PVwuF9eIiXTi8Xig0Whgt9vR3d2N0dFRTE5O8jUOBoNobm6uypDvdfzCoWYA8P73vx+jo6NsMVM58ALlG/1P//RP4fF4kE6ncfLkyaqBFygvN7773e8iFoshEongG9/4xqYH3vcibvcD3u49wsKWSiWsra0xRIkil8tV4YCBm7OZ9bH+/Y0yMMrcKEKhEDsa0HdIletWEY1GuV63frt3mozWZ0sAGL8cCoU2/A5Bmyq3kc1msbi4yEaiXq/3pmO6VTgcDqysrNwWpnWrEAqFUKlUjMRYXFxk/DC9T/X2ZDIJp9PJPY1cLgePx8PwMsIoGwwGrK6uYm1tDUajEVqtlpEJS0tL3KSlfVPWl8/nkUwmWUeBrn80GkUoFGI9jFAoxPRjALySyWbLrhqrq6vs5wcAU1NTEAgEzIT0er2ceQoEAsTjcTidTmQyGczOzsLpdDLmnJqcRDt3OBwoFotcd11bW4Pb7UY+n4fb7WY1NLrfU6kUm6Z6vV7+3QklQxDVtbU1Pm/SKjEYDNwrIZIQXS+DwQCHw8EehvdTPHCyuMugy+ZwOJDL5RCJRLh5RpAru90OmUyGZDKJlZUVXipeuXIFDz/8MCKRCGZmZrBr1y7kcjm0t7fjypUrbItDOhDz8/M4ePAgpFIpRkZGGDesVquRSCTY54xML10uF5588knuaovFYmg0Gq7jUi25UCgglUpBIpGgubkZKysr3L3O5XLsvtzc3AyHw8F15ocffpivb21tLcbHxwGA7WyoWdja2oq1tTXU1dXB7/fD5XKhr68PNTU1WFlZgVwux6lTb+DRRx+BTqfjGi91zxOJBN566y089NBDyOfzaGtrw4ULF5FMJmAymbi5kkgk0NjYiGw2i0QiwWUflUrFpQUA+M53voOOjg40NzcjHA5DpVLB4/Fg69attyVa0G9NnfrKJT6hQ4h+S8vuZDIJkUgEtVqNubk5DA0NYevWrTCbzezKTMtrElSiDJTuE8qyS6USQwMVCgUPUpW2RpSNRqNR9pOj35KSFspyAXDpKpfLcdYpFosRj8fZk02j0SAajUKv10MqlSKRSLAbNzURpVIpZ8PhcBhnz57Fo48+yk3kl156CceOHWM4HJWQyISU9k2DLOF5Q6EQmpubkclkkM1meeIVi8VVLEaieFOdn5BFZEtFGimpVIplXe+XzPeBsM47iFKphIWFBYRCIbhcLhw7dgwjIyOw2+0YGRnBBz/4QXaHvXLlCiKRCB566CHIZDJcv34d2WyWXWa7urr4wZZKpRgaGoLNZoPL5WLNWOrSA2BUAcGoKAujh5K4/aR4RTckPdwKhaLqARWLy3AoyhYCgQDq6uowMTEBm83GWbJIJMKZM2cgEomwbds21NbWYmZmhkkk5N1F2E+v1wu5XI5du3bxgLS8vIylpaUbTDMp12Mpm9q6dSucTieMRiOrtXV2dt7IAss13qtXr3JHW61WY3h4mE1EiUhB2yJiCfneVWZ4hEjYzG9NOFWFQoFwOAyj0cg6CbSkJulFqisHAgHY7XauRxPmWKlUIhqNIpPJ3ORlRhBBgh1GIhFoNBom35AYE/3WiUQCsVgMWq2WESTr/ewIgkcY60KhwI7HlUGwR8qWK3Wd1Wp11eqTyD20fa1Wi8cee4xhn6lUCo899hiKxSJjrCkjpe3n83mEQiGYTCYIBAJGPVQ2dm9XkqLjkclkMBqNfI2ISEQaFPejS/KDwfcdhEAgQEtLCwqFArRaLerq6rC6ugqTyYQdO3ZgdXWVNWf37dvH4uBkVEmMtkwmww2HmpoaiMUSNDU1wWAwcI2PsgbqfheLRXR3d0MikSAUCvEgpFarOXsgyBOVJSobFWR+SA89uc0WCgVGONTW1kImk0EkEsFisSAQCEAqlUIsFrNdOVDucJMam0AgwMLCAmpqalBbWwu1Wo2amhoEAgEuLdlsNgSDQdZ/oIZNe3s77HY7xGIxuru7sbS0xMgAEoshwffm5mZeMiuVSsbs6vV61NbWYnp6GgMDAzAYDPB4PGhoaEBbWxuamppgtVqxtLSEwcFBpFKpTTViqB45Pj4Ou92OQCCAJ554Am+++SbS6TRns+VVTw4dHe1oamrCj370Y/zSLz2L+fl5uFwu7Nq1C5FIBE1NTTh79iykUiny+TwOHDiAWCzG+N6GhgaGVo2OjmLPnj2Ix+MolUowGAxQKpUQCoWYmZnB8vIyOjs7kc/nkcvlcPbsWezevZudhuPxOFpbW5HP5/H888+z5fvu3bvR1taGQCAAANzwTSQSkEqliMfj3FBWKpUoFotc4sjlcsjlcmhubuZJtqGhgck9Pp8Pw8PDaGtrw/z8PDweD2pra2Gz2dDf38/Qy/n5ecjlctTU1MDr9aJYLEKpVOLVV1/F3r17GVYmlUoZY073JTE/aWWXTqdRKBQYAudyuTAxMYFDhw6x9vX9pCX8YPC9y6CH1W63V0Fnjh49yu/RgASU65uUJdwKLlMqldDc3HxT57vy/dtJ8q1vakkkEobsbNTwon1Ungt9rrW1tepzEolkQ4C6QCBg+BF1p41GI4xGI9RqNbq6uqr2TfscHBwE8HOIkUQiwa5du6rqwoQOqVR3a29v5/1sdH1oP/X19Te9vnv3bv43uTdsdgkqFAphtVohFothsVhw4sQJZDIZ+P1+qFQqLC0toa2tDdPT09i6dSsvm+VyGQ9qoVCIkQ+0zUwmg2AwiFOnTkGr1XId9uLFiyyTWSgUMDo6ilgshkQiAYvFgoMHD2J+fh5ut5tJDLW1tZifn4darcaFCxfYTaNQKLDWCE2eVquVVzQEVSTVMSIOlUol+Hw+HD58GHa7nVdppVIJyWSSf+tEIgGv14ulpSVkMhl86EMfwtTUFGKxGE6fPs1yqO3t7SwWf+rUKa7bPvbYYxAKhRgZGcHS0hL6+/tZSoAIQdFotErCdGBgAGfPnmVST319Pebn5/maHThwgNmjP/rRj6DT6dDb28vGAvdDPBh87zIql1uVEBx6rRI+RDc2UTZtNluVnQ59Nh6Ps+bD1NQUDh06BJFIhImJCczNzeHw4cPcDSaYDWXQQqEQLpcLgUAAfX19nB2LRCLEYjGMj4+jubkZdXV1KBQKEIlEWF1dRSKRYBxnJZSHmHqlUokbINu3b+eaW6ViGH2WrgPhOek1n88Hj8eD/v5+uN1u2Gy2m+BY5KpADabK7Z85cwZbtmzhAVMoFLKuL5UTkskk5ubmIJfL0dHRUQUtCgQCWFxcxM6dO5kaTRn9ZhEehUIBly5dgkajQaFQwLZt2zA6OootW7Ygn8+jt7cXoVAIx48fZzEjkUiEvr4+TE5Oorm5GblcDuPjE2hpaYZarYZGo0GxWITZbEY2m2VReKrpSyQSHnz0ej0ikQh27tyJUCgEqVQKg8HAYvq0giJihUAgQDQaRTabRV1dHUwmE5caJBIJtmzZArVazSsHshOicg3BFzUaDTcLm5qaoNVqkc1mEY1G0dXVBYVCAb1ez/XU8sqtvHJZWFjAjh074PP58Ku/+quIx+Po7u6GQCBAQ0MD167pnhoYGEBNTQ2L3VO5glY81CiVy+UQCARVJK10Og2TycSUcdIypt7J+Pj4g4bbexXvRcOtVCo7KUxNTbFKPwnUkNALNWOITZROp5FIJHDkyBEYDAbMzs4yTZJuxKmpKWQyGTQ1NeGRRx5BNpvFuXPnkEgkkM1mcezYMQwNDSEQCKC9vZ21JUKhENd7DQYD7+fEiRN8PL29vVheXsb+/fuRSqUwNjbGThhUeysWi9i9ezfXqfP5PJqbm2EymTAzM8Mda3oISIry9OnTEIlETHumCUahUGB4eBhbtmxBKBTi+iQtfw8fPowf/vCHMBqNiEajMJvNkEgkrFcbDoerBp6DBw/izJkzjOE9fvw4RkZGsLKygkQiwUL1vb29MBgMuHbtGi+hl5eXsX37dvj9fsYsb5bvXznhAmBG4u3ga+uz9FvB3davQirvscoG39TUFFpbW7kOuhH8rhJZMjo6itbW1puQQhuhTzaC71H9FQBTyYvFIoaGhrBt27YqX8LNQBsr97tZKGTl52612qFrNTk5ifb2dsjl8puSoFtt417FfQE1+9cSAoEAq6urMBgMqKmpYSiTx+Ph5kyliWEmk4Hb7YZMJmP8o81mQygUgtPpZO0FmUzG9MxisYjh4WF2hyCEA4ltz8zMIJfL8cCTTCYRjUah1WrhdDpZNJvgN9SwI9KE1+tFPB5HIpFgucaFhQXk83ksLi5WdfTD4TDC4TDrvtI+dTodisUi5HI5RCIR3G43VldXWZWKanpra2vc8AmHw1haWqqii+dyOeh0OpRKJSwvL8Pr9cLj8bBtEalgFQoFJBIJ1o1NJpM8uOj1em7mEQ2WjtnlciGZTLIKm8PhgNvtviOUjx7iyt9dIBDcUa+2ckWUz+exurpa9flCocD11vWrJur4R6NR/rxQKGS2Gql2VW6vWCwylI5WHP39/cjlckin0wDK+PloNMrnToiJyvOibSYSCUxPTyOZTCIUCqFQKCCbzcLr9aKzsxMej6dqG7e6FslkEl6vl8+vcn+VUSgUsLy8jNnZWbjdboZGbjQhrf9NQqEQ+wpS067yu6QCeD/Fg8z3LoMuGwnPKJVK7tDS0pni9OnTrARFAuTUGKBGAfBzFTTC+BLzh258nU6HdDrNsDGqd2UyGahUKoRCoSq8I8HFSNFMJBJBLBYjFosxpTebzXKNj4R1aKCmzBMod48lEgkbc9Ixk31RqVRiXzWBQMBMuVQqBbVazWWFygGJyhtU0yP1MrlczvVQgUBQJXpOBIR4PM4ML+q6k/sCqbZRxz8QCEAmk3ENXiqVcpOMuuB3IlmUSiU4HI4q5lU0GuWSkkqlYngc7YtEbai5efXqVfzSL/0SEyxIg5kIA9SY9Pv96OjowNTUFCYmJrB//35EIhGo1Wp4vV7o9XqMjY1h7969qKurQzAYhN/vR7FYxMLCAo4dOwagTHZ6//vfj+effx779u2DxWLBj370I2zbtg0nTpzAgQMHMDAwALFYzNug36y7uxvhcBgnT57kJOIDH/gAXC4Xzp49i507d+LUqVM4cOAAtm3bBpFIhPn5eV7yNzY2wu/3w2QyYW5ujkkOdO9LpVJmKppMJrYgmpqawtTUFKuvESRTr9fDbDZjYmKC3Z6tVisCgQDMZjPOnz+Puro6SCQSKBQKLs1YLBY2KKB6/f2S+T6o+b7DIJnG2xkwPvbYYyzVqFAoGJNJNwEtIWOx2IYW3DU1NVyuINxn5TKSlv8mk4kpuJR5k8gOwXwIKiUQCLimSEGDGcGLKvdBkw1BmfR6PQ+8lGUC4Ju8WCwiHA6zpsGdbnj6fiWsaCN4ENU2Cb8aj8erfNvoppdKpVz2IQEhClJgKxQKmwbfZzIZXL58Gb29vZibm+POOuFxaflNLLbt27cjGAzi8uXLLH9Iy3axWIwzZ87g4MGDGB0dhVAoRF1dHQ4dOgSHw4HLly+jqamJcbBnz55FLpfjCVWhUOD69evcoDx9+jQ0Gg0kEgmbbhKOeGFhAaurq6z25XQ60dTUhFAoxDKOpVIJb7zxBrRaLYLBILPAZDIZ2tvbuTxF6JhMJoNcLodAIACn04lt27ZBIBBwuUwoFGJ4eBgtLS04e/YsmpqaEAwGebVChIxkMomZmRkcOHAAarUaEokEJpOJ8dlCoZBLWdu2bYPFYmGlN5FIhOvXr6Ourg7nzp1jUwKNRguxWIREIgFAwCvRZ5555p4o2N3LeDD4vsO4dOkSTCYTmpqakM/n+QFLpVLQ6/VQqVQoFAp47bXXsHXrVpZ4lEqlCIfDnO2q1Wqe4ROJBPR6PWKxGNsInThxAiaTCXa7HSKRiGu8AoEAcrkctbW1cDqdeO211/DRj34Ur776Krq7u/HSSy/hN37jN/D1r38d//7f/3t+MPr6+rhzXiwW2ULe7/dj7969nMVS1uN0OrFr1y6sra3hpz/9KT72sY/htddew8MPP4y//du/xac+9Sl885vfxG/8xm9Ar9fD5/OxSy9ZhlOZgAZQGrTMZjPDjEQiEdbW1lj/1WKxQCQqP0yUJVJZY//+/QgEAqwkNzQ0hKNHj0Kv13MphWByAoEAPp8PgUCAB81IJIJAIIAPf/jDd5wcKIsi8SDKUmmVQvrBVIIRiUTo6upiWNnq6ioP8hqNBoODgzCbzWhqamLNCcK1EiTPYrEgEonAbDZjaWmJ9YAFAgGOHj2KUCiE+vp6bN26lVW9aEUClBufHR0dbP9uNBrx0Y9+FFKpFE888QSy2SxLT27duhWpG2amREoh4Xy73Y6DBw/y6mnfvn0wGAw4fvw4l9IaGxvR1NTE10MmkyGdTuPRRx/F7Owsenp6+HclYoVKpcLWrVt5FaHX6xmJIZfL0drayrBGaioSaogmh2KxiJaWFiwuLmLLli18PslkEgBYOP9O7tS/iHhQdrjLoMt28uRJ+P1+FAoF5PN5BvSToEdHRwdeeukl7t6S8A2pfJF/GdUQiSRADKGnn34aMpkMP/jBDyCVSqsYZCQ4LpfL8fTTTyOTyeDVV19FTU0NhoaGsHfvXqyuriKXyyMSCeOTn/wkcrkc2xOJRCLs378fAPDSSy9xzTkej6O5uRljY2MMORMIBDh+/Diy2SxOnnwNW7f24/r16zh8+DDeeOMNRCIRJJNJPPvsswCAc+fOscsGZYfbt2/H6Ogo8vk8G1FKpVLYbDaEw2Gsrq4ym6qzsxNDQ0P46Ec/CqVSiWAwiJ/85CfI5XLo7+/HwsICTCYT3G43LBYLGhsbMTw8DKPRiMcffxzz8/MYHR1FNBrDxz72DIrFIr73ve/BZDKxkLharUYwGMRTTz11W3Gdykfkdg2ujZpqb7eptP7zm/n+ZvexmbjdtiqPEbj1auZWsMZbfedW5w6gilF4p89Uvn+73+BB2eFfSJDiF+EQzWYzCoUCXC4XZzoEIDcYDLDZbHA6ndiyZQsuXLiAbdu2MQwqGAyy/CNpPhARg2BVNpsNq6ur6Ovr42yRbjZiU3V0dDCjSqlUIpVKcU2QxFkkEgnEYjHUajVCoRDb0WezWWzduhVutxv79++H0+nkrAzADTWxWq7T5fN5NDU1IZVKIRwOo1QqcafZYDBApVJBq9UiGo2ymLnf70ddXR3TnI1GI0KhEFpaWiCRSJgF1dDQgOHhYWzbtg0GgwE9PT0oFousy0v4TsqIrVYrN1tkMhn0ej07/QJlMggxrWiyW9+4uV2st6NZ3zyq/D+VXZLJJCvYVULpkskk15+JTux2u+FwOKrw1KVSCS+//DKOHDnC2SR9j96vHHhKpbLgTaWp6frYaIDKZrOIx+OYmJjAgQMHqs5po6ZeJpNhjeZKHDatosxmM5N5isUiVldXkUql0NHRwdt76623sGPHDoyNjfHq8Sc/+QkeeeQRXL16le+DgYEBhr8JBGWTVhJZr6mpwfDwMPbt28eZcOVvQ/un/sb9RLJ4kPneZdwpGwI2JjTQv3O5HEZHR9HZ2YmFhQVs3bqVv1MqldhChlhs6/d9p+zkTp9dn4msfyBvl41sdr+V1+FWWeLtjrNUKtuzy2SyKpnCW333Ttu93bncqeGWz+dx6dIlnsySySQikQi/R5MdUYvlcjkmJycZZ0qde5/Ph0OHDmF2dhaZTIblRZVKJU6dOsWqaDRR7tu3D//4j//Ims/EbCOMbKFQQDweR319PVskxeNxvP/978ePf/xjSCRltiQdK01+arUagUAQSqUCTU1NiMViiEajmJ2dhd1uZ/o0lTkEgrIMJdX5FxYWsH//frS0tOD06dOw2+1QKpWYn59HsVi2r5+fn0d3dzf705HEqMlkws6dO/H888+ju7sbbrebyz8/+tGPoFarGRI4NDSExsZGdPf0YH5uDv39/VhbW8P09DR27tzJBBG1Ws3lHULoJBIJtLa2wuPxcI/g8OHD903m+wBqdo+CaJeVcJ14PI54PI7FpSWuQdFnpFIpdu7cCbVajb6+vioYkkAgYMeC9QMvvb8+y3K5XIwOWP9ZCoIvUa15o0Fpo79pX6RWtVFU7icQCFRdC3qf/k1uEuu/n8/n4XA4qgZqElCnyOfzLHCzsrJSlelQXTcUCrGQD22rcvm6/tptJgqFAmZmZiCRSG6UcspNOzqXSCSCxcVFmM1mzM7OQq/XQ6FQIBKJYGFhgQdFqtUTciGTySCVSjHGm8SCHA4HamtreaKmeqtAIGBUglAoRH19PaRSKQsqNTQ0MFqEmG0rKytwOp2IRqNwOp1YWVnB9PQ0zGYTMpkMHA4HD+parRahUAjFYtkrjzJGci0JhUKQy+WsVJZKpeByueD1etncMxQK8Tmtra3B5XKxTZXX6+UmLLlnkG9cqVRCfX09XC4XI2isVmu5F6LTIRaLwev1cnmPCCJURpqbm2NJzrq6OsjlcoYdWq3WDZ+lX2Q8yHzvMuiyBQIBxGIx7vhHo1FWBdNoNOxAsWPHDl6Sk/cWdY9zuRzm5uawdetWhtS8+uqr6Ojo4IePusxGo5HLE4lEAl1dXXjttddQKpU93ux2exWus7e3F9FoFF6vl4V2BAIBDhw4gLW1NYZ3UbOCBMhJ9IeW6Wq1mt06Dhw4gNbWVhbtIWIEyTwSrKxQKKC+vh5ut5vZaWazGefOncP27dvZKorgZMVikbff1tYGt9vNQjSkETEzM4PLly/j2WefxQ9/+EOoVCr09PRAKBSiubkZU1NTWFxc5Cab2WxmWyeiJjc2NsLhcLB79GOPPXbbhgwt50OhEMPIyA+tElpIf5NCV2XzKZPJQiwWsegQwfEIDigQlBlpNEkRqoHw1ZSB0nUil2xqiBI0T6lUIZ8va0y88MILOH78OHK5HN+vNFAR/E0kEjHbjzJnOudK2CK5lrhcLuzYsYPLYGQSSmQiSgBo8Pf5fLh69So6OzvZ/kitVkMmkyEajTJskiZZ0pUgBTMSLaKJjJqHpK5GKw8SdUqlUkyhpr4JPZs02N8vme+Dmu87jIWFBbYqp4yWmm9lfdcEK2kVi0V0dHRgaGgIXq8XjY2NUCgU3I2dnp6GzWZDbW0tRCIRlpaWsLKywk6vk5OTLLZCkDWi1pKgtNfrrcLKtre348yZM1CpVCxancvlcOrUKUgkUuh0Ws4sL1y4gIaGBs6EyI2jpaUF4+PjGBwchFwux/Xr12EymVhZzOFwwOFwMOyOluUSiQTT09Oora3F8vIyFAoFD+5ra2s4d+4cVCoVD/SHDh2CXC7H8PAwO3ksLi5CJpOhu7sbOp0OHo8HsVgMfr+fHyzSem1qakJ7ezvefPNNNDU1YWpqCktLS1y2mJ2dhdfrxcc+9jHMzMzA5/Pxe3cqrwgEgpsgaZWKX7cK2u5GylxUn6b96vV69vmrPBYSMCKZRPIBpO0TNPHnr5Vr7k8++SQ7nmwmKDPM5XKM+ZZIJJBIJLBYLKziRpMHRaVWCdX7Y7EYdDodtFotGhsbOVOvZAQSvFCj0SCZTLKDCQnlANXXmK4LCVHR8a4vLRFFnxrZ96OiGfBg8H3HQQr9JIkoEAjQ2NjIltpabYrdfJ1OJ0QiEeqsVtTU1MBsNvNyr7GxkUHgQNmINBaLob29HTKZjDNfwvCShY9IJEJbWxtEIhFqampYC5hudgDo7+9HJBJBR0cHVldXGermdDrR2NjI2RYNcOl0mpEXGo0GdXV1iMfjyGQy7DirVCphNBphNps5AxkfH0cul0NjYyNnHVKpFLFYDG1tbSwlaDKZoFQq0d/fDwDM5Mtms7x9WiW0tbUx7jOZTKKxsRH19fUIh8PsC5hMJhmCJBaL8cgjj7AWAA0emUwG6XQara2tDHNqa2tj5a87yUpSQ1MikfDAQsedz+f5tyMWVSKRYCae3W6HXq9HMBhkBqNMJkMkEoHBYIBMJoPD4YBUKsWlS5ewb98+FuOhpitNNJcuXcJHPvIRhtLV1tZidXWV3Xv1en0VOYUanaVSiY+BWIVOp5MHRKAMp6MyyOXLl7F//342riVvwGQyyU4X4XCY2ZOUvVKWnUql+I/FYmHBIJrUieyjVqthMpkwPj6OcDiM5eVliMVi/Mqv/ApisRjrQUciEdTU1CAUCmF2dhZmsxlWq5WF6/v7+yESifCzn/0MjY2NrIFCAzbB2yr1IH7R8aDscJdBy83Kmujs7CwUCgUaGhreNtSI6p2karY+QqEQ3G43d+zvt6CaqMFguKPDNCEVNmta+V7F7ZqYhUIBzz33HPuRabVarKys8PKcVM88Hg+MRiNcLhfi8Tg6OjpY2nJ6ehrnzp2DVqtFd3c35ubmMDAwAJvNhu9973solcrSmQaDAcvLy9Dr9ejo6MDExAR3/uPxOD7ykY9gZGQEV69exSc+8QnMzs5iamqKkSznzp1DZ2cnOjo6MD09zSL6BoMBfr8fH/rQh5DNZvHyyy8zMqTSRaOpqQnXrl3j2im5TshkMtTU1ODQoUM4e/Ys8vk8i7zHYjE2EQDKKAMSY6+trcXKygqOHj0Kq9WKEydOsKOwWq3GBz/4QVy/fh2JRIIZfX19fbhw4QKWl5d51UYrQBJqMhqNUCgU8Pv9+OAHPwiRSIR/+qd/Yhgl6RfTpNHf34+urq4HZYd/CUHNjwsXLrDzbzKZhMfjQXt7O86dO4eBgQEG598uJBJJlYzj+iDX2/s1xGIx6w7cKe7HyeNOUSqV5T5JD0On07HJJzWHtFot1tbWYLFYOPsjPY0dO3agtbUVoVAIIpEI9fX1mJ6e5qVxLpfDwMAAYrEYUqkU07+B8rW12+1YWFhg7YtUKsV6xmStXldXh1gshsbGRkSjUYhEIkZhkKVPsVjkTNpms/H/s9nsDU+3GE8kVJ+tVLijmqlWq4VWq8X4+DiXk+g6lUolpoETnI8GZaJj0yRDEzBl3c3Nzejr6+PVmEqlgtVqZRNUt9vNdXyqVxPBiVZ/QFkHg8p36XQaVquVySP3SzzIfO8y6LJls1n8+Mc/5pu3kvo5OzvL6mG0xAbePZD3g3h3ohILTCsdj8eDlZUVdHV1VdVUN4LcVaqfbQR9y2azGBkZwc6dOzdEZKyP22F3K7+7/nOTk5PIZrPo6em5CSdcuZ1b7ePtfp4+63A44PF40NPTs6GWxq3gkXNzc1Cr1VUrqfWrzdsd6622f79kvg+gZu8w4vE4zGYzX2ylUomWlhYEg0HuUPv9fl6ePYh/vlEJm7NardizZw90Oh3/vuTlt/47lepnGw0CUqkUu3bt4kGF/pAqXeXnNxr4NhpcCG1SCd3r6enBtm3bqgZer9dbRUkWCAQs+0lBRrdut7tKZe12+6o8v4aGBgwODjIkD8BNEEH6dyAQ4P+3tbXBZDJhdXW1apvrIZ1k/lrpUbf+GMlc9H6KB2WHdxhSqRSDg4NVYiZ9fX0AwFYpAwMDVQI2/0IXG/+sYzPZkMvlQjabZThdb28vrl+/jsXFRahUKmzbtg3RaJS1gpPJJMLhMMPBKMuthBnW1dXB6/UyRC0ej6OpqQnFYhGXL19GX18flEolAoEAN3I9Hg86Ojrgdrvh9XqZ6RcOh6FUKuHxeKDT6TA1NQWfz4e9e/eiq6sLa2trDHPM5/OwWq04c+YMDh06BI1GA4fDgfb2diwvL8PlcrFmxOrqKhoaGnDt2jU8+eSTAMrNulwux+pscrkcZ8+excc//nEsLS1x6YGo6qRxTXVuoofL5XIolUqoVCqkUil2yDYYDAy9Gx0dZe0KEnQiFFCxWMTS0hKUSiVCoRC2b9+OUCjESIh8Pg+TycR18927d7+r99HbiQeD7zuMSuWv9QMsNRRIyOVOS7rK727E2FqfJdDDRp1zUhSr/HwwGGS9CcoSSMBno33c7ng2G+s/TxkPiQVVGhtWnotAUJbQXO8wQbA16lhv5ljoc5XSm+RxRtAtuhb0/9tFNpvFhQsXGHctFArR0tLCanXxeByTk5MIhUIIhUJ45plnsLy8jLGxMQiFQvYyIyo1HdPo6CgaGhrgcrm4qdXS0sLnMDs7i2QyiVwuh66uLiwsLODcuXOor6/H0tLSDay0ANeuXUNzczN8Ph9riBDeeGRkBO3t7VhaWsLY2Bjbq4+NjTH9em1tDW+99RZqamrY7ffMmTOMMBEKhdBoNAyPm5ubg8PhqJIopb7G8PBwlQvz5OQk6uvreaK4cuUKpFIpotEoxGIxIzEikQgKhQIUCgWjIkiS0+fzYWlpCUePHsX8/DwmJiZgMpngcrmg0Wh4UP5//+//saKcXq9HKpXC5OTkpgXz38t4MPjeZdyuJgaA+ewXL16EzWaDXC7H7t27EQ6H2WqFlljUWKBaUSwWYz1dwlSSRQzJIAqFQpw/fx5HjhzB+Pg4FhYWuMPt9/thtVrhdrsxPDyM7u5u1NTUsMDNmTNn0NDQgD179vByTSwWo6amBpFIhIkgZrOZB6dgMMg6ugSQF4vF0Ol0jAklOJpQKERnZycPMuPj49x8IT1ZEr4WiUSYnJzEzMwMK2o1NjZCJBJhZmaGj5EeerPZjFQqhbW1NQDghlAqlWK/MrFYDLFYjGQyySpmDQ0NOH/+PJqbm7mxmc1mcfr0aRYDul1IJBK0tLSw9jDpGTQ1NUEgKCtsSaVSqFQqNgGtqalBX18fa/Gm02nkcjm0tLTw/UNkB6IUU4lCJpOhra0N2WwWJpMJa2trLAHa1tYGgUCA2tpaxvgSwWH37t3w+XxsL0WNqFKpBKlUivb2drZ+F4vF8Pv9TFNubm6GRCKBXq9Hc3Mz48J1Oh0UCgVqa2sxNDSE3bt3Qy6Xo6WlhV2xyfYIKGtoBAIBhqERJXvfvn0Mb1xZWYFEIoFMJoPX60VtbS2by9rtdtbGpkGzpqYGsViM90fY8Pb2dmi1WshkMjQ3NzN7rq2tDWazGWNjY+jt7cXi4uJ917B+0HB7F4IuaSKRwEsvvYSenh6Mjo7yMmlgYAAKhQKvvPIKtFotPyjt7e1YXFxkiJBWq0UgEIDJZMLS0hKeeeYZXLp0CQC4i/vYY4+x2heJopNaWTAYZIFrIl1IpVKuu330ox/F66+/jrW1Ne4Ur6yssCmizWbD0tIS6uvr4XQ6YbVakUgkIJfLEYlEeAChQZicMPbs2YO+vj6cPHmSRcv37NkDvV6Pb3zjG2hvb2c7dMLKkgRnKBRCU1MTT0wf+chHcPbsWcaqvv/978epU6fYvLKjo4OX2eSETESXUqnEuGiz2cwaA1KpFBqNhtl5H/vYx26bFb3TR4RYWDMzMzAajXeE4q3/7t2sTDZq7G30vcrYTJONhMw3e+wbbfdWzbLbfX5paQkNDQ2QSCTwer0IBoNobW29I4poo3O/XxpuDzLfu4z1N9BGNw5ZysvlcuaWu91uGAwG5PN51NfXQyaTwe/3w2w2w+PxsCC6Xq9np4VcLge73c627gSUp+yvoaGB2VokV6lUKnmJTyLblOUQDpLYT5SxZDIZaLVaViIjwRKgjM2lOpzNZmP3CLITr6urY2YSlQhUKhUaGxvZEaNYLKK+vh4NDQ03KLcZbNmyhTUDampqeIDfunUrq7ZRKYKyIaPRyB5t5KxBx0u/AWVYtJxVKBRsEJlKpWCz2bC8vMzL7s2WMmj7oVCIacEA2PSz8m+gvALK5XIYGhpCe3s7e+Td6d6hppvL5apyYqbtJ5NJzmCvX7+O5uZmzuyKxSJOnz4NhUIBsVgMo9GI1tbWqiZXIpFgjYpQKITW1tab8Om0r5WVFTQ0NHC2TOdXiQJZfy4AmOlYU1NTdV0mJiYgFAphNpthNBpx+fJlmEwmTE1NwWq1Ym5u7gbsLcrKfKSd0tLSApPJxBluJd6ejoF0PIrFIg+I65uV90M8yHzvMu7FZbtdTbdyH3fKym6X9dzq9bdTx3W5XFhZWUFPT0/VgHOn/d0ubnUsd7Otjb43NDSE7u7um1xBbrWPO13jUqmECxcuQCAQYMeOHfje977HQvck3EJuIUtLS3jkkUfg8XjgcrmgVquxtLSEp59+GjMzM5ifn2cKL/nMFYtFbN26Fel0GpFIBMFgEAcPHsTc3ByjKKhsMDc3x07EZJ5KDbSmpiZmgp04cQJmsxnBYBAf/ehHcerUKdbzsNlsSCQSnElqNBrobojXkO3U8ePHEYlEmDxERqYkPxoMBhEMBqFWayCTSVFbW8sTKVnVZ7NZBINBGI1GeL1e1NXVweVysdrZE088gddeew1SqRSTk5P45Cc/iR/84Ad45pln8NZbb8Fut2NtbQ2Li4uw25uwffsAnn/+eVgsFqTTaVgsFni9Xq5jU+OQJC1nZ2dRV1eH/v5+ZrfdL5nvA6jZOwyPx1NlQkhBS9pgMFj1Ov3wwWCQM9fK71T+2+12V6l/rc80YrHYTfCZcDiMQqGw4fHk83ksLS2x2lexWLwJHrRR2Gw27N27lzOIWCyGRCKBaDQKn8+HZDIJt9vNFvWVMKVUKsVd+bK1C6r2TdnXRtfgdlGZyZB+cmXs2LEDYrH4JmgUNcTWf/5OQQxEoogrlUrWh3W5XJiYmEAikcDa2horbS0vLyOXyyGbzfLgsLq6yteKauhUz9Tr9SwmRPCpUCjEhqUAMDMzA7fbDZFIxKarAoEAzc3NmJ6ehl6vR6FQwJUrV1BfX498Ps9lDpLnJPgjOVOTkefs7Czy+Twr8JHeAgA4HA64XC5uns7MzLCQUjKZQH19PSvzkV6Gz+eDz+dDNBpl8Xyyoad7o1QqsW09ZdUkqpPL5ZgE0tbWhn379qJUKjPyAoEAjEYjJicnEQ6HEY/HsbKygvn5ebbpWl5e5mb0wsLCTffCLzoeZL53GXTZXnnlFUilUpjNZlgsFmg0GigUCiwsLLDv1UMPPcSNK5PJhHw+j+eeew79/f3QaDTM7pmensajjz4KoVCIU6dOwePxoK2tDe3t7fD7/fD7/Whvb0dtbS3S6TQuXryEbDbDtjPBYBClUok59o2NjSwzqNPpkEgk8A//8G0cOnQQRqMRkUgE58+fx9atWyEQCKDT6bgcQRoE1CCs9EIbGxtjs0Ya1JVKJerr67G2toauri7Y7XYAZZfdM2fOQCwWY+vWrRAKhRAKhXA4HFhaWmJiSlNTEy9JH330UQgEAszPz7NxaOUER+yoZDKJiYkJaLVanD9/Hjt37uRSDbl8AOWBmvRdPR4PFAoFFhcXsX37dmg0Glgsljs6WRByRCwWszg8ALa4VygUiMfj0Ov1CIfDqK2tRS6XQyJRFlaikk40GkU2m8WpU6dw5MgRXLlyBT09PdDpdNBoNIjFYozqKBaLG2J5s9ksC9gQi460Idra2piFR0pjVH4gKU66JqVSifsNVGag/1eWnKhZRbh1ADxQ0jFSb0CpVPLkLxAIWOGOND7omSR/wZaWFm6kpVIpvkZlUao4ozYEAiGUyrLjdiwW40YlALz++us4cuQIq5bF43GmfJODDCm3kd/huxEPar7vYZRKZSGXcCQCp9MJnU6Hxx9/HACq5AbfeOMNNgE0mUwQCoWQSCQIh8O4dOkStFotdu/ejXg8zjcG1WsdDgcPzCaTiQfa4eFh5PPlpev169cBgF2Mo9EoJBIJa6kajUbodLobD1cZMkRwJalUypPE3r17sbCwgHA4XBbxMRrR3dXFWFAKsklqamrCpUuXsWfPbly+fBk7d+5kNw+q7xHcCADGx8d5+anX65laOjY2hkwmw5hYympXVlYwNTWFLVu2oFAoYHV1FWKxmJ0t0uk0L8tlMhlGR0dRLBbR39+P0dFR1NXVIZPJIJPJoL+/bHsUCoWwc+dOSCQSXLt2DV1dXaitrb3jby0QlCm15BdHgxUpbFG9nQZDWr6T8LlOp2NNXpFIhOPHj0OhUODhhx/mgQEAG6SStCJlblTDrLRloro7ALS3t/M2hEIhbDbbTfeqRqNh0kZlOaZUKnvqkTpeZeRyOVgsFl710P4KhQIPkkDZ7FQikWxIJqGgwVyhKA+ipIZWSVACwDTgjQYwkUjEfm5Auan9yCOPQK1Ws5iRUqmEWCxm1A4p+d1ugv1FxIPB9x2EQCBAW1sbgsEgDAYDAoEAd4ItFguCwSBri3o8Hr5RS6USNze6urqqFL1Ihb+jo4PtrwUCAVpbW6uk+5qbmzEyMoKWlhb4/X52JpbJZOzoS9CvSgZTT08PGhoaGE1QFmyX8tLR4/GUj1kigVqlYtPOyg49YZeVSiWsVis3sywWC3K5HCMmyC+tq6uLFc0ikQj2799f1SB85JFHEAqF0N3djbW1NVYZ2759O6xWK9RqNVwuF1paWrgZSNc/lUrhwIEDXDclw8R8Ps+DAS11jUYjDAYDm1yWSqWbBqlbRbFYxOuvv86W6uQXR3KXDQ0NCIVCOHXqFCt1LSwsoKmpCdevX8ejjz6KK1euoK2tDePj4/jVX/1VVhTL5XKckZN616VLl9gA84UXXuCVi8ViwfLyMgYHB7G2toaWlhZEo1Fs3bqVJ01CttB9QOdqNBqxsrKCxcVFDA4OMh5Yq9Xi9ddf58lKIBDwJDg8PIxwOIxjx44x0kEmk+Hy5ctYWVnBI488wtc6m81Cr9cjGo2yrTuRMEwmUxWU0uVyobm5GSqVCoFAgLWwSWyeLK5IH5tQPLQqKxaLsNlsGB8fx8rKCvr7+3Hu3DnWQJmdncUTTzyB73//+0ynbm9vR0NDwzt+7u9VPBh87zJoZm9ubkZTUxOWl5exZcsWXh7W1NRg//79nC1UVndEIhH27t3L2dP6BpBAILijSI3FYsEjjzxyU6OqMjvx+XywWCw8cCoUChw8eBAAMDAwUHUeFI888kjV8VTKWtJ+NrqBaUBsaGhgOUmgLAhEmUzlNSA/rvVVr8bGRv6swWDgCauyE08hlUpx8OBBFknPZDKsdlU5URHjsL29nbdNjsybFVvJZrOYm5vH/v37cenSJZbLpLovrYKojtnf349wOIzm5mYA4EFZLpfzBE1EhHA4jJMnT7Jztc/nQ2dnJ18bkgCVSCTo6OjA4uISAGBiYgJ79+7FpUuXsGXLFng8Hpw/fx56vZ4FbWipn0qlsGvXLohEIoTDYZw5cwbpdBrbt2/njD6fz+Oll16CSqXC/v37mfySSqVw8uRJlEoltLa2oqurC263GwDw5ptvIp1OV2ntqlQq1NTU4PLlyzdKDGIUiwXU1dUhGo0iEAhArVajsbERly5dglqtxpUrV3jyoSxVJpNxn4BsgNLpNK8onnrqKVgsFly7dg2Li4vQaDQQiyV8z1y/fh06nQ5isZgniPspHgy+dxmVtbhiscgsoPXQF4K9LC8vI5vNorOzEy6XCwKBgO2uNRrNTXY2tK2TJ09CqVTCbrejoaGBt08PHC09z549iwMHDlQtrUhxi4gRQHmwXVpagtPpRFtbGzs+UJlAIBDA7XZjeXkZe/bsgVqtZiYaLTUFAgH0en3VMYfDYa7vzc3NYc+ePVXmngAQiUR4+VpZe6y8ThRnzpzBwYMHmSDgdrtRW1sLgUDAsCWFQsED79mzZzE4OAi73X7Ttuh6AuUJye12o7+/H01NTZtGV5RJMoOYn5+H1WZD9AYZpaWlBZFIhAkxjY2NvHxWKBQolcrL6W3btrHgPpU81Go1q4Qpb0CqtNqyuD05Nfh8PthsNkgkEthsthsTixHFYhH79+/H9PQ0rFYr6zpXZo0OhwM2mw11dXUYHh5mFpjFYkFrayvX3AFwDZ1MTwkOqVKpuGQVDAZhMpkglUoZtkf3qdVqxcrKCmw2G+so19TU8LWg+6CtrQ0KhYKJHWazGYuLi+xBV1NTg3g8zr0EggLSvhoaGri3QZ+hRIZqy/l8nrUkiDFXKpUQj8c3VWJ6r+JBw+0ugy4baY7KZDLU19cjk8lgbW0NNpsNSqUSCwsLDMuxWCzYsWMHXnzxRXaAyOVyaG9vRzgcZo6/VCrFww8/DIPBgO9+97uQy+WMx3U4HKyQRXXTRCKBVCqFzs5OTE1NAQC6u7vR1dWFaDSKn/3sZ2htbUUul8OhQ4cwNjaGt956C0888QSmpqagVCqxurqKzs5O7NixA06nE5cvX0FdXblpROy6paUlbNu2DTMzM3jssccwOjqKlZUVfhDdbjfq6+sxMTGBuro6ZtVRQ8fhcODZZ59FMpnEm2++iXg8ju7ubp6I6Dz37t2Lv/u7v4NSqURzczP8fj9kMhl0Oh0WFhZgNBoRjUZx8OBBmM1mXL16FcPDw2hvb+cHLpVKobm5mW2Tjh8/zrCqH//4x2hpaUGpVILdbmcbojv91vTv9YM1sfrebmZFDaONSAubhd/dCiNMg92t4HyE8307+rZ3mqjWY35v9f1bQSw3s/17caz3S8Pt/qpA/zMMYnAJBAJMTk4ikUjAYDBgYWEBAkFZSCUcDlc14KjWplAooNPp4Ha7USgUqgRBKtWfCJmwuLgIk8nEy6rp6WnMzc3BYrEwGJ484Ij+Sy4Tq6urXPslF4fR0VGGPkmlUqytraFUKgP7ZTIZ3G434vE4QqEQxsbGUCqV9VwJilRfX49AIACHw8EQJkJNzM3NIRAIVEHNKAuKx+OIxWLYunUrFhcXmTAA/Ly8QDq0c3NzMJvNiMVi/Lnl5WW2SioWi5iZmYFIJMLs7CzrvgaDwSqHjOXlZfaDqzRTrOzg3ylu9UATkWV9rFcMWx9UTqAIh8OMoqiEKN7u+NaXmio/v76URUHOG3q9HoFAgOGCHo+nCmpG4XQ64fV6EQgEsLKyAp/Ph3Q6zSWB9cdSua/KaxAMBpnUEYlE4Pf7mYixmYF1o/eLxSICgUDVa6VSidmOAFhM/n6LB5nvXQYNpNRhpZpfNpuFVqtFLpeDVCqF1+tl0DuxxxYWFmAwGPjBl0qlSKVSvIQDyktWqVTKSyytVsvLMRKmIcaXQCCEUFjGV4ZCITgcDiZEEDSHlulyuRzJZBLxeJybHyS6Q+IpoVCIMagKhYI948LhMMRiMTKZDJdA6MGiJSAARjfQYB2LxbiJQ95c5A9HWgzUNKSaKMGRgJ87XxByYmhoCKFQCIcOHYLFYkEkEmGjRWoIUd2QuvuRSARmsxlyuZy1IsbGxrB9+/Y7wo/o3E6cOAG73Q6TyYRQKIREIoGWlha43W4+l/r6eoRCIQSDQSwuLgIAtm3bxrbvVNMk/K1QKGSG49WhIdTbbOjr68Pk5CTrfZAGxurqKiukEcyspqYGarWa/feoJGOxWJgpSRZDIpEIFosFFy5cQE9PD37wgx+gra0N+Xyea7s7duxAbW0tM8iKxSIWFxdx5coVHDhwACdPnoRYLEZnZyfMZnOV8wqpppHGBrlWPPzww6irq8Orr76KgYEBvPbaazCZTAiHw2hoaOAyCJWjxsfHeZI3Go3IZDIIhUJsbUU44Hw+j7m5OXYq1uv1rAw3MjKC3t5ebvRJJBLW4bhfMt8HNd93EAKBoErVrDJIAIRowlarlQdWwjYqFArOmKimRVAlyogMBgO7HxgMBlYv24hlRjcrdeHpGMmokCYMpVLJpYvKz1FQZk3ec2T+SBAhWqILBIIqVwoC0tM2k8kkisUiOxdXBl2PTCbDJqKVIZFIkE6n2SiUmpPEBCPIEVA2YqRzrLz+8XgcSqUSUqkUOp2OSQFE8d25c+emdQoIPUB+aX6/nweKhoYGrK6ucgeemmvkdnz+/HkEAgHI5XI0NzdjYWEB27Ztw9mzZ7kJNTY2VqWuNjU1xZA1qlNOTEzwioYm3yeeeAJAmbAwNjaGlpYWXLt2DQqFAjt27MDZs2dhMpkwOzsLg8EAs9mMlZUVDA4O4vDhwzhx4gTLVg4ODsLn8+H8+fM4fPgwsxmVSiV27NgBpVKJXbt2wWQywe12Y3R0FCKRiAf9xcVFdrYQCMqqaZXPB+GXCT738MMPw+VyYXJyEgB4ICflNWKrlYkcSb5XyNOtr68PiUQCMzMzkEgkaGxsxPz8POx2OwSCsoi71+tFd3c3RkdHWbDpfokHg+87DFIFE4lEMBqNiMViKJXK5o/ZbJYB4QaDgUsPZrMZQ0ND0Gq16OrqQiQSgdvtRiKRQCQSweHDhxmgHwwG4XQ6sX//flwfHsbiwgIOHDgAk8mEaDSKuro65PN5+P1+OBwOiEQiNDU1sREiabFWNnuMRiOz61ZWVrBz506k02nWjFhaWgJQXp7S4CqRSKBQKNg6J5FIcEabyWTYO6y1tRUtLS3w+XxYXV1FMpnErl27WF+BDD7puoRCIYTDYUilUsjlcsTjcdTV1eHatWvIZDJwuVzYvXs3XnnlFRw9ehShUAhra2vYsmULe5JRJqhWq5FKpVhFa2ZmBnq9nu11CMZFqwqiylYiI24VBPcj4sLa2hrsdjsMBgPDpijz7+vrQyaT4QaY0WhEIBBg2/j29nZ0dHSw1c2VK1cwMDCApaUlbjDZ7XZIpVIYjUZIpVKo1WoYDAb09vbC6XQim82ypTrhekkHg3QeSHiIECu0wmlubkYsFkM0GsWHP/xheL1e9PX1sbhTLpfD3Nwc2traoFarOQtfW1tDNpuF1WpFa2sr0uk0YrEYlpaWWOGstbX1JtU0Kn2R2WpXVxcfe3NzM7LZLDKZDObm5tDR0YHW1lbU1NTwdU0kErh+/ToOHjwIn893w2KpLJBEK7CGhgbOhuVyORobGzn7zGQyUKvVmJ+fZ5z8/RAPyg53GXTZXn/9dZbwI8PBxcVF6HQ6dHd3Y2RkBPl8Hnq9AdFoWdP2fe97H9588024XC40NjZienqa/cGEQiEOHz6MF198kXGgRqMR/f39eO7730fpRiefsteHHnoIw8PDLCnocDgY0uR0OllIR61WIxAI4KGHHoLFYsGrr76KXC4HkUiED3zgA1heXsZrr72GD3/4w5iZmYFcLsf09DQPbGQjbjKZcOjQIUxOTuLixYvQaDQoFAqQy+U8sOTzeYRCIaZ4Wq1WOJ1OLp1YLBa43W40NDRgbW2NSRKU7X74wx/G0NAQ1Go1RkdHMTAwwBTe48eP49y5c2hoaMCRI0fwyiuv8BLcYDBgdXWVs12iF5NMo0AggM/ng91uRzAYZC2Gp59+elONJFqCNzU1YX5+Hs3NzTdlzrdrHN2q0XS7/d7p87fbFx3P+iA5xo3s7Ol7JEW5Ud24csjI5/PMjNvMOWx0fNQHIYz7+nPO5XJYXFzkgXMzZYNSqcQ460pa9frt38t4UHZ4j6OSqQWUH9AjR47A6XTCbDZDp9MxUcLtdjFFV61Wo7a2lmvEZPVOxAASBqEsTSAQwFpXx+LdYrEYIpGIB8SJiQnY7XbYbDb4fD4YDAbYbDZIpVLWBrBarQwRKxaLXHemwYvIB7W1tYwPrTy3bDbLULFkMgm9Xg+1Ws3HQtbqWq0Wk5OTaG1t5fICORZoNBoIhUKGZhE+VCAoK4VRaUEqlcLv97NQjFgshsFg4IySMnK9Xg+DwYCRkRHU1dUhl8tDLBax269SqcTa2hqrq1Gm1N3dDY/Hw1C2zT6QRITp6OhAqVTC6dOncfDgQaTTaYyOjjLsaX1OU9kUqxzE1iMpSL3N7XbD4/Fg586dGw7C9Lutrq4yZrry/dnZWajValit1qp900BJZTEy1qRSltfrhc/nw9atW1EqlTA+Ps711JqaGmSzWSQSCQQCAdZsOHDgABM56DioNFU5cVU2AithiPSbOxwObsRWIiAI31x5fpXvb3Rd6beiMhtd2/spHmS+dxm3umy3gttkMhlcvXoVNpuNC//rv3en19bDhSr3sz6TWH8Mm4H3bBZKdLtMpvIYbnXssVgMIyMjPDgD5Yfz+vXrzBi7XSZF21q//TvF7c7zTuddLBZx8eJF1hHW6/XQaDSYmJjAJz7xCWSzWfzjP/4j444p+5fJZDAYDNDr9VhcXMSOHTvQ0NCAhYUFrh9T2aNUKuGhhx6C0+nE2bNnEY/HmdBgNpuRSCQYB/voo48y6y6RSCCXy3EJghpZ2WyW697hcJjhkC6XC0qlskqaVC6Xw2AwcN3+6NGjmJmZwfDwMCNsfD4fZ6JqtRr5fB6xWAxGoxHJZBKRSIQ/u2PHDiSTSQwNDXF2TNbyNTU1WFpawtraGrq7u7Fnzx7Mzs5iaGgI8XgcfX19vGJJJpPs4/bYY49BLpfjypUrLLwTCAS4/EXU62QyBblchm3btsHpdMLlcqFYLGL37t1VQvb3Oh5Azd7DKJXKwO31BoTpdPomxTKZTIb9+/dzU4FcHtxuN3K5HPz+ALxeL8LhcNW2AHD9ttKZgVS5KrOJyn9TfW79tiozkVAodEs40kax0cBPkclksLq6ilKpxGpr6wdkotFqNBrs37+fG0npdBqBQAA7duxAX1/fbTMUQmVsNHiuvwbr/9CxR6NRuN3umyBVtwsyiCQI09raGmZmZiGRSHglQbDB5eVlJq+QihwxsyjDXFpa4sFjZWUF4XCYJSpJCIcGPKFQyPXqxcVFXj0BZZU2+p3T6TTC4TDb56yurrIDCCE6SI2MGqN0/0ajUaRSqSqj1/n5ef7dQqEQ/H4/kskk37/kRTc/P88sSq1Wi7m5OW4ALy8vw+/3I5vNQqlUMiwxHA5DoVCgvr6eG7fUG1leXobX62WB/LGxcej1em40Tk1NQS6XY35+HplMhlE/pLYnEpVRMSsrK6wsSLrZ91Pc88y3UCjg//v//j98+9vfhsfjgc1mw6/92q/hT/7kT6oegP/6X/8rvv71ryMcDuPAgQP467/+66qlRTAYxO/8zu/gJz/5CYRCIT7ykY/gy1/+8i3RBevjvcp8V1ZWkEwmkU6nmdRw5coVhMNhHDlyhNXBzGYzEyBIf9VgMODEiRM4cuQIC+wQo4h476VSCVeuXIHH48HAwAAuXrwIq9WK+fl57N69m9ln1Owh4WkyGNyzZw/rBpBnGT101EQjiBzwc+ypWq3GxMQE9Ho9hEIhN09WV1fR19cHmUwGq9UKj8eDXC6HyclJNDQ0QC6XY2JiAplMBg8//DDC4TDThKenpzE5OYnt27dDIBBwTY6yyoceeoitdBKJBDQaDdbW1tjUkQY4gvCJRCIIhUIW+SHsaSwWY1U3v9/PqJJMJsNGlktLS+js7GT1tTtlvqVSWdVs/UCey+VgNpt5UKfBSiaTMQQxk8mwFZPFYmG4GKl2EQNRoVBAoVAw5ruS+CGRSJBKpdilo6amBqVSqWqyBoDTp09jcHCQpSUTiQRUKhUzCkUiEctZEt63nC2W2W3hcJiRBul0GqFQiEs4uVwOcrmc9R+oXFBZUqA6MVGuvV4v1Go16z5Q/ZW0PVQqFWQyGUtVkhgToX4Iskm6FgAQDkcgFP58Uq2UXa0MpVLJ93mxWGSB//sl873nNd8vfelL+Ou//mt861vfQl9fH65cuYJPfepT0Ol0+A//4T8AAP7H//gf+MpXvoJvfetbaGlpwec+9zk8/vjjmJiY4CbAxz/+cbjdbpw4cQK5XA6f+tSn8OlPfxrf/e537/Uhv6Nwu91YXFxk6T61Ws3aBm+++SYEgrJOg8FgwPj4ODevKhWxzp49yxTOqakp9rNSKBS8tFteXkZ3dzf7V0mlUpw5cwZms5kxraVSiXG5Op0OXq+XdXRHRkbQ3NyMCxcuwGg03lAku4T6+npGa5CgTX19Pbq6ujAzM4NsNsvLSmqITE9PAyjXWy9evMgNt7q6OjZwLJVKOHXqFEQiUZULbqlUwtjYGDfyyB5ILpfjzTffhFarRT6fZ884EvZZXFzE3Nwctm/fzj5zhKGmYwyFQpidncXy8jJqa2s5qyQPr4aGBnZLoH1fuHABu3fvvmM9UCAQwGg03rY0UwkVIyWyst5A+TGj+isA9ntLpVJVokVUAyXccDweh06nQzweh8lk4kGejqNyn6VSCY899hgP/LTEp+w3n88jlUpxk5SgegKBgP9dCR0UCoUsjlR5zgqFAolE4o6JkEAgqDq3QqHAVlfroYXkuEFB0EGitNNkQI1VKm3dzgyWRIYoQbnf4p4Pvm+99RY+9KEPscV0c3Mz/vEf/5G9x0qlEv73//7f+JM/+RN86EMfAgD8/d//PWpra/FP//RPePbZZzE5OYmXX34Zly9fxq5duwAAf/mXf4njx4/jz//8zzetRPVehNFoRD6f54dJp9NxdiMSidhFldxuKxsfBAinDM1oNEKj0TAsiVTJOjo6uB7X1tbGAz1pKdTV1cHv9zNzjLIMwhgTmF8qlaK5uRlqtRpmsxlbtmxBsVhET08PVldXkc1mYTAYWG+ATA+9Xi8MBkMV3IwUyUgrmNSrCNxPQjCk5kb1yHJTLAeNRsOOCaTXW1tbi5WVFcjlcjQ0NDDJRC6Xc61Uq9UyzrStrQ21tbUYGxtj+yKyP6cHuaGhAXa7nQeKlpYWfrBpktuM1GBllkn11VQqBYVCwZlkLpfjjPQnP/kJ+vr6MDc3hyNHjgAoL+NbWlogl8uhVqtx8uRJNDc3I5PJQCqVIplM8vUTCAQoFAp48803WfXNZDIhk8ng9ddfx9GjR2GxWLi8RJRrGqAnJiawtLSE/fv3AwCXq8gVIxAIsAYuYZ9Jv4FWFJRElEplvd62tjbOHr1eL0qlshC6RqOB0+nkQVqj0bDXX2Xmms1mceXKFTz11FPM4CMbe4IZkvFoLBaDVquF2+3GpUuXsH//fly7dg1msxm9vb3IZrOQSCR46aWX8G/+zb/B2NgY6uvrWarS6/ViYmKC9bRpBbDZlfN7Efe87PCFL3wBX/va1/Dqq6+is7MTw8PDeOyxx/C//tf/wsc//nEsLCygra0N165dY2UtAHj44YcxMDCAL3/5y/jGN76BP/zDP6xyaaAf6Pvf/z6efvrpm/ZLuq0U0WgUjY2N70nDbX2za7NQmMrmGGU8m933rZpei4uLKBQKaG1tvak2eruG2frtJpNJOJ1OtLe3b9gI3Gg7t2o2buZ8KuNO33076ITN7u9OZYdMJoMTJ06wfoZAUHaDqKmp4UFHJpPhyJEjEAgEeO655/D444/jH/7hH9DR0YFIJMIIk3w+j+PHj+P73/8+5HI5q3k1NjZi+/bt+NGPfoRwOIx9+/Yx4YBWO319fbh8+TKkUimefvppvPDCC5zhaTQa2O12VndbWFjA1q1bMTU1BaPRCIlEgkKhALVazToiRqMRDocDH/nIR3Dx4kVks9kqCU+Px4NMJsM12/r6emzbtg0vvvgilycGBgbw/e9/H/F4nLWjPR4P+/qRBrJer0cymcRTTz2FF154gYkiVGpKJpOMPqmtrcXq6iosFgsP/ATpBMqZcSaTQTwexzPPPIOXXnoJmUwGer0e7e3tjPMmdmahUEBvby96e3v/5ZYdPvvZzyIajXLHulAo4L//9/+Oj3/84wDKtjsAblIXqq2t5fc8Hk9VUwEAz4j0mfXxxS9+EZ///Ofv9encMagTTk4KQ0NDzJyqVDmLRqOsWDU/P49QKITOzk7Mzc0x1XfLli0bdvEJCkZ003g8XmWqWDnoNzc3c83s6tWrnPkAYJrxejYYNVBGRkZYSUwul3Pnnmp665EUlVk8UJ4A5+fnIZfLGeZD31vvoFC5DaqTnj9/HkKhEIcOHbppgKwccF0uFy/h18OVNromlX9nMhkkEgn4/X72S3vooYfu+EASgJ8wsmQOSo4KRORYWVlhZbPZ2VkcOnQIq6urvKynTL9UKvEqo1Qq08dra2shlUrR09PDKAJy2SDTzHQ6DbPZzOdTU2NEPp9jZwsisMzOzqKmpgZSqRR2u51rtUC5bEAqZiSKRK+R31osFoNQKIROp+M6OdkDAeXBr6amht/L5XLo6upiVIXNVg+tVsOymRqNhh2rBQIBi58Ti04oFFb5AxKTcX5+ntXRyCA0k8mgpqYGXq+PFcts9fWI3GjimUwmzrzpmfP5fJuWD32v4p4Pvs899xy+853v4Lvf/S76+vpw/fp1/N7v/R5sNhs++clP3uvdcfzxH/8x/uAP/oD/T5nvux1LS0sYHx9HIpHA8vIyhEIhampqMD09jcOHD8PhcDBm82Mf+xi8Xi/Gx8cRDoeh0+kwMjICiUSC5uYW/PSnP+WGVzKZhFKpRCAQgNVqRTwex8GDB/Hiiy/CbDbjypUrvPzt6+vD8PAwJBIJenp6YLPZcOXKFe6o0/VQ3RBHJwwoDQA7duzAT3/6UxZVMZvN8Pv9ePTRR3HixAl21bDb7YhGo1XaEsFgEMeOHYNGo8H169exvLzMsCMySqypqcHU1BTDqnQ6HRYXF9l6R6fTseYCDSrnzp2DzWbDysoKnE4n9Ho9FAoFlyYIUSGTyeByufDYY4/hypUrCAaDPDH5fD5oNBrU1dVBqVRienoaAoGAsyGadDYTIpGIy2SkDwzcGtr3/ve/n18jm6b18eijjwK4OZPftm0b/3u9dnKpVNYKpnj44Yeq3hMIynRyQhFstP3Kz1ce8/bt2/mzPT09N223cjtHjx7l72ezWfT392NwcHBDRMz61wQCAY4dO3bH1YZAIOCE5FbHTtvbtXNn1fc0Gg0ef/zxO16DX2Tcc6jZf/pP/wmf/exn8eyzz6K/vx+/8iu/gt///d/HF7/4RQDgArzX6636Hjmb0md8Pl/V+/SgVxbwK0Mmk0Gr1Vb9eS/C6XSy4ElNTU0VxEcikfDgQQ/78vIyD3JEe1Sr1fD71xg7qVKpWM9VJpOxrxfVXNfDi5aXlxn3uLS0xE4BpAfrdDq5rkeqWT6fDysrK9wQok57NBrF9PQ0Z1zpdJqbcaOjo6yxSmpkhBfNZDJQKpWcLc3OznLdjhTGlEolFhcXq5hnBM8iI01ahkajUSwsLLBkpcViQVNTE5/L/Pw8SqWyTCWRRaxWK/x+P9xuN6utldXglpDP5zE/P8+db9IfpsbfnaIyi6+Es9HftytdbBbCt5m43WdvBRu83XFtBNm71XZvBe+TyWTYvXv3Tftcv/2Nrt2dzuVOx36749/MNfhFxj3PfJPJ5E21S3p4gXLDo66uDq+99hrXfKPRKC5evIjf/u3fBgDs27cP4XAYV69exc4bM9rrr7+OYrGIPXv23OtDfkexbds2dHZ2ckcZAKuLKRQK7N+/n3GVYrEYe/fuhd/vZ8FrYidJJBJWvqIskzr/VAeTy+VVGQfwc3EbEm6hQfTw4cMM+yEUQ2XG6vf7cenSJdaiffTRR3mJSM0egUCAI0eO8P4IrmUwGNDc3MystkKhgHw+j+7ubthsNmZQkccXAe+pKUUNJ5ogiYFHA5xQKMT+/fu5CSMQCPjcSDNZKpUiGo1iYGCAGzXNzc2oq6uDQFCW8hwYGOASilAoxIc//GFGgwgEAi6LbabWTgwsAIzIof1Go1H09vYyquF+fNAfxOadsd+ruOcNt1/7tV/DyZMn8dWvfhV9fX24du0aPv3pT+PXf/3X8aUvfQlAGY72Z3/2Z1VQs5GRkSqo2RNPPAGv14u/+Zu/YajZrl27Ng01+0Uy3G718JG84/qa6/rvpVIpdmJNJpOQSCR3VN/aaL8E7Kc6G32O4F2USdOAW1mbps8TppOaSrlcDul0mut2t9p3Npvl5g0FlT5uBeui8ybZycptb2bZmM1m2Un5TtdmfdxpCVwoFPD8888zrI5WHiaTCalUCseOHWPdgAeD7/0Zd2o4v9P4hTfc/vIv/xKf+9zn8O/+3b9jC5Tf+q3fwn/5L/+FP/Of//N/RiKRwKc//WmEw2EcPHgQL7/8cpXQx3e+8x185jOfwbFjx5hk8ZWvfOVeH+47DmKqEYC/sbGRs02ibRIWMZlM4fTpN/Cxj30MwM+t3iuB66VSCW+++Saam5vR0NCA6elpNDY2MhkAAHd5qRlGuEvC+ZJ+w4kTJ9DW1sYNi0wmA4lEgp/+9KcQiUTYs2cPLBYLlw+SySTbEZG2RCQSQTqd5mbO0tISlpeX0dHRgUwmA7FYjHQ6zaLW9fX1KBQK8Hg88Pl8OHr0KADg2rVrmJ+fR19fH5qamtjLq66ujjGtr7zyCrq6uqpwnAqFgicPEvE2m80Ih8PQarVMh41EIpzRNzc3sxpYoVBgZhNBnwQCQRX5gLRrbxdU1kilUkwHdjgcsFqtSCQS7F4CbA5Vci9ifWN2s+9tZrt3Qq7cbpv3YnC71f5vdZ5vFzFzP8QDbYe7DLpsp0+fRiwWw+LiIvR6PY4dO8Y+Vi+99BKXE2QyGXd8n3nmGQDAiy++yNCfWCyGfD7PTSYCu2u1Wmg0mqpObT6fx9TUFAKBAHeS1Wo1PB4PHn/8cXa2eO6551gbOB6PQ6PR8MBN27Hb7dxR7u3txRtvvIHe3l4cOHAAAkHZvXZiYqJqIKzk8be2tmJ4eJhVzeLxODc7qbECAP/0T//EmM7m5maMj5cpowcOHEBdXR0KhQKee+45KJVKdq31er3YtWsXl55+8IMfMLZWpVIhmUxCrVazY4Ver0cwGIRKpcLOnTtht9uRz+fx4x//mOnLVEMm9w6TyYSHH374tiSLt/OIVGbZmx201sMONztwbDQoVdam179+p2Na/976bW30nfXfvd133k4Qymf9tuh12udG53mnY/4Xm/n+awuz2Yy1tXJm1djYyJAiIkBUMmyIFUTQKBoEiN0WCoVgNJluT13JxwAAqmxJREFU1H5V8Pm8kMlksFgsVeyoVCqFiYkJaDQaXqKTIHmlcLrBYGCyA1B2Evb5fGz1LpVKkcvlmIxBgizhcJjB8ZRJkzZAKBSCXq+HVCrlCYM4+SRr2dzcjHA4XMVistls8Pv97KSh0+lQW1vLrhd0fOR2QQ4RlULsxWIRTU1NDNon8gpB4RoaGiCRSHilAZQhYr29vayd4HA4YLFY2JGDrv3t4k4ZbCKRwBtvvIHGxkZuDt5KupBeGxoaYtyuy+Xi7NloNLKvGkEMSb2OXqNGZuVgUungcPDgwSpX7FKpbDDa0tLCBphUXiq7Ms+hUCigv7+fV21E066treWJqRKLToPg9evXYTQaYbfbUSqVboIBrj/vjeB/G11Tck1Rq9VVDi8CgQDj4+MsX1r5ejgcxvDwMPbt28cawpv5HX9R8SDzvctYj1W9evUqent7b1tvfDdn3jvBidbH3R7DZiE7bwfas9FDuNH2Ll++jK1bt1aVp0qlEiYnJ2GxWDYlin67Y3i7QcecSqXwzW9+E4cPH2aGGNkkAcDq6ira29uZJrtr1y688MILqK2txd69e3H69GnWIk6n06itreVJhOjHKysrsFqtLGDU1NTEmgZbt25ldIjT6YTNZoNOp0MsFsOxY8cwNDSE0dFRtLa2svzn1NQUFAoFent74XA4sLy8zELs+XwegUAARqOR3TRKpTLD7+jRozxgKxQKjIyM4OMf/ziGhob4HMhsVafTsejNwMAAisUiZmdnq+y2otEoJBIJJytutxvZbBYmkwmFQgGxWAw9PT1YXl5GY2Mjent78e1vfxv79++Hz+djwXXqBxUKBRgMBtjtdoYoqtVquN1u2O129PX13TeZ7wNVs7uM9bCZrVu3wufzMZSsMioH3Ww2i7W1NcTj8ZtEUYBydldp/le5jdsNUPF4HNls9rbwm1AoxJ3+ytdvl6FVnishESr/f6s/m/1c5THc6j2KwcHBm2yPBIIyJrWyLLPZ/d5qPxtF5bJ2/e9QKBSgUqnYRp5MI0ulspj82toaLBYLD0ylUomtkICyDkQ2m0Uul2MjVK+3DBEk1Ak5SRCEcGFhASaTCX6/H16vlwWSVCoVQqEQZmZmYLFYUCgUMD09w9luLBbDwsIClEolU3Gj0SisVivy+TybkxJiZ3x8vEr0JhwOw+PxIJFIcN1cKBQimUxiYWEBoVAI8/PzMJvNfIw+nw8+nw9er5etmCjbJ9NYUj8j9TKtVsvveTwerK6uchasVCrhdrvZKZxsjAgplMlkMDU1hZqaGtZZ9vv9VToY90M8yHzvMiqXR4FAAB6PhwXESTayUCjw/oVCIc/AbrcbXV1duHr1Kvbs2cP0SqPRiNdeew1utxuDg4Os2dDe3s7iO7T8V6lU8Pv9aGhoQDQa5QGALHkIOaDValFfXw+HwwGPx4tEIo7BwUE2rPT7/bDb7QxVy2az3ACsr69nlMUvasl2u8z9Xmf1b/cYKAqFAsLhMGpqahCNRnHhwgWkUikWVhcKhezFp1aroVAoeDCgZiHhtImdSLBAuVzO6mg0qZMqGtGFKwXqK1l+wM89AMkPj8SRisUifzeZTLJGL+Gx6ZwJJkr3s1KphFgsZkPYeDzO3oISiYQRJ6TdS1ktPQPUKF1bW0NNTQ2CwSAbzMpkMt4fwRqFQiG8Xi+uXbuG/v5+9PX18XUkKypyLqGmq0BQdqwgFTjqu5DI0P2S+T4YfO8y6LKNjIzg0qVLaG1tRSwWQ319PRYWFhCLxTAwMIBoNAqpVAqPxwOZTMYPU3d3N65evQqBoCxgs337dnR1deGHP/whP0AkRLNnzx68+uqrSKVSaG5uZqlHWro5HA7U19djbW2N3XOpQUZUVYJ+ud1uXh6Sr5xer4fb7YbVakUkEkF9fT3Gx8fx9NNPc831fquXvZdRmfVGIhF289jomuTzeUSjUZYNJVoyAIYOikQixjZXKm7d6TrTcZD9E7lQyOVypFKpDe/zyrr0eqv6253n7ZpWtytx3W41dbv9ZjIZFApFKJWKmxpsxWIRqVSK4ZF3GkAJAUPnGo/HqyCP98vg+6Dh9g5DKBSiubmZm1Ikbdja2opAIICOjg5ks1lEIhF0dXXxksxgMKCurg5NTU1YWlqC1WqFUChEa2srkskke6bRA9za2srZktVqhUajYeU0nU7HdkLxeBwtLS2cCYvFYjQ2NuLy5cvcrALK8oZarZZta8h4Mp/Pw2Qyob+/n+26K2UG3614r7LYu41CoYDLly9jYWEBDz/8MDd0CoUCP3BkLPqNb3wD//bf/lt87Wtfx/ve9zgWFhawsLCAX/3VX8V3vvMdHD16FNeuXcP27dvR19eH2dlZAGVmJ7lPmEwmpkGn02lWXyuVSnj99ddht9vZtJQ0Tx599FFumNEETlDH+fl5SKVS7NixA8ViEV6vF2KxmHsUdJ2Jtt3f38828KT5SwxE0n8AwI1LyqypsapSqRCPx/lvQvrIZDLOvEUiEes7jI2NQSgUYufOnayKF4vF2ER0amqKs2oi1tTW1iKVSvFgKxaLkUgkMD8/z9uixIeEhe4nVbMHg+9dBt2sW7ZswZYtW6rea2lpuenznZ2dEAjKDrj03X379jERgrrzBKuioGyip6eHv9fe3r6p46sc0N73vvdt+LlSqcQ436amJtZG/UXE3UKu3qsgV+ezZ88yxI8IJ0KhEAcPHoRMJkNjYyNOnDgBjUbNq53Ozk787Gc/Y0heoVBg5iLZ3IyPj8NisWB5eZnLAOXm1TKeeeajLGOZz+dx8eJFfOADH0A6nYbX60Umk8HJkyf5MwKBgJfkXq8XVquVqdikIQ2A6eAEP6Tfv7e3F6dPn0ZbWxs7RlAZQCaTYXp6GnK5HIlEguGS3d3dyGazOHfuHLtck3Y1SVmGQiFs2bIFCwsLUKvVLPZDjEe3242JiQmEw2FWa3v66aexuLiIxsZGOBwOjI2NoampCQ899BCSySRefvllRsJQbTqRSEAoFGL37t24fn0YxWIBfX19Vbocv+h4MPi+S1EqlTVdOzo6kMvl0Nvbyw8bAHYqJioxLecqYTWXLl1CIpFAPB7H4cOHq2A309PTiMVi2LlzJ2fWJpMJk5OTKBaL6O/v3xDWU7mcLHuAnYJKVbZPd7lcDFWjDGo9UmOj8yTXiY0+txHao/IcK4/N5XLBZrMhk8ng2rVr2L9//4YNLlIXo6yt8rzo38VikdXibgVrothMWUUoFMJisSCTyTBt2263Y2xsDG1tbXA4HFAqlchms+js7EQymYRUKuX6pcVi4UGOhMzLS+0C6y2nUimYzWasrq6it7eXm2bpdBorKysMv9u+fTuuXLmCWCwGk8lUVVMFyrA+IrFQFlyp6yyRSFBXV8eZu0AgQHt7O5Nl6HqQYhtltEQoomy2VCoxXLDSUaVUKjGscevWrZiYmEBXVxdCoRDa2tpQKpVQX1+PfD6PRCKB9vZ2LC4uora2lh0wurq64PF4+Hcj2jrJVBJtXKlUoq2tjQffy5cvo729HWtra5wEabWaqjr2/RIPar73IG51Cf/8z/8cx44dg1QqxdWrQ2hra8X4+Diam5sxPDyMX/qlX8Jbb711w5HBiFAoiA9/+MM4ceIEjEYjTp16AzU1ZcfeRx99FFNTU3j66afh8Xjw4osvcocbKItlE+7V5/Ohv78fa2tr/FAqFEoAJej1euzevZsHrtOnT7OP3ODgIFZWVlBbW4uOjg6cOXMGWq0WKysr2LVrF65cucKC8fRQkoD5008/jZGREW4OhUIhRnPQ50gRbdu2bRgdHYVSqUQ0GkVNTQ37lUkkEnap+MAHPoChoSH2m6uvr2cdWlqakvKbWCxmtt7u3buRz+fx+uuvo62tja2qxsbGmJhBS9poNIpHH330tljf2z0i6ye2u71/VlZWuJSRSCTYHblyEqycxDZTGwaAyclJpFIp9PX1bWgVv9G5bLQd4NYkjFttp/L7G01+6xOD9a9t9lg3+u6tzuXd7F88gJr9AuJW0CXyOCs/UHFcvnyZFcgIheD3+5FIJLC0tMi6q06nE/Pz81CrVdwsW11dZXUzl8vFoPqxsTE265yYmIDH44FWq8Xy8jLGxsawurqKa9eu4cqVy9BqtVAqlVU3X19fH9LpNNuHk/NEMpnE2toaTCYTLxlLpRKy2SwWFhag1WqZGUfwr8nJScjlcrYfSiaTTBQg0DwJ1ESjUWbMLS4uQqPRwO12w+FwwOFwcAaVTCbhcrl4eRoKhRAMBpFMJhGPx6FQKLiO7XK54HK5uHMulUoxPT2DXC6HXC6HTCaD5eVlhMNhzMzMYHJy8iZd6bv57XO5HKNYgHJ9OJVK3fZ7xMoj+FdTUxOsViusVitnoYFAAOl0mqU2AfAK4XYRi8XYT663txc7duyoGngDgQBnvS6XC8FgELFYDA6HAz6fj69V5b28trZWZVZA536ra0J/bwQnDIVCfH0qt1H5uTvlhPF4nLW91+8DKGfg5LZBrhn3WxnrQeb7LkWpVOIHiLCUxCLT6/VsOfO3f/u36OnpQU9PD7O7/H4/ZDIZD14AWJrRZrMhn8/D4/EwcoKYapUwIsruhEIhN+YoG9DpdFWsJXoQFAoFoyHkcjncbjeXE2KxGM6dewtPPPE+hkIlEgl2FNDr9YhGo8jn85BIJPxwb5SJkAobCfhQzTmbzbICnEAg4G3mcjnMzs5iYGAAyWSSIXG0fxqo6Q+dXyQS4fPWarVsCEkC3BSVLLpb/ZaVtdlQKASxWMylA4lEgkuXLkEoFOKpp57CtWvXWIOZGrBkvVNTU8PWPaS7rFarWbRco9Gw8tyFCxfQ398Pn8+HtrY2aDQaGAwGvPDCCzh69Ch8Ph/reGQyGXZ/mJqaQrFYxIEDBxg6RrBEg8GAH//4x6w3/NWvfhU7d+5ET08PnnvuOej1euzfvx+rq6vYvXs3hEIhzp8/j9XVVdTX12PLli1wu91oaWlBLpfjicBgMDARo1Qq8X1oMpng8XhYI5pWfcFgEE1NTTCbzXC5XBCJRAzDo+eGrLkAsHIeNTUvXLiAnp4eZv5ls1kIhUJWvwuHw5iamsKHPvQhTE1NQafTQalUsm7IuxEP0A7vUWxmzpLL5ay+T+yrUqnEwPRSqYRnn32WnWlJQIaEXirVyIDyzE0Zqt1urxrUKjGVpMFLDzLhgjfSLxAIBFWsvEp/vMp/K5VKHD/+BGsvAOAbjOpphGUmTWIKyqwJjwmABc8FAkGVitn60Gq1SKVS6O3tZbnMVCoFiURyk9A4XV+ica8H1ZM9OQ0O1GnfTBSLRZw5cwZ6vZ7rnVTyWa8MNzc3x6pnMzMzUKvVbCxKnXm1Wo3l5WWIRCImPbjdbjz66KNcvpHL5Th//jw6OzsxMTEBs9nMguVvvfUWVCoVZmdnIRKJ4HK58OSTTyKVSqFYLCKbzeLy5cts0Z7NZhEKhap0LIRCIZuzErU4k8kglUrB5/Ox0D1heF0uFzweD1QqFXvNnT59Gnq9HvX19fD5fDCZTFhZWUFnZyeuXbsGu93OIvqlUglms5mhdpcuXYJarUZDQwOy2SwmJyfR29sLiUSCdDqNqakpNDc3Y2pqil2HiTghEAgwOzsLo9EIp9MJq9WKdDqNWCwGtVoDkUjIvw8Z13Z2dt5XRIsHg+87jGQyiUQiAbPZjGAwyNAwyl4I39vd3Y1EIoEXX3wJDz10CHK5HAsLC+ju7kY0GsXrr7+OPXv2QK1WMzaUhNTJmvyVV17Bli1b2KQRKBt4JhIJfP/738cv/dIv4dVXX0VfXx8CgQDm5uaQSqWxbdtWuN1uPPnkk0in04jH41AqlUilUhAKhWx+STZFJpOJxdwpYycSAGU2Pp+PURdarRaFQgE/+MEPsG/fPszPz+PIkSNIJpMs5p5KpZDNZvH4448jm83C6XSiubmZXTuIOCCXy9mQkgw9r1+/DqFQiPr6euh0Orz++uvMaqPMGQA3YYLBIGNxyYyRNIBpNbC0tASHw4HHHnuMJ8g7RVdXF4rFIrsY5/N5JFMp6G9k3zSotbS0sJtJT08PfD4ftm3bxst7mmwMBgMWFhbQ2dkJl8uFnp4eFknSarXI5XLo6enh1QBNkvX19UyoaWlpQTqdZi+5uro6tvIplUqcUdLvWyqVuNlWLBaxb98+KJVKTE5OstGoyWSCVqvFxMQEdu3ahZaWFrZ6pxWRSqVCMBiE3W5HR0cHY5bT6TRaWlo4QaBSFdmEqVQqbrbt2LEDy8vL7M9G9vWU/ba2tkIikaCpqQlyuZzPgcwI6HMtLS2sLTI7O4uOjnIDz2KxcHOPzBbup3hQdrjLoMs2MTGBCxcu4OMf/zjeeOMNWCwWLCwsMJunubkZtbW16O7uxs9+9jPEYjG+SUulEtrb2zE2NsaDj1arZfA8mS3u27cPBoMB3//+91mYJ5VKYXBwEK2t5SbehQsXsHPnTly9ehW/8Ru/gXA4jNdffx3pdBof/OAH8e1vfxu/9Vu/hZMnT6KhoYEzJoIuUQeZoG92u50dKiQSCS+zXS4XcrkcdDodZDIZamtrsXPnTpRKJfzt334DfX29XGOj49Tr9UxLJWnMdDqNxx9/HKlUCkNDQ9wopAyJmk+PP/44Ll++jGAwyJZK9BATrdVsNnP9T6VSoVAooLm5GTMzM3jmmWcwPz+Pc+fOQaVSwWazQSgUsluzWq3GU089tekG1kbvrf8u1ZjJveRO271VY4iiUChgYWEBra2tVeWi9fF2GnK3ep8mFfrdK0kZm91+5WecTifC4TDa29shlUqr6rmrq6vQ6XRVz+c7aVxWfn+jhtvdEEDeTjwoO7zHQXAmgvtYrVYsLCyw42ylIhX9TSaK5IJAtkdSqRRra2tQKBQ3QOwChMMhHnCpuaVSqZBIJFgHlway8fFxHsx1Oh2TI6anp3HkyBEuCxClUyKVIn9joADADb2enh74/X50dnbyoJZKpbheSRkqoR6cTifq6upgNptgtVqZJiuVSiESiRAMBqvOUaPRcA1PrVaz4Dtx9JPJJKxWK+sdE6uprq4OUqmUsyPKfMhstVgs8oNNzrrpdBrNzc3weDxVcDGC1FXWwu8UlSagwM/r+pUuIQAwOjrKE9WBAwf4s+u78ZUGq5VBpRNy4BAIBGhra6ty/CADULfbjYMHD6JUKuHixYtoa2vDmTNncOTIEchkMrz11luoqalBXV0drl27BoPBgJaWFqjVamg0GjZajUQisFqtPEHlcrmqchQd561ggpUDWzQaxcjICHbu3AmbzQar1Vq1upmbm4PBYEBDQ8OG50+lsvUT0fLyMtRqNa88gGrYYiqVwsjICLvdVEIlK4/3fokHme9dBt00m4XU0HfuZj+VMKjbwX/uBOXZ6Dgq33M4HMjlchuSRDba7u329Xa/t5l93SlDXP/aegjSRvvbTDZE2eDzzz8PAGhra0MgEEAkEkEikcDevXuhVqsxPz8PlUqNkZFhPPPMM3j11VfR1dUFh8NRtQJQKBTIZDJ47LHHMDc3h0QiAYlEwiWdUCiEUCiE/fv3Y25uDkqlEqFQCPF4HEeOHGFdhZqaGpw6dQqPPPIIlEolXnrpJRw9ehQzMzOora2F0WjEn/3Zn+Gpp55CR0cHvv3tb6NUKuGJJ57g0lCpVMLKigNzc7NoaWnB6dOnUV9fj/r6eng8HuzatQsjIyPw+XyQSqXYunUrJicnmTghl8sRjcbQ3t6GZDKJwcFBfO9732PiRW9vL2ZnZ5FMJnHkyBGMj48zKWTbtm1YWVnBtm3bWCifMMSUmJCLs06nQ3d3N8RiMUZHR7GwsACpVMr1YpIzXV1dRV1dHfv0AeWymEwmQ3NzM/dK3o14ADV7D2OjB5dgQethNvQ5+uPz+RCJRG76bDweRywW4/+vx59mMhnuMCeTScRiMYaarYf0VL5G3XqCEFW+VygU4Ha70dDQUMXA2whCd6v3KreXTCYZGkeQp1t9r1gsbggZ8vv9nJGvv453em2jbKry89FoFIlE4m09hEKhkAkWS0tLWFlZQSaTQUtLC0QiEZxOJ8PfqMaaz+exsrICh8PBGsZra2vweDyMyZ6ZmYFMJsPU1BTX1IVCIQqFAtbW1jh7o6YsER9osFEoFJifn+fyUTAYhMfjgUKhQKFQgNFoxIULF7GyssL1X2pMBQKBG79BgQVp9Ho9lpeXEQwG4XK5EAgEmO5eKpUNSwOBABKJBBwOx40SUxnONT09zQ1loiTPzs5idXWVESxULlKr1ZiammIT2VQqhaWlJUQiEUxPT2NqagoWi4VXlDMzM5DL5SwaReWQsbExRCIRLC8vw+PxoFAoYGVlhctXhUIBgUAAoVCIPfjul3iQ+d5l0GVzOp0sUE50SxL4JveKTCaDZDKJbDYLq9UKkUjES72DBw8imUxyVhQOhxGLxdDZ2cmCLJFIBEqlEi0tLThx4gRnPVRDm5iYQH9/P8RicRWJgDRhu7q6sLy8zDY+hUIB8XgcTU1NkEgkOH36NDweDx566CFuxDU1NcHj8fBDSSUTv9+PQqHAxzc7Owu5XI5isYja2lpEo1EMDQ1Br9fDarUiHA7DaDSisbERMpkMy8vLrOplsViQSqVw7tw5/PIv/zKi0Sj8fj9qamrw6quv4siRI9BqtZidnYVer7/RyVazCSZQLpUQ3IqOk0oNly9fZtKGWCyG0Wjk2nEul8PWrVu5+XWnzJecNp544gkUCgXeHy3NpVJpldKXXq9HJBIBUMacCoVCrKysYGZmBtu2bYNer0ddXR1LMyqVShaWJ4geEUiooUnsMtLbVavVVdoboVAIIpEIoVCINYHpNUJAkHsz9ReoNEPaDIlEAvl8nuF8er2+Si2NGpqVwkGVkynBAwn6RUgcgoCRjyGV46jckclkqhTVKoclQi1QqSgWi/HETNoSBMWkQV+hUFRJu9KkcKc6/DuJBzXf9zjGx8cRjUYxNzeHX/7lX8b4+Dg/PMS6oqxjy5YteP3117Fr1y7uwp86dYqzmKamJigUCly8eBF2ux0jIyNc/ysWi2hubual/enTp2G327kBJRKJEIvFAJQREH6/H2azGZFIBL29vYx1vXLlCj9sHR0dDPSXyWS4dOkSBIIybdZut2NqagqxWIxdKSKRCPug9fb2IhAIYGZmBouLixgcHMTk5GR5wLghKG40GjEzMwOTyQS9Xo9SqYShoSE+3/Hxca4DA2VPtPPnz0Or1TJULZVKYWpqCoVCAVarFUNDQ9i2bRumpqZYr4AIBPRANjU1sU8cPdxLS0soFAqc2V+8eBGtra2YmJjA4ODgbW2EgHLm+4EPfIAhTxsFNUtJdGY9ikKv16OzsxNKpZJrlWq1ml2adTod/940KZC8Z6W4US6XQ21t7U2CR7S/SoPW9f50VEIhsRuBQMD180QisSHmmXRH6PsaTZmuSw4plUETyUYmsRQKhYLheqQloVKpquCJpVKJhXmEQiGr8lHPACg3bem6A2VS063qurmK3sb9Eg8G33cYpVIJRqOR4TnUTaf3CoUCGhsbIZFIYLfbOTsyGAzcLFpcXIROp4Pf70dtbS0GBgYYF0uEhP3790MgKGOAC4UC7HY7Ow10d3ejVCrz4YVCIQuL1NXVQa/Xs8AKwZHIa42yIDK9pKUyDTBNTU3/f3t/Hh3HeZ2Jw083ekfv3ehuNPZ9IUhwBUmRIimJ1GZJliw7XhSPE+fEJxnbY0+ceIl/TuIzk7ETz0yOnZPYk8wknnxjy0siyZZEUaJEUlxEgARBEsS+790Aet/3+v5o3esGBJIgRZGUUs85OAC6q6vet7rq1n3vfe5zMTw8jJqaGhiNRqYqaTQa1jdIpVLYt28fLBYLLxOLi4shl8uh0WjQ3NzMXhoANqw0TrrB6KapqqqCVqtlbikpuiUSCej1ethsNpSXl7MwORWQJBIJbgOv1Wp5X3Nzc7BYLNzGfnl5GbW1tWhra0Mqlca2bdvW1ToeyN/APp8PkUiE+aYymYwN5+joKFOoqAyaKu3IS4xGo1wwEgqFIAgCrly5Ap1Ox8U4fX19eOCBB1j/g7jBBoOBhdrpHBKfmwy0RCLB8PAwnE4nGyG5XM6c5lwuh4GBAUilUlRUVHBbJwAcGiGjSKsWIO9VW61W+Hw+dHZ2oq2tjbVyFQoFVCoVVCoVLl26hPLycv6fOlUQ15i+69deew21tbVwuVzYunUrJBIJP0RpnM899xw2bNjAyoD0wNLr9RgcHORCm507d7LXKZFIOMFbuAqkUNjevXtv6f3/biCGHW4SdNpGR0dht9uveozCJzGp8ZMXSLjWMiiVSmF0dBStra287XqpPoX7vlqCaj37uVqSioTkC+PEa1F8rjWO1YnA1X9fbYxrvX615OJa260+F+sJO/zyl7+E0WiE1+tlpoZOp8PS0hJ8Ph9aWlpQXFyMDRs24KWXXmKmRnFxMVO3KGRy6NAhnDhxArFYDHK5HHv27IHL5UI0GuUknMVigd1u5zj/hz/8YfT19XEiikRx6EHY1NSE8vJynDp1CrFYDDU1Nejv74fZbOaYcFVVFWKxGPPQKaZKuQqKJ1utVrhcLjz22GOIRqM4evQoHnvsMSSTSXR1dfE5icVi0Ol0OHjwIIxGIzo7O6FWq3HlyhUYDAauUHQ4HIhEImhpaUFFRQWOHDnCPQKJ8ROLxVBVVYUtW7ZAEAQ8++yz0Gg02L9/P2bn5pB6e7X0xBMfxokTx1FZWYnh4WHodDqk02m0t7cjHA7jypUrsNls7GEHg0EW5rn33nvvmrCDmHB7lyCdVaI50W/6+8yZM0ilUsjlctDr9TAYDMhmszh9+jTH+Gj7ws/T6zKZjIn2CwsLCIVCOHPmDC+5Cj9TeOxLly7B7/cDyMccu7u7ucqqcLt0Oo1oNLpiX4U/Z86cQTqdxtLSEgYGBjA3N8fv9ff3o7y8nNvdUFyQ9k9jpv0SCucqkeSr9o4ePcr78Hq9OH/+PM9x9Zgo4VM4j8HBQXR2dmJ6ehqXLl3ChQsXsLS0hFOnTq04n7lcDhcvXsTk5CTPez0QBGHFCmHTpk3IZDJwOBxwOBxve61hrnaz2WysZKZUKlFVVQWn08kUPdJrrq2t5Sae1EC0pKQENpsN6XQaNpsNKpUKdrsdWq0WNpuNcwl5el8JX1NWqxVqtZpzAlT4oFarUVJSwtdqYfWf3W5HaWkpysrKWODIbDYjm83y9Unl31TsQRRH4pk7HA74/X4sLi5yWIo84tLSUmZ60BglEgmX+2o0Gh5jWVkZEokEt9HSarWw2+3IZDJQq1SQy+VvtztKc5NOh8PBVE8Ku6RSKZ5DaWkpy1reDl3qG4Ho+d4k6LRduXIFCwsL3OhvamoKVVVV2LBhA3p6enDp0iXU1dVBIpFgYWEBmzblq83m5uagVqvhcDg4k221WjE9PY17770XJpMJ4XAYb731Ft/4gUAAMzMzyOVy0Ol0eOSRR5BIJHD69GmuIKqoqEA0GkUgEEAoFMJDDz2ETCaDN944BqMx34ZILpdzoUEmk0FpaSkOHDiAgYEBTExMQCKR8I0/PDyMT33qU1wxR0s9WlJSbFWn02F2dhatra2YmJhAfX09qqqq0N3djUgkgkwmg0ceeQTz8/Po7+/ndvYPPvgg5HI5fv7zn3NskW4SWkbPzc2xt0LdnM1mMy5evIh7770XpaWleOONN+BeXEQ2k8GhQ4dw6tQpNDU1YWZmBo8//jiAfKkvVZlJJBJs2LCBK8qu5/nS9+1yuTghSihkWKzXq1qL/raW107vrx7PWp9f/fe1jgf8RtZ0rfkODg4iGo2ira1thSjP1Y5FWr+ruwb7fD4MDAygsbERJSUlK1gn16ImrrVCuxZdkLYZHx/H8vIyNmzYwN/r6nmLnu8HBNFoFF6vF0VFRWxUtVotstkshoaGmJrkcrmgVCq5UyzFRScnJ/n9y5cvQyaTIRwOIx6Pc+fY2dlZLo4gGk86nWa1sELls0uXLrF3Rhl4mUwGne43wtWxWAw+nw9SqZT7hwlCXpOAlqiJRAKXLl3im4l6fnk8HsTjcQSDQQQCAYyNjcHr9XKJMimLUfLE4/EgFoshkUggmUxifn4eMzMz8Pl8zLqggotYLMYiP0RT8/l8KzLU6XSaFbZSqRRzOZ1OJ9SqvGDO4uIisxyCwSAmJiaY3E+l30S1Gh8ff0ffs6tBIpHA6XSiurqaaVjUIBMAZ/dp23A4DJfLtaI4g37i8TivTAoNLv0mVS6aHxkQUkMr3N9axov2X7iykUgkWF5eRjqdfoeRJ8ofrUZaW1uxffv2d3SKLlRuI71ditfSteJ2uxEIBJjqtnfvXr4WFxcXOYm7ljGkcQhCvmUThVYKKYmFcy/8HwBqa2uxc+fOFbooa9ES7waInu9Ngk5bJBJhjQS3243Lly9j8+bNzAYgbibJLtJyvLCcl7wPtVoNv98PiSQvNkOiMoIgsKdYGJcjrd6FhQWmYhW2byGR60ImhEaj4e1IhEWhULDQN3Wupaw4La1JsGd1xpjOAyWV5ufn0dfXh23btqG+vp6lKAEwbYl4ozRPqVTKDwOKYdK5oXhpofcplUr5gZHL5Tg5lEwmYTKZMDAwgGAwiB07drC8pMVi4YcGtUsqLi5m43I9zxcAlpaWkEqlMDIyArPZDKvVildeeQX79u1j/YJIJMJVeleuXIHD4UB7ezsvycPhMCoqKjA8PMxxWao4NBqNrJ+cywm4dOkiGhsbOdFEHTBI+a6srAxerxfz8/NoamriHoL9/f2QyWQYHx/H1q1bmU1iMplw6tQp6PV6tLW1cRk4FXIsLS2ho6MDiUSCtSqIMkddJ7q6urBnzx6YzWb87Gc/w549e7gbhsFggM/nw5EjR9DR0cF9BkdHR1FaWspyoDU1NXzNU8glFouhoqKC9aXvueceAGDv1Waz4fnnn8fOnTshkUgQCATebv4ZR0lJvotzbW0tXwcKhYIf0JlMhjvJXO+7fjcQqWa3GVqtljP5RqMRlZWV7PVRXzfin66m5giCsIKSQ3GuwmUW8UhJLhIAL99oO+JJkgoZZawlEgm3iid5PvJSqCcXsRLo2HR8ACwCQwaRjDLtl8IDEomE+c0tLS2oqanh0mKSiiwqKmI5yNUXpiAITImiIgWJRMK/6RwQuZ5oYeQ5041IYYvNmzczt1av1zNHmWKMdD4pfLIeJJNJnDlzBrlcDmq1Bk6nk2OsRqMRb731FrLZLLq7u5l3XF1dzdS+Qn3ivr5+lJRYIZPJkEgk0NfXh4qKCiQSCezevRvnzp1jWmF/fz/HuqkpJHUdWVxcxMLCAgKBAORyOXw+H7RaLUKhEEpKSpDL5XDq1CnU1NRgamoKBw4cQFFREdxuN4aGhtDQ0IClpaUVJdYnT55EZWUlpqenmU1hs9mwtLSEHTt2YHJyEk1NTSgpKYFSqURnZyesVis0Gg127tyJs2fPcuEHnWfi8FLSK51OY2RkBIIgMF9YpVKhsrKS+7xdvHiRr0ulUomDBw8CyGup+Hw+lqv0er3cw9But+PUqVPYtGkTzp07B0EQmCURi8Wg1+tRV1e3ru/7dkA0vu8SdGERd9XlcmHjxo1QKpXw+Xx48803UVysRX19HUwmE5RKJXvKCoWC6UrkCSQSCW4JTmpmXq8XANDV1YVcLoeDBw9CoVDA5/Px8n1oaAj3338/P/Xj8TgcDgdOnTqFiooKnDt3Dk8//TSSySR8b/NwT5w4AYPBgP379wMAhzKo+8Phw6/gkUcehiAImJiY4Goug8EAl8uN0lIHaz4cPnwYJrMZapUK9fX1OHz4FXzsYx/Fyy+/zPKDFosFdXV1/JCgJTVJRCqVSrz00kt46qmnWBOikH60uLgEpTK/tKUCBTJ6ra2t/NAjKl0mk8HFi3nvkfqJRaNRmEwmBAIBnDt3Dk899dS6vme5XI6ysjJejVDhAhmU6upqFBUVobKykql4yWQS27Ztg81mY9UwYjcsLy/DZrOhpKSE+dZNTU0s2Wk2m5FOp5k+B+QfctQ7jjSTS0pK4HA4YLPZmMZYVVWFdDqNyspKni+JztfU1CAYDGLz5s3weDzo6OiAy+ViKhtRHMn4U9shKojZsWMHQqEQAKC6upqThMTBpRWG0Wjk1Q21SyLao06nQ1lZGT9EqbmnRCJBRUXFCk0UaoxJ3zk5GbQyIiaF1+tFcXEx7HY7EokEysvLuWlnLpdDfX39Cq2KuwGi8X2X6OzsRDQaZc5mJBLhJn203KdKMIrhBgIBJBIJtLa2wuVywel0Yn5+nsVZqBigpKQEqVQKZ8+e5Xga3YhXrlxBMBjE+fPncd999yEajeLZZ5+F3W7n+JvD4YBEIuGOCCdPnoREki9hpmz90tISTpw4wRzOiooKlJeX46233gKQ97xmZmYA5L3SpaUlfOxjH0N/fx/8fh/m5+ffTmhJEI1EEH2bP+zxLLNgdldXF+x2O1dYkWd9+fJluN3uFR44efQ+nw+vvvoqcrkcGhoacM8992B4eIhLYh988EFYLBY4nU5ks1lcvHgRZWVlGBwchMViQTgcxoYNGxCNRnHx4kWo1WpotVp4PB7+m9gS61mGUjPG1bj//vsB/EaveePGjWt+vra29qr7JiEYGscjjzwCANzv7GrjW510IonPhoaGqx6rcH9EESSlufWgpaWF/961axfnChoaGiCRSLB379510Rfr6+shkUg4jKLX6yGTybBr166rzpNEighTU1NwOp2or6/nVSHx4a8257sJovF9F6CleiqVgs1mQy6Xg0ajwfLyMgwGAxcwkCcUi8W4EwBVtM3MzKChoQGZTAYWiwWjo6Ow2WzQarXo7+9HbW0tK0wRS0EQBJhMJvh8Pmzfvh0A2Oim02lUV1dDqVRCIpGsaOet1WqhUCiYvmM0GqHT6bgbBHWfLSoqQjabhVKpZCYDJa+Ki4u5UwbRhPL/F7NnIZfLsX//foyNjUEikaC5uZk9Kr/fj5mZGWzevJmroSgck81m+W/SEy6sKCOh9kIFMYlEAplMBrPZzCWspPwWj8dRU1ODWCwGr9cLh8PB3lY4HIZGo0F3dzd27Nixru+aQiKFoPi6x+OBTqeDUqlEJpNhMfTVzAUCPWQWFxdZBW/Tpk3vYD6cPn0au3btYuNC54zeJx4rVfNVVFSgoqJixbgLH2jj4+Nob29HJpNBf38/Ojo61mQdXIuNQaCwTX19PTd6LSx7vxqDY3h4GHq9Hg6HA+l0Gg0NDfyZ1edcIpGwbgYZ+ML9Uc7gjTfegNPphF6vx/z8POcqamtrMT8/j7KysrvOAIsJt5tE4Wlb75N1LerQ6s/S/yQVubrksvDzax33Zp/y69nXWjfjevZb6LELwm86Tay1z9Xb0nGuNef1zGutudBYVncMWWsfmUwGP/3pT1FTU4N4PM7c1+XlZXz4wx/G8PAwlpeXEY1GOdFkNBphNptRVVWFM2fOQKlUwu12Q6FQoKKiAm63GzabDS6Xi1vKp1Ip+Hw+HDx4ECaTCf/yL/8CuVwOq9XK3SQee+wxzM7OIhKJcDUbJeFqa2uh0WgwPz/PTUstFgtmZ2c5tms0GqFUKrG4uIiDBw/i17/+NWw2G4dqSJydHAZagVEojQpGQqEQ6urqWC/DZrOhuroaS0tLzJxobGyE1+tFTU0NSktLMT8/z22WKPxFLbMOHDiA+fl5DrPNz89zyy0SGyLtEVKES6fTaGtrw9/+7d+iqakJBw8exKuvvsohmw9/+MN48803WZRdVDX7AEEQ8oLhhQ0Br/Wz2rugDD/9FGb8yfAWXixEIVrLk1prf9f6ofGT0Vj9fuG+ViMQCCAej79jf7FYjGO5heMq/J8M7+pzcjX6EDVCpPGu5zyvnsNa54Xip+sBlQqPjY2xJnAgEGDN3XA4zIyNZDKJxcVFpspls1nMzc1hYWGBw0ejo6OYnZ3F4uIi0uk0EokEJiYmOHxB/ft0Oh2Ki4sxNzeHubk5Pl48HsfExARUKhULBZHBEQQBU1NTWFxcxNTUFC5fvgy9Xg+1Wg2NRoPp6WksLS2tEJ6hXoP0UKG5UZJzaGgI/f393Mo+EolAqVRifn4e09PT3CVkcnISkUgELpeL6Zfj4+N8rJGREUgkeeH82dlZftjMzs4iGAwinU5jcnISy8vLKCoqQldXF7dAoo7TFouFV2eUyKTGs1euXEE6nWZmjUSSp9d5PB5R1ex24XZ5vj09PZBIJEyJooujsGSSFKJyuRxGRkbQ3NzM4iQzMzPckkWr1UIul6/ozECUNJoPPe23bt2K8+fPs56DzWbD+Pg45HI5kskkrFYrgsEgU4Uo4QGA+aUk6nLkyBHU1NSgvLycNVo9Hg9XFGk0Gu7fRVn06elpVFVVAQCXcpJu7dzcHDZs2MDFI0tLS8zqoJBBTU3NCgNVXl7OXhUl5EpLS+FyufDqq69i3759kMlkmJub41ilw+EAcHPUobUeXtfblnizhewAMuCxWIwLDQrbSJF0JCluFXKKSY8hl8txgo4oez6fD42NjSwxSc1FlUoltFot6zGQ8aHPUbyfqG25XI4pbqQHQZ2jgTwjx+fzQaFQIBqN4vTp09i3bx+X/lKTznQ6zSsyCn3JZDKkUqkVx9dqtawbQhVyuVwOkUgEdrudjSHdL9R0IJ1Oc1soUgkkKmEymYROp0MoFGIhHp1Oh2g0CkHIq5VREwLSRqZmpKQMRyHCu0nVTDS+Nwk6bcePH2eyP8UTSUKPMsgkRE3Ul1wuh7a2NjidTrzyyivQarVMh2lsbMSGDRvw8ssvc0KokLxPwtDt7e341a9+BaPRiEQigaeeegr/9m//xlqygUAA7e3tXGO/vLyMyspKpmUtLCzgwQcfhEwmw5tvvsn8XmICCAIglUpQVlaG1tZW/OIXv4DVakVdXR2uXLmyghWxZcsWxONxeDweGAwGDAwMcJzb5XLBYrFwW6RYLIbKykokk0nMzs6yqhkJvmzYsAE+nw91dXVobm7GsWPHOJMtk8k4pru0tISPfvSjrGvwXqLQ615rJUDvZzIZFrBZvV0hL5xitqvfp1BTId2QQMaXZCWBd1bWrfc8kDEkJkMkEuFyYyrbplgqjY2ohVc7DsWfqbiH7oVkMsmdtcmg05hjsdhVVeJom1AoxN89zZnep0aalN9Yax907kiLmc79ewGR53ubUVVVhcXFRWg0GubBAvmlMiXXdu7ciZGREb54qeZeIsk3eNTr9TAajZibm4PJZOIEEnmrEkm+y0RzczPGx8c5uVZbWwtBEGC321mlymazYXR0FC0tLVheXkZzczMymQza29s5HhkMBrmVTDqdRkmJDVarFWazGbG3KWq07KVCDuoeDOTJ+kaTCWVlZXzBkVdeVlbGhQMGgwFGoxEajQaxWIzLkSsqKrjNUVFREVLpNMKhEFpaWrg5KGkikCGiuCcAbjM0OzuL6urq2/I9E6PC6XRy0QL1wDObzYhEIvzQKSsrg0KhYH0E4rKq1Wq88soreOihhzA+Po7GxkamZcXjcVy+fJnjsPTQ1ev1CAQCLMhutVq5jU4ikYBSqcTExAQ2b97MhTT0HnF+yQmIx+MsNnPs2DFs27aNO0J0dHQgHA5DpVLh1VdfxWOPPcYc7XA4jGAwCLPZzNcQ7YvK4mOxGA4fPowtW7bwdzg9PQ2Hw4Hp6Wl4vV6uDgSAmZkZ6PV65neTIaX4MmkCX7p0Cffeey9X5ZFxj8ZimJ+bQygUws6dO9mjJ61iqVQKi8XCXUGoMGY1Y+JOQvR83yWudvqului53r4K46DrSdARVseTr7Vt4WfWmsfVXr/WmNfz+lrzu965Wc82t8PzzWaz+PnPf87VUgMDAzAajUgmkygtLeUSc2I7JBIJNDY24tKlS7xaoeX1Qw89hFdffRV2u52ZIxUVFTh58iSzQiSSfClzW1sbTp06xUnB2dlZyOVy7hFHy/ePfexjOHLkCMd8C9sWkXyn1WqF2+2G2WzmUEM6nYZCoUBJSQk8Hg+HJB599FEUFxdjcHAQQ0NDkEgkMJlMb+uYRLBnzz2YmJiAWq3GgQMHcPToUZbWJE83EomgpqaGcxRGoxEej2eFl2+xWBCJRN72TGV4+umP4MSJExAEgatCd+3ahV/84hcsp5pKpWC15otUJiYm0NraCq1Wi4sXL/IDT6FQYPPmzejs7GS+s16vv6tUzUTP9xZidfKo8Pd6P3+t/9/t/t4LXO0Y6xn7esZ3O+awHlBcncrBSYlLr9dDpVJxuEetViMQCLCqmcPh4BUG6SUD4NcDgQC3gi8uLuaQRSgUgtVq5USW0WiEXC6HwWBANBpFSUkJV/ERrdFgMMDtdsNkMnEoy263AwBXNJL4E9EOqdRdq9VieXmZ47uDg4Nc9EGrNLVaDZvNhmw2C5/PxwUhVBBBymHUo06j0UChULARpflTBSCtBGtra1kfI5fLsdY1edqCIKC0tBRKpRIulwslJSVwudxobGzgVZ9KpeLkKRV3xGIxprCRvvDdBNHzfZdYy2Nczyldy1Ndz3vX2t96j124PeFqnu+N7HM947jRca71+RtJlt0KrDXW1RS5wnGspRZW2JG3MJZa+Lnr7b/wvbUe7tfaX+G4aCyrP1u4WiOeNcVur7UautpKZj0roquNefV2hedv9Xm8kf1cbVy3AqLne5twrRvyZj+/nvfeqyX4esMTt2J/N7vPW/HZW4Vr3dDEBlj9WuF2gpAvsCDP9Fr7l0gk3A1EoVDwvmKxGHt9a40JAMdxyTMtHMvq7Qq7gJCuAoUPCjVIrraqud41dCOGcPXrq8/f9fZzoyG/OwHR+L5L+P1+vP7663jwwQeh1+vR1dWFTCaLPXvyZY6BQADj4+PQarVoamoCcH0PZTXu9ovo3wPIWBZ6oiSHOT8/jy1btsDr9TItbG5uHvfeu5elKxUKBTQaDTNCstkszp07h61bt8JgMMBkMrEoPSVaSRQJyPNj0+k0NmzYwJoSgUAA0WgUqVQKtbW1kMlkmJ2dfVtwPINgMMjqZJFIhMuua2pquGQ8nU7DarWiu7ubNR2APEPA6/XCZDKxCBGxaKgN+43ieiu6tVYR13NobvUK8nZCNL7vEhKJBL29vdi4cSN7Da+/fhR79uQl8Xp7e/Haa6/h6aefxokTJ5DNZllmsTAeRokO6iZrNpsxOTmJcDiMjRs3wmazMa9WxO1HMplEZ2cnGhoaMDU1hWg0yoayqKgIZ86cgVarZY1bEk+anp5GJBLhogHKxldVVUEqlWJgYAAWiwW7du1Cb28vSyFSmSzFLIn1EAwG0dXVhY997GNwuVwYHR1lr7C0tBRvvfUWtmzZgnQ6jYmJCZjNZmi1WkxOTnJ7oMrKSly6dAkajQbpdBqXLl3i9kg+nw+Dg4N48MEH4fV6odFo0NXVBafTyXzxoqIilJeXv4P+tR7c6Iro3eYFbiR5fLshGt93CZVKBafTiYmJCVRUVMBut3Nra4VCgYaGBgwMDOCnP30WJlO+7HRmZgaNjY3w+/1IJBJc7gnkKWp6vZ6l/377t38bzz77LL7xjW/c4Zn++wZ5rgqFAiaTCQ0NDVheXmaxb9KSqKyshCAIXG1GVLt4IoHit5NXpJdBDU7JwFI7oitXrqygtFGxjMFgQFFREZqbmyGRSLj9vFKp5DCB2WyGWq1GcXExN8hcXl5GTU0NUqkUJJJ89aTT6YTNZkNfXx9aW1sxNTWFyspKuFwutLW1YWlpCTU1NQDAmgq1tbXs/c/OzvIDRFyZ3RzEhNtNgk7b2bNnWR8gkUjA7/ejoqKCO7IODAzA7/cjk8kgnU6jv78fmUwG5eXlvGSkrha5XA4LCy6oVEro9Xokk0k8/fTTOHLkCD7+8Y/floICEe9E4S2yOhFWuDxea9l8rf3lcjmMjY2hrq6OvchrJfKuR1+8Gere6kTr1ZKZV0uyvR+vx7sl4SYa35vE9fi913ttvbhw4QKsViuHHN6PF/v7Hde7RWKxGE6dOgWn0wmTyQS73c7G9Gro7e2FTCbDhg0beP+XL19GTU3Niut1vXHLoaEhWCyWFUL76/m8IAjo7OzE9u3b3yH2X/jZwcFBKJVKlgYtrIijiru1DHs0GkUwGERZWdmKfV5vjMRmoNepU3I4HObyc/ps4bGpdVd1dTXm5uaQSqXe0W/vbjG+Nxx2OHnyJL73ve/hwoULcLlceP755/Hkk0/y+4Ig4M///M/xj//4jwgEAtizZw9++MMfrtAY9fl8+OIXv4gXX3wRUqkUTz/9NL7//e+vkOvr7e3F5z//eZw/fx4lJSX44he/iK9+9as3Otz3DNfK0t5KKhR50IQP6LPyjuJmmRmFxoPCTtPT09xlwmw2QyLJSyJWV1ezmtuWLVswNjaG8vJyCIKA2dlZbioaCoW4yCIWi2HPnj3o7+/H3NwcpFIpy3aSKlllZSXm5uaY41tcXIwdO3Zgbm4OfX19eOCBB+DxePDWW2+hoqKC20B5vV5WCfN6vZidnUVjYyPm5+chlUpRXV2NhoYG9Pb2IhQKYWJiAs888wyWlpbg9/tx4sQJmM1mzMzMoLa2FvF4nDtohMNh7pQ8OjoKp9OJ8fFxBAIBmM1mBINBHDp0CMvLyzh16hSLoTudTm77s7y8jJaWFszMzEClUiEWi3FycGhoCCqVCslkErt27UImk8Hg4CBkMhkuX+7FJz/5CQwPD6O/vx/RaBTRaBQejwfl5eVobW29hVfOu8MNq5pFo1G0t7fj7/7u79Z8/6//+q/xgx/8AD/60Y/Q1dWF4uJiPPTQQ9wGHACeeeYZ9Pf34+jRo3jppZdw8uRJfO5zn+P3Q6EQHnzwQVRVVeHChQv43ve+h7/4i7/AP/zDP9zEFG8vCo1jOp1GMplkJf9C5HI5pFIpFiZZaz/03lrvU18zKrtcDdr/zeBq+1wL1zoG6VisBWrmeaMgwZrrjWn1+EkBay282wdaNpuFWq1GVVUVAoEAFhYWEIvFkM1mMTk5yYUB09PT3N5827ZtfFxSBiNDceXKFYyMjHC5bCKRgE6nY32Oubk53j91tA4Gg4jFYhgcHEQ2m8XCwgKmpqa42wP1GJydncXCwgKSySQymQxCoRAUCgW0Wi0GBga4DLm8vBzJZBLj4+OsfUyiTdQc0+PxQKFQYHR0lIs+AoEAF4JMT89AqVRieXl5RVMBYmBQ6XUgEIBMJsPMzAySySS8Xi/0ej0GBga4MrC2thYKhQLT09OYn5+HTqfDxMQEwuEwPB4PPB4P/H4/iovzcXmVSsU96EZGRlaIO90teFdhB4lEssLzFQQBTqcTX/nKV/DHf/zHAPLJArvdjh//+Mf4xCc+gcHBQbS2tuL8+fMsBH7kyBE8+uijmJubg9PpxA9/+EN885vfZO1TAPj617+OF154AUNDQ+sa2+0qslgNOp2ZTAaXLl1CX18fLBYLysrKsGnTJpbs83q9ePPNN2E2m7Fp0yb2aKRSKdLpNNxuN6anp1FfX88dKUhTNZPJ4LXXXsOTTz6J+fl56PV6XqbJ5XIkEgmWHGxvb4dMJmPFLaVSydVWpKI1NzfHy8KFhQWoVCpYLJYValtUeUWCLOQNut2LyGTS/Pni4mIurz1//jza2tqgVquhUqm4ZVI6ncbx48exf/9+KJVKbqdE/bbUajVvSxoFpIBFTT41Gg1kMhkWFxdRWlrKNf+jo6Po7+/Hvn37oNfr+fOzs7Nwu91oaWlBUVERl9zS9XUzqxP6rtPpNOvZBgIBdHV1IRaLYffu3WxorFYri+wXFxdjcXERFosFCoUCwWCQJRpzuRzH/xUKBXQ6Hbe69/l8XGKrUCi4cWokEmEFM5lMBpPJhFAohEgkwhVp4XCYW+/Q/An0fSoUCpaSpJY/RJNLJBKwWq3chTqTyfASPp1Oc6sflUqFUCjEwlL0cCY93lOnTkEmk+HQoUNYWlrC8PAw9uzZw+2zcrkczp49i8bGRjidTiwvL7OYP0lExuNx6HQ6pFIpXl14PB7o9XqEw2FYrVZWhisqKoJMJkMoFGL1vfdt2OFamJychNvt5mZ3QL6ZIzXW+8QnPoGzZ8/CaDSy4QWAgwcPQiqVoqurC0899RTOnj3LsnaEhx56CH/1V38Fv9/P8aZCkIdJoD5TdwoymQwtLS3c+6ynpwderxfBYBBbtmxBbW0trFYrampqcPToUdTU1GBsbAx6vR7RaBRbtmzB8PAwTCYTLl++DI1Gg8XFRRiNRqjVapYU7O/vRyAQQCaTgVyugFKZv5kdDgf8fj8vRUl7QKPR8HJzaWkJFosFgUAAk5OTSCaTSCQSMBgM3PKHtFvvvfdeSKVSjI+PcxdliSTfnysUCnF/ukOHDuHcuXMsJnPmzBloNBpIpVLmipLk37Fjx1BWVoYtW7bg1KlTWF5ehlwuR0VFBcbGxmAwGLhUNxaL4YknnoDX60V3dzdisRg3diwrK0M0GsVjjz2G7u5uCIKAo0ePwmq1IhqN4sEHH4RUKsXy8jKL/0QiEdTX16OoqAh1dXXrSpDRg5NATUNlMhkcDgef1/379yMajcJqtfJ+M5kMzGYzf56kJgGwMNHVQGWzq7toVFdXr+jxJggCPyQL90meOXmEVC1G4Y1MJoNkMgmJRILy8vIVxyguLublPoU9SJmMJDHXAtEuV+PRRx+FIOQbwzqdTtjtdmZn0Pb33nsvn8tCeuXqHmyFMWYqVqHxUBstgslkuutCdrfU+JIG7eqqHbvdzu+Rev+KQbyt4lW4DdFcCvdB761lfL/zne/g29/+9q2ZyLtAYQKAvB6JRAKLxYJMJrMiWUEVRDqdLv+38JsW69TkkJaitbW1LCvo9/tZopLEXAo9U1ITi0QiSCQSfC6JY0r7o+WoRqOBz+dDcXExawJkMhnodDrumJtMJqFUKjEzM8PSkFR+ajKZEI1GUVFRwTdzMBhk/Vq5XA6dTscC7E1NTUgmk6irq2PtV2rvDuTpdiS8YjKZuMafxkvnkyqyIpEIrw5IYYy8NWo2CYDZJTabDcvLy3A6nfwQux4EQcDCwgKfZ61Wi9deew0tLS3QarX8wIrH40ilUhgYGMDevXv58yQYTm3mT5w4gdraWthsNkxNTaG+vh7JZBIWi4U7B+t0Oj4PJOKjVCr5vMhkMoTDYZw8efLtvnke3HfffbBarewBLi8vY2hoiIslJiYm4PV6sWPHDjQ3N0Mul2N8fJxXWSQpmk6nuVloT08P2tvb2ct0u91cKEIa1OS5G41GvPbaa9i9ezcMBgOvrgQhr6c7PDwMm83GLYjIozeZTEgmk6zLe+rUKezbtw9AXgGtsrKSPWmSIKVOyDqdboWjlsvlVjRnpYIV0uO4W/CB4fl+4xvfwB/90R/x/6FQaEUvq9sJesLq9Xo8+eSTkEgkzM3Me6j5VuYHDhyARCJhvuTOnTtXeAskekLeTVtbGwBwHLWoqIgbOBL6+/uh1WpRU1OD7du38z4Kn/pElKdmj9eqiy/kcUqlUjz88MOYnJzkROBqKpJEkm+iSMcorPnfvHkz73vDhg24fPkyNm3aBADYt2/fijHmcjlcuXIFJSUlKCsrw7Zt2yCTyVBRUQGn0/mOJCQZ5UOHDq3wiGgpXlZWhqeffhq5XA4ulwubN2+GTqdbdycLQRDQ29vLnYupAefs7CxrIdTV1aGnpwcOR76r88mTJ9noEC9WIpHgzJkzLF5z/vx5Dgd1dnbiYx/7GCfQzp49C71ez8kxrVYLi8WCmZkZfOQjH4FWq4XRaERpaSmvhk6fPs0KaPfffz9GRkagVCr54UVKZhRyGR8fx+zsLJLJJHp6elgik5b2FHM+e/YsIpEINyxtampCT08PysrK4Pf72bg99dRTyOVyOHnyJGpra7mhqcPhwLZt2zAyMoK5uTm43W40NDQgGAxCKpXinnvuQTQaxYkTJ7hbR2dnJ5LJJCKRCMbGxlBSUsJC63Q9Li0tYdeuXStEc2KxGBYWFjA0NASDwQCdTod0Oo3m5ma+h+4G3FLjS24+xeEIi4uLfOM5HA4sLS2t+BzFZ+jzDocDi4uLK7ah/wuXEoVQKpVcqHAnQQaE9EnpoqDXC4nzFJOkuvvVNfckakKGZTWvlLYpZFiQQSUyPe2jEJFIhOPE8Xh8hcA0xQeJe1wIMgA7dux4x1jT6TTC4TBMJtM75kL6ANTxgbzq7du3r5hPLBZjY1hUVITNmzdzlpu6GUgkEo4FJxIJFlcnI0/nihpbFgrDUItzm8224mZdbwywuLgYSqWSjxGPx6FSqeBwODA/P4+SkhKOt1Liis638u0ebQA45k89+qh6Ta1WI5PJoKSkBFKplPfn9/vR3NzMLYxisRizDMhQSaVSViSjh7tMJkNbWxvOnz8PuVzOnVVsNhs7AxqNBsFgEAaDgRXS6HyWlpYiFArxyiQcDiMajfK9bbFYkE6nUVdXx5V9uVwORqORV2gajQZms3mFmpvT6YRWq+VVBHWupnumrq4O8/PziMfjrBpHY3S73dyFmppwqtVq7pJB55sKmej79Xg8rAd9t+A9Sbj98R//Mb7yla8AAAe6Vyfcuru7sW3bNgDAa6+9hocffvgdCbfFxUU2AH/6p3+K55577q5JuNFpSyaT8Pv9bGxyuRz0ej0uXLgAo9GIjRs3cuCfEkXZbBbHjx/HPffcg1wux511gXz8LxKJYG5ubkWCgJT4qWuw1+vllinUtZg8XOoSnMvloFSqMDU1idbWVu5WcfjwYfzWb/0WgHz7bYrjmc1mnDt3Hj6fFxs3boRCoeCl3tLSEgu8FxcXMy2KPre4uIgjR47gscce42QdabcWFRXh6NGjOHjwIEKhEAYHBznJUlJSgmQyiYsXL2JhYQGHDh3im8hoNOLw4cOoqalBZ2cnPvrRjyKZTMLj8WB+fp4rCR9//HEW304mk6itrcXY2Bi0Wi174NRgcmlpCcXFxSgpKeFzCayvKGItLip5/6sLMa5HRbzaNvR+JBLB9PQ0LBYLfD4fWltb31FkcbUCCHptrUakhcchUAz4WmNfL1f9Wrziq9Ewad/Ly8twuVwrVmTrKRpZSyhodfFIodLc+zbhRksAwuTkJC5dugSz2YzKykp8+ctfxn/9r/8VDQ0NqKmpwbe+9S04nU420C0tLXj44Yfx+7//+/jRj36EdDqNL3zhC/jEJz7B5OlPfepT+Pa3v43f+73fw9e+9jX09fXh+9//Pv7mb/7mRof7nuPs2bOIxWIIBoOsQ0oGUK/XI5vNoru7G6FQiL3MjRs3IpfL4cyZMzAYDNzSm7iLLS0tGB8fx9TUFJP1qWvChg0b0NLSgjNnziAUCmFxcRGHDh3C6OgoEokk9Hodx2jJO0in09xinBgFQH7F0dPTg3Q6jeLiYjz55JOorKxAT88F7sy7vLyM3bt3Y2pqCkVFRTh//jwqKirg8/lY+Pupp56CxWJBe3s7iouL+WY/efIkvF4vOjo6kMvl8Oabb7LWal9fH3w+H+655x5IpVK4XC6kUim88cYbkEgkKC0txe7duzkmmEql8eabb0IikbzdTSEfI1xaWsKZM2d4u5qaGg4RJBIJZg1UV1djYmICPp8PbW1tGBoaQllZGVQqFTZt2rTmCmE1EokEOxOrja7H4+E4LGF1QQGVCdPNfy0DrdPp0NTUhEAggNbW1ncUBwQCARQXF/OyXalUIhgMQqPRwGQyrfDM6fhLS0uw2Wxc3iyRSPi1wjGtVSxRWPBwLeNMx6Fij8LtC88B/V8Iq9XK3ik5JYX5IY/Hw7rF5J2vl6NNTKH3yvDeDG7Y+HZ3d+O+++7j/ynO+pnPfAY//vGP8dWvfhXRaBSf+9znEAgEsHfvXhw5cmTFMu8nP/kJvvCFL+CBBx7gIosf/OAH/L7BYMBrr72Gz3/+89i2bRusViv+7M/+bAUX+G6BwWBAJpOB3W6H0+lEf38/qqqqMDMzw4kBEpammyIQCMBqtbKgNDXYpCWnz+dDWVkZEokEfD4fzGYzSktL0dvby0kpWhbqdDo4nU4MDg6ipqYaiUSCbzin08kNOGnJv9rzIh0Jis9GIhG0tbVBp9PB7Xajvr4ei4uLnAV3OBzI5XJoamripaYgCBgZGeEHiFKpRE1NDTZs2ACPxwOz2cw3I93EJORCGXydTscti0iBC8gv9UtLS/lBolAouHMEZfSJ4tXa2spFBHq9npOHdMPJ5XI0Nzfz8rWiomIF6+BayOVyzEqhFjrUOj0YDOLo0aPYvn07iouLMTw8zG2bKioqEAgE+AFNfNfCRKbD4WCOLABeISUSCfT29mLXrl0QBIEVyeRyOd544w3s378f//qv/4qtW7eioqICR48ehVRahI9+9GlkMhkMDw+zMVOr1Th69Cjuvfde5pcnEgmcPn0a27ZtQ2NjI9LpNObn5/nYMpmMRaDsdjtzeInholarIZfLoVAoOGGrVCpx5Mir+OQnP4FLly6hqqoKqVSKNS7cbjfi8ThkMhknpIPBIORyOTf4pHDGK6+8gn379vHqd2BgAPF4HC0tLcxeIZF1CoVQvJcSqoIgoLKyEj6fj/sO3i0Qy4tvElc7bauXhlfbdq3k1tWw1pLwwoULaGpqegf9aPVy62awlhj4tcZZ6AFSgQbFN681nvUuZa+FtbyxtfY7MzODbDbLzI/Vn7te2EEQBLzwwgsA8g9cr9eLiooKdHR04MUXX+RzFo1GIZPJ0NDQgJ6eHvz2b/82zp07h1AohFgsxsUIfr8fTqcTQ0NDeOqpp5DJZNDZ2QlByJfker1eNDU1YXl5mWlTLpcLTz31FGQyGV544QXs378f/+N//A/s378fW7ZswUsvvYRoNIpnnnkGbrcb0WiUiyp2796NkZERpvoRD/n8+fMQBAFPPvkkhoeHEY1GObkVCoW4+oy6IudXEwJCoSCmp6fR0dEBn8/HXTWIR/7kk0/i2LFjKC4uZgfkvvvuw89+9jMYDAZUVVXB5XIhFAq9bYRlUKtVsNls6OjoQCaTwb/+678ik8lw+bJWq0UqleLagWAwCJ1Oh2QyhQ996FFIpVKcOHGC2TbpdJppnfF4HKdPn8aHPvSh92/YQcS1UXgzExGdpASJM7uaakfbh8NhzM3NccJieXkZUqkULS0trHxF2Lp1K9xuNzehJKTTaQwPD6O+vv6maDVerxculwutra1rJtVIccvhcHAVHpW6UusbquKibrvkuSwsLHBIofBcvVvQGABwBZbFYuEQAJW+Fma66fvp7+9He3v7uo5js9nYAJSUlPDSvTCJ7HQ62QCVlZWx10hFAqlUCpWVldx4khJfRJeiBJXVakU2m0V5eTkikQi3FCL6ntVqhSAIePDBBxGLxTA7Owu73c7xe7vdjunpaWzduhU1NTXMeQbARTe0wqIu2aWlpejq6kJjYyPkcjnPt7i4mL3WqqoqhMNhLC0t4sEHH0Q8HseWLVuYJkoFNkC+uWxRURGWlpY4jltdXY1QKAStVgutVstKaQCYQUIsmMrKSlitVvj9fg7rEV+aeuSRdOeVK1fQ0NCA8vJyTE9Po6mpCX6/n2P8ggAuBLpbIHq+Nwk6bb29vZibm4NCoUBVVRVmZ2dRXFwMn8+HcDiMtrY2+Hw+SKVS+P1+2Gw2NqRutxtGoxEdHR2IxWLo6enhpRQVWBDdp7i4mOk8zc3N0Ov1OH/+PDQaDWZnZ7Fz506YTCa88MILiMViMBqN2LBhA8bGxrB7924oFAr09vYCACfpXC4XamtrUVFRgcnJSSwtLWFiYgK7d+9GVVUV5ufnMTU1hXvuuQfZbBZXrlxBd3c3tm/fzom4yclJvjllMhmmpqbgcDhgNpu5PJYSsePj41xUcf78eS5Pramp4fPm8XjQ3NyM6enpt8c1hfLyMszNzbEXRbHg0dFRRKNRDA8P83KSOKHUeXfTpk1IJBJ47bXXUFtbC4lEwkm4TCaDvr4+fPrTn15Xwu1a760nMXSt7dabXLqRBxYZueuFVVav0gpXMmut3pLJJMbGxrBhw4Zb7kVSGfj1Yrqr3yM+8dW2J80Myjm8FxA939sMr9fLMbSzZ8/CbDazl7u0tIR4PM5tqxUKBS5evIiysjLuZBsMBrF9+3bMzs4iEAhAIpFgbm6OWQQ+n4+PRfX3NpuNxbYpyUddaeVyOVemnT17lik4Ekle/IWSa1QC2tjYCEEQcO7cOZhMJqRSKRgMBkgkeUGY/v5+bNu2DZFIhBOAs7OznEEmD5I8E7PZzN6xTqeD1+uF0WjEwMAAV0ZRUobYCX19fVhYWOAqqoGBAczMzCAej7/tFeV5tNlslktc6eGxuLgIAcDExAQEQYBarYbL5YLb7WYOtCAI8Hq9+bFms5AATOxfb+JmLQiCgLNnz6Kjo+O6KmYLCwvweDxoa2t7R3LP7XYjGAyisbGRG12uXrVks1m43e53cJyvBaLtFc7vypUrqKysxIULF1BaWgqtVovBwUEYDAaOh5NoOlWF0QNu48aNzMxpbGxEZ2cndu3adcMPlGud7+7ubrS3tyObzXKuZPVnl5eX4fV60dLSwueGDPb1zsXdBNH4vku0trZyWbNMJsPy8jLL7m3atIm9QqqA2rhxI3dwDQaDbBhramo4vkWGTalUoqGhAW63m7u0UkdciUTCHihVIwHAjh07EA6H2btdXl5mburWrVt5v2q1mrUBJBIJHnjgASQSCTQ3N3NytKqqCkajETKZDBaLhVvYUAxOrVbzsYgzGggEsG3bNng8Hk6c+Hw+lJeXY2FhAaWlpZBI8gUXJDaUy+XQ0NDAnFU6HyTcXV5ejkQiCZutZIVCVUNDAxobG1lvgGh55N1SHFahUODQoUOcKfd4PCwSsx6WA5C/6bu7u5FOp7G0tMSrkqGhIezYsQOLi4uYmJhAUVERZmdnUVlZiUgkApPJjPb2TTh79iza2trQ3d3N4aQHH3wQPp8Ply5dgkQiwczMDFeLKRQKbNq0CQ6HAxcvXoRMJoPH48Hs7CzrYBgMBiQSCezatQtSqRS9vb3w+XyQyWRwOp1cKejz+XDo0CHo9Xp4PB7Y7Xb09vYiJwg4sH8/XnnlFU546vV6nD17lkWtKIRx8eJF+Hw+fujL5XIMDg4ilUph3759mJmZwcLCAnQ6Hfx+P4qKijjJZbfbmdNMhR1Op5NXJxRTLrHZMDAwgLa2NrjdbvT09KC8vJzbwA8ODuLSpUtwOp0YGxtDPB7nNk5FRUWoqKiA3+8HALS1taGkpAT9/f1cpKLX65neejdANL7vAoIgML2IlnZWq5WNEYE4vMTFpfeozJiSFRs2bACwkguaTqfXbLIokUhQWVn5jvHY7XaUlJRwZZfZbGYDQ0tzOl5JSQnvq5CATsd3OBzMbshkMtyDrhC0D6qaonhv4Zip0tBsNjMboays7JqcUCBv/FtaWrhtOjElKKlXWMhzLSgUCpSXl68QnrlRZDIZTE9PI5lMQi6XY35+HrlcjrUSSJWMCivGxsaQTqc5wZevQIvD4/FgYWEBGzduhEwm432m02lmwaRSKbhcLjgcDk4s+f1+Li+nIgQyops2bYJUKsXExAS3ri8vL8fk5CTa29s5MQWAWx8plUpMTU5i4O3vz2g0MtsikUjA4XCgq6sL2WwOjY2NMBgMmJub4yKSPXv2sEBQLpfD6OgotFotlzKT7u7c3Bzm5+fR2NiIubk5JJP58uD5+XkWVYrH44hEInC5XFCr1ewghMNhLC4tQf22M0AiSX6/H0ajEYODg9BoNIhGozCZTBgYGEBxcTH8fj+sVissFgv6+vpgNBoRDofR3Nx8w9/7ewkx5nuToNN2/Phx1NbWsrDKyZMnsXfvXk60pVIpLoLwer2s8UB0HrVajcnJSfh8PrS3tzOnUqlUIh6P45VXXsHDDz/MYQCn08kda6PRKF+omUyGa9ppCRaJRNgLotgraQVIJPnKIq1Wi3g8zpQhiSSvI1uoeubxeDAyMoIDBw6wcSFqGqmwXbhwAVVVVUyRIyoRjdXv93OBxf33389LxWg0CqfTyasHEvTJ5XLQaDSYnp4GANYVUKlUOH78OJc3Z7NZ6HQ6Vq8irQgg/xChAhFKYhZWvclkshXbXuu7FgQBbrebPXNanSSTSU5aeb1epvQR88FisXBRjFarRTAY5A7EtBpaWFiARqNBMpVC8dt91UgDhPIHpEhG5yUQCLDeA4VrPB4Pe/9KpZJFlYjCCOTDLVSEo9FoEIlE+HssKSmBXC7HzMwMtFotOwpqtRo+n4/V1KhMmarWSkpKkEgksLy8zKXJVMmZTqc5NCWVSuHz+TA2Nob77ruPqxApEUjXHiXGSLrSYDBApVKhp6cHiUQSGze2raCrqdVqbpFE3zl9htgUwG8qFO+WmK9ofG8SdNqOHj3Kso7UEqihoYFjqCQw09LSgtnZWZhMJkxMTEChUCCVSuHgwYOIRqM4efIkLBYLstksmpub0dDQgDfffBMLCwtoaGjA3NwcEokEqqur4fV68cQTT+DZZ59FMplEa2srJicnIQj5ppxqtRp6vR7T09PclDMej7OucGlpKZaXl5FMJlFTU4OpqSk0Nzdj69atyGazeP3115HNZuH1epFOp1FZWYlUKoVDhw7h17/+NSKRCDZs2IBQKIRwOIxQKITi4mIe+8jICGQyGZRKJfx+Px599FGMjIwgl8thcHCQwxZUiLJ3716cOnUKfr+fBbclEgkeeughvPjii1CpVGys1Wo1IpEI9u3bh7m5OUSjUTbi+/btw3PPPQelUslluFTpt337dgwNDbFHHo/HYTKZYLFYUFtbuy6u71rXQGH88mrxzdUrHkEQ+IG3lvEXBIElQMlwkIdYVFS0onCCDD2JHAFgyUcyToWdJuiBv/p49DsWi3FsfnVIhowlrUBisRh/N+QE0DHkcvk7klvEjqFE4LVa3q91HonZoFAoWJj+RgzpepOjNwsx4XabQdU6FJ8E8pU4mUyGGyhOT0+zjqpEklfeWl5eRiaT4UIMh8PBbAkKAfh8fshkMrjdbi5bJkoPkI+VVlRUwOPxsGxgQ0MDx8Couo08MCLMU6KMlKQCgTzJfXh4GFVVVfD7/VAqlTAYDFhaWuLklFwuh9PphMfjgdFoxMLCAntUZrMZQ0NDiEQiAPIhFaPRiHg8zstCKrjweDzs+RF1iqqXKAmm0WhYB5fKiMmLy2azXKgRj8cRDoc5Ji6VSmG327mNu8Vi4ao7EtVpbW3F7Owsa+teD3TThsNhAGBxpHA4jIWFBdTX13MsnOK1kUiE1bTC4TBUKhUb/suXLwMA5ubmsGPHDvbGiMImCAJef/11NDQ0oLu7G1VVVdi0aRN+/vNfoKTEil27dsFutyMWi+Hll1/G1q1b+ZpZWFiAXC6H2+2GTqfDwsICF2mQCDlJXSYSCQ4VJRIJjIyMYGxsDDt37lyht0DNQU+cOIFdu3ZxYVFnZyc6OjowNTWFdDqNjo4OjI2NYXh4GJWVlWhubmZPP5VKsY7wmTNnsHHjRnY2yDOmEFkkEuGeh/QgoJUG0QMnJydx4MABqFQqfpiQFjFJl5L6WzQa5Qf63QTR871J0Gmjp35hYUUhE4BAyR/arq+vD16vF1u3bmVBlEQigbGxMWzevJmX86s9KzpuUVERXn/9dezbt481HaiCrHA8hKvFV91uN65cuYKmpiYYjUbmUhaOnahZZChpf6S2tnr+5HXRvAv/pjGQJCCAFR5eYcJMoVCwoS3cb6EyXC6X431Fo1F0d3dj3759K8ZZ6HFms1nI5XKurioU3rnWd51MJvHGG2+gtrYWo6OjXA1Iyc7Clu/hcBixWAylpaWYn5/H/v37MTw8zIprzz77LB588EGcOPEmEok4P8DNZjPT6A4fPoympib86Ef/C5/+9G+jpaUF/+f//B/IZDLcf//9qK6uxquvvsqCMzQv8qglEgnT+6RSKXeOoEKPUCiEZDIJmUyGp59+GtFoFMePH2fZ02g0iq1bt2JqaoofnOTFq9VqFu4ncSidTofdu3fjyJEjiEajSCQSbNTp+IlEAhUVFZiYmOAGsaSilkgksGfPHphMJrz88sswGAxYWFhAW1sbQqEQZmdnYTQaUVlZiYGBAd4nKd7FYjE899xzzI+mFRHFvnft2gW9Xo/y8nLR8/0ggG5KWmIVGsqrZdFJuJrKT4ndoFAooFAosHXrVt6WSm3JYFH5LYFE6FdTd8gghsNhLgQgJbPVKC8v5+QXoVDNjJaWdNzC49OcaalKnyuc+9X+pvMXjUYhCALHSoGVBrvwM4lEAkqlcsVrdBMC+aTW5s2bkUqlIJPJeN9UQk1jBn6jLrdekHEnhTW1Ws1aJLFYbIVwucPh4I4fpH0sl8uxuLgIu92O3bt3Y3JyEk5nvgPH1NQUzGYzs1gA8HL+vvsO4NKlS8xGMJvNK5TyKAxB+QW73Y5wOMznhWL31N2BJEpramqwtLTEKwKlUsn6wbQiczgcGBsbg91uRzwe5+sslUrB6XSyVgmJ8gP5ROvc3BzrKMdiMdjtduh0OvT19XH5PMWY/X4/ysrKMDIywpxkQRBYeH5xcZEpZ9TyyGAwIJfLsSGl75Y0Kig0QbFwlUoFg8FwU4nW9xKi53uToNPW2dkJs9nMbVeIzrS0tMRfPMViSeDmwoULuO+++7C8vMyJjcLWOVTpFA6H8dZbb3Et/e7du1FWVsbdHYgnTAk98uaoN9fo6Ci2bNkChUKB06dP48Mf/jCCwSCKiorYIFCzQxK3pmWzVCrFzMwMjEYjLBYLe0nRaJQZEMFgELlcDufOncO9996LaDTKnTjImJLnqtFo+GFFxpa40JcuXcIDDzzALYLywjl5CpzFYoFKpeLkGyWZKKlT2PJmZmYGXV1duOeeezAwMIBUKgW1Wo3GxkZOLBLtjkRnSJv4WpSzwphoIdZaTVDyqvAzPp+PK9jIuK7uQFHooV9rDKtjqFfjzBZ6+6u3uVqceq19rV7VrIXVq7rVK76rrQYLj19Y0r7WdqvHl81m0dvbi40bN/JDn/aRy+XQ3d2N5uZmZnkU7u9u8XxF43uToNN2/vx5BIP5OneTyYTW1laUlJTgyJEjAPLemFarhdfrhdlsRllZGS5dusQeERk1lUrF223evJlpXf39/YjFYlyrTxfT/v37ubMzkeCpYSBliMn4UdHF448/jn/9139lw0cZeYpVkmdNsTWJJK8JG4/HucIulUphz549GB8f59LhdDqNffv24Wc/+xkaGxtZc5UScoUGmxJJFotlBRc0Jwgw6PWorq7G7OwsYrEY9/CqqqpCe3s7XnzxRSiVSk7YkLasWq1GWVkZBgYGuCuEx+NBWVkZfD4fe05E6TKbzXC5XNBqtUgkEvit3/qta8oN3ugtIggC/H7/ii4a19p2PcZgtVLYelGoxAaAGTI3WnRAOsx0LxG7g2L+AFgc6Gq6uRRao0rG680nmUwiFovdlMdKD3pKrBbibjG+YtjhXYLauuh0Omg0GlitVhQVFcFutyOXyyGbzSIej3M/ssrKSthsNl4SUliASOBEj6ElKhlAos6QuAkZ6+XlZfYklUollwqbzWao1WqulqPSXKfTiXQ6g3A4jNLSUl4mT01NQaFQwGKxYHZ2lulbRHsj8WuihFksFr6pidheWloKh8OBhYUF1n7w+/1obW1lsj3FDikRotfrYTAYuByZ1K20Wi3UajXq6uo4NENzpPFQw8mKigqoVCqEw2EYjUZeZiqVSpjNZtY9kEgkLEheqPN7LSEhQi6Xw/j4OFdRzc/Po6KiAqlUim80WtqfOnUK8XgcNpuNW8ZTnJQU23Q6HUKhEHp6elBdXY2ioiKo1Wqk02keN5CvoEwmkzh79ix2797NqyuK7xJdjMI+1C6ICjm6urrQ1NSEkpISpNNpXLx4EVKplL97OmekSQHkvUq6bogeOTY2BqlUysm7ubk5nDlzhmmDFHc/d+4ctm/fztdfKBSC3++HXC7nkMb58+cxNzeHffv2obq6GkCeSbG4uMirPmoC29PTgwceeAAWiwWCIHBilpwESs7JZDLIZDJ+KMfjcbhcLmQyGTQ0NECr1bLQ/90C0fO9SRSetrUSW4XLvkKs9frVkmGrn9DX+0zhvguXc6uTToTJyUkUFRWhqqpqxbL2asdZazzX8hRzuRw6Ozuxc+fOdyS2Vp8/GiP9LQgCZ7bXKsm91lzX2uZq52z1vK42n2w2i2effRb19fXo7+/nuKPFYmEtjb179yKXy+Hf/u3fYDKZ4PP5EAgE0NzcjOXlZY6Rt7e3o7a2Fj6fD6dOnWKt5S1btiAcDiMSieAjH/kIstksfv3rX2PLli3o6enhcFY2m0VZWRmmp6eh0WhY2Keurg5btmyBz+dDV1cXIpEIioqK8PDDD0Oj0fBrqVQKHo+H2SbLy8vYs2cPNxINhUI4fPgw1Go14vE4ZmdnsXXrVmi1WuzcuRNerxfnz5/nzsYk8UmrpHA4jIceeghOpxNerxcvvvgisyG8Xi+zc4qKivD000+z2H4ul+OehSUlJaisrMTly5dhNpvx0EMPIZVKcSJybGyMKxvJ045Go1AoFDCZTNy8gDoXl5aWYvv27cw4ei8ger53AFeLY13t/9WvURZ5rSTQ5OQkpFIpnE4nRkZGUFNTs6L7wmpDT39To8HVscTCv2tra1e8PjAwgJqaGm4nr1QqV7RnCYVCcLvdK9qzFIIKEShxVFRUhHvuuecdMcCRkRGYTCamXq01PokkXwRS2Pdt9Rzpf2I/XM2rWWv/pC1R2K33ejdlZWUl5HI5SktLYbFYWL2rurp6BdukoqKC4/hE7K+trUUul+MqMQBsOLVaLZLJJCoqKjA4OIj6+noA4OakkUiECxlsNhsXitTV1XGyrLa2lq8LUgyrq6vjpBqQV1y7fPky9Ho9MpkMHA4HgsEgzGYzG0+aC/W3s1qtHC+nikLi15IOMXVf0en10Gg0KC0t5e/CZDKhvb2d6ZQAOP9BXnxRURGcTicXm1itVgQCAchkMpSXlzN/WCaT8SqIONrLy8swmUxQq9Xo6+tDU1MThoaGuGGBWq1m+p7P51sRJrnTED3fmwSdtrm5OSwuLnJHCqqoUSqVKC4uhtvtRmtrK/fompmZQXV1NQKBAIqKiuD1emG32zE6Ooq6ujpUV1dDpVJhdHQUGo0Gb731Fj72sY/h2LFjHJdta2vD+Pg4du7ciVAohKWlJY5/UmxudHQUlZWVkEgk3ObIaDRix44dAPLlr36/n9ufl5WV4cyZM3jssccwNjaGqakpZDIZ7Ny5E3NzcyxRefbsWRiNRo4ZqtVqXi76/X4ut6UHxuzsLDo6OpBIJDA5OQmDwYDz58/jox/9KMbHx/l8BoNBhEIhSKVSDi+QRgJxRJeXl9Hc3IyJiQmu8qIeZxaLBZs2bYLH48Hk5CQzDpRKJTcRjUQizMzweL0wGY2sj7GeZFfh/6sfAMD148XXS1ytte/Vr92IF3+9zxbug6h+FKO+WpJu9edWP/ivt0pafT4K31+9v7X2c7V5FL5e+Dm6FxobG1cI619t3+8GN2pz7p4AyPsUPT09UKvVOHfuHILBIIaHhxGJROD3+9lrPXHiBMLhMEZGRhCLxXDx4kVMTU0ByC+VpqenIZFIMDw8DJfLjenpaXg8HkxNTXGfMSqFpfgfIRAIoLe3F6lUCrOzs1haWsL4+DiSySRGR0e5vbjf78fU1BRXfE1NTaGvrw9utxsulwtvvfUWt7Cn7hcqlQrnzp2Dx+PhcuJgMIiRkRFEIhHudks6BzKZDEtLS3C73VhcXMTo6Cg8Hg9kMhn6+voQjUa5/bpUKkVPTw/kcjn6+vq4xNrv92NmZoaLVl566SUEg0FMTEwgFovh7NmzrNkbj8e5oKVwLFeuXMGpU6dQXFyM7u5uqFQqXLx4EfPz85ifn4fX6wUEAaFQCBcuXGBO8LUgCAKGhobQ3d2NI0eO4MqVKzh58iQuX76MxcVF9Pf34/Lly4jFYiuYDsFgEFeuXOH/yWAU/iQSCda8APJFOgMDA/wZ+l0YnkkkErh8+TL8fj/i8fgK9bvC7Vf/XTgOIL9COnfuHBYXF1dwgRcWFpiXTZ+NxWJM/SrcF/AbQ5ZMJtHb25s/x6vej8fjOH++G/Pz8wDA+RDySs+dOwe/379i3JFIhLcvHItEIuEYtsfjQTwex9mzZ9HV1bXCyMtkMjQ3NzMHnMrj7waInu9Ngk6bx+NhJkMikVhRLNDb24uysjLU19eztCKVGwcCAZSUlHDJKFGySkpK2OsrKSmBx+NBdXU1lpeXV3SSXV5exoYNGxAIBLjzATEKiNBOItzUVw7IG+tNmzZhdnaWxXCIExoIBNDQ0IB0Os3NSxUKBZaWltDU1ASJJK8vQSWqi4uL2LZtGwYHBznBmEwm2fMdGBjg+J9CocDi4iKsVit8Ph+qqqrYg6UQCS3jAWBoaIiFZSg+SKLpS0tLsFqtnJyiiqby8nJ4PB4EAgFuVCqVSjnWSiW6BoMBs7OzcDgcnHFfj+fb3d2NcDiM6elpyOVyCIKA2tpaBAIBXq6T/sK2bdsQDofR09ODQCCAiooKCIKA7du349y5c3C5XGhubobX68XY2Bj27t2L2tpadHV1QSaT4fLly9i8eTMEIS+HSQna2tpaVFZW4pVXXkEoFAIALkTIZDLYtWsXALCc6OTkJPR6Pa9OKisrMTs7i23btsFkMqGnpwfj4+OoqKhgr9fv90Or1TLvuqKiAvF4HKOjo3A4HBwKkclkcLlc2Lx5M9RqNUpLS/HKK68gGAwCANrb2zE+Po5du3ahuLgYPT09mJmZQWlpKZ+/SCTCgjnBYBCRSBT19XX8fbvdbthstrc7ViQ5eXfw4EG4XC6cOXMGDocDOp0OU1NTkEjyinhEMSRVs/z3r8SuXTvXpNndCogx39sM0rBdHW8UhDy5n2J+RMKndtmk9HU11NbWIp1O82+73b5CKaywfbfZbEZxcfGaJZRX4106nU6uhKJtHA4Hxyrp4qEHAt2YpIxGFB65XH7VThCkYkac3ZqaGmYtZDIZ3tfqJS2dJ2I0rAYZ5EIaF8V+SYntejfWjdKXstksAoEAtFotFAoFnn76afziF7+A0WjkWHgkEoFWq8Xs7Cy2bNkCl8v1tkHJtzInTYZIJMJc1NLSUn54CILAmhtGoxFDQ0PMcAmFQohEImhvb4dEkhe7oc+5XC6Ew2GmKcrlckxPT8Pr9bLxIrbB5cuXOawTCoUwNzfH5cgKhYLjvcvLyxyXvXDhAjo6OrjN/MTEBGpqauDxeCCR5BuXUh6AtDeKiopw+fJlFBcXQy6Xw+/3w+VyoaioCG63m1dXZKysVis8Hg9stnzhRTgc5nM9OTnJ7BcS4aE4P+UnVCoVi/f4/X4OlV25coVL1nW6G9OCeK8her43CTptROkhihQVSkilUszOzrIKGXl+g4ODsFgsTL8iChIthwqVo15//XU88MADLAROVUSkKOVyuWCz2dizox+1Ws2lwFTlJZFIuFy3qKgIr7zyCg4ePAggn/iZmZnhljoOh4O5valUCouLi2xAKUkCAG+99RY6OjrYCFKdPhWMSKVSLvUk+UCKCycSCeb6UkyXqFZULELLXlLGIu84Go1iamqKuw6Tp+1yuZDL5VBaWsrFKiTYLpFIuFEptdEpVDi7nuebzWY5tk+toFwuFySSfBNSMqhEfyPdgrm5OS4woZY8Pp8P6XQaKpWKY9CUTFpaWlrRXDKbzaJYq4Xw9rkgamI4HEY4HOaybzpH1F6Iwj2xWGyFkpdMJoPf70dVVRWkUinm5+dXrA7oO6CybaI6JpNJPn90/VFJtUKh4Ouf2BpFRUVQKpXwer18rLm5uRXyq6RGRh2mSUjeaDRiaWkJWq2W+eaCkC/UIW+caH3BYBDJZHKFKD7dj0TvpJg/fVd3C9tBNL43CTpt586dY03W2tpaTE5OorW1FXV1dXj++edRXl6OaDSKxx57DCdPnoTH4+Gutj6fD9u3b4fT6cTRo0cxOzvL3mBpaSl6enq4iosUveimLS11orf3MnsH5AnEYjFs3boVtbW1yGQy+MUvfoFMJgOVSsXt0y0WK9xuF+x2O5LJJB566CH8+te/Zh5mWVkZvF4v7r//fkgkErzxxhv8cKAbjAwM3Rikc0AcVfo/k8lAq9WiqqoKo6OjWFhYwIEDB7izLqmiaTTF+PCHn8DJkydZeIiKOkgli6QpqXiCQg2XL1/Go48+is7OTpbwrK+vx8aNG9HZ2YnJyUmW1qQeeR6PBy0tLTCbzaipqbkm//NatwjFasnzpofPtUDVeYX0OUEQVnS6LnydZDZJnEkqlfID61oSiYIgrGgffzd5fXcSd4vxFcMO7xJ00xqNRiQSCQSDQTaIVOVFNedE6bFYLIjH4/yUT6VSCAQCSKfTcDqd6Ovrg91uZ1UyMnQej4djprlcFhaLBalUCn6/HwaDAU6nEwMDA6zub7fbWdELyBcGZDIZ+Hxe1iooKSlh9TCPx8Pi1CRNSXFYvV7PnnU2m+UCg0gkwo0iAfCyOt9oMo1cLsuarVRsQPuh0ubCEtZAIMAlyiSCTcaDXtPpdAgEAkgmkzCZTBwbJ++LCl7Io6OCheXlZV5tUEiEdBKuh0JvkuZZqIuc7/wbgyDksHPnTkilUl6CA/llMnmuR48exZYtW9izI284Go1icHAQDzzwAAQhX6ZcXFyMo0ePYu/evXjuuefQ2NiI+vp6vPzyy7BYLLj33nthNBp5dUSUO0pwdXV1YcuWLRxS+vdsgO82P1P0fG8SdNoKVc0WFhbQ39+PDRs2oLKykm848lao4o28EFq6UeaWmAZrZd/JOFFCrbCggJbdpIRG3Qootrp6zPQZElmhJV9hQUZhE0Nq9wPkjciJEydw//33r6jFL/Qc6fOrl/Q098LP0dKalrd0zgr1EQh9fX3Q6XSoqanhc0nGkLZNJpPo7+/H1q1beX6r511YSnwjYYef/OQnqK+vx8jICFQqFZLJJCuEGQwGXnkkEgm0t7ejpqYGr7zyCnugALjsOxKJwOl0wuVy4fHHH2cN5IGBAabxkQjPyy+/jH379uG///f/jnvuuQcHDhzAP//zP0MqleKRRx6ByWTCr371Kw4bWCwWeL1eRKNRFsx/9NFHReN7DfrarYDo+d5mFMoSVlZWoqKigr9cqVTKHYcpgVCYJCpcdha+vp4SyKsJwaxOUF2vsSPtp3Aeha+TUSzc34MPPnjdMa41vtWvFUpKrme8lNgjA77WtjKZDDt27ODvYL092tYDkiuk2GdZWRm0Wi0LJtlsNlgsFoTDYTgcDn7okuxk/gH6G1Edk8nE71GLdCoCCIfDrMdAOYCNGzciHo/j4sWL0On0MJmM/PC2Wq0cpyVGTUlJCVQqFRYXFzEzM4OSkpL3xBERcXMQPd+bBJ02SgCR5B0lXOimO3bsGB544AGcPn0a+/fvhyAIvAx+P3khV7tMbuccrkbQX+v9q23zbo5b+LuzsxPt7e0cn6XvPBAIYGFhAa2trZBIJCt0hQmFqxZaaRTyeOkYqwsC1uLqrlVgsPqz9NrdoGtwteKQ2z2G9wJiwu1t3C7jOzAwgK6uLpSWlmJpaQlyuZzLGYkeJJFIoNVqIQh5QZn9+/e/pzXm7wXuBuN7PVzPON+K/a6FbDbLVXarq8AKw0XU2HGt/a+m2q1+n+LxRK+imDlp4NJ2fr+fRZoKV0Grz821jkXbrB5fJBJhB6OQ1kifCYVCSKfTfB4KQcyMwhzEjaJwzKSqRl05Cnn3lFMhFgZpKxeW5b8XEMMOtxFkYImSRTFEavej0Wig1Wo5SUai27Ozs6iqqrqrDNf18H4Y63s1xmuxCYB8ldhLL72Effv2QSqVoqqqCrFYjFuih0IhFBUVoaurCwcOHEA2m0UkEkF5eTlX9ZnNZlaum5iYgE6n44SgIAg4c+YMtm/fzs1Fx8bGWHzG6/Uy3W1oaAixWAzl5eWs00GFMlQZqH9bg6GwAWUikUBpaSmGhoY4aUeyp2NjY9izZw/C4TBeeeUV7Ny5k7WoiXmRy+Vw5swZ1NfXQ6lUcgI0Ho/D6XSis7MTZWVlTLFcXl7mKkpqM6XValmLIhQKcc6CWm2NjIygqamJjfDrr7+OT33qU0zds9vtOHbsGLZu3QqFQsEdmScmJpDJZLBnz54VTJI7DdH4vgtIJBLs2rULO3fuRG9vL9LpNNra2lbQf1Z7GFfzOES8/0AeF/G4z507B4lEgtLSUpw4cQJKpZK7BZPI/cmTJ2G32/kBHI1GcfnyZZSXlyOZTLJOs1KpZF632+2GSqXC7Ows6xPnWSs+zM3NwW63Y3l5GZcvX0ZZWRlXKx4/fhwPPPAAwuEwjh49itbWVu7vl0gk4HQ6MTo6iurqang8Hjz99NPw+/0sKapQKBAOh9mxcDgcKC4uhsPhwGuvvcbypVSsU1dXh56eiwgEApBKpQiFQsjlcujt7WXpTuJuv/nmm4hEo2jftAlutxvt7e2QSqU4d+4cmpqa0N3dDblcDpvNhkwmg6WlJeRyOSwuLnI1KVXJDQ8PY2JiAp/61KdQVFSEnp4eGI1G2O129Pb2Mhd6ZGTkHUJNdxKi8b1JrF5ybdq06R0xusLfq18X8f4HffdEBaSHriAIqKmpYSoddcyw2+1IpVKwWCxssC0WCyorKwEAGzZsgEQiQWVlJXt7iUQCJSUlUCgU3A6JGBzUEp6U0qjMVhAEOJ1OTExMcH+3uro6lJSUsELa7OwshwdIIxnIK59lMnm9Z+qaQuwZKvShMQJ5RgYl/bLZLNrbN8FgMMDtdqO8vJz550tLS+xFNzQ0YOPGjchkMqiqqsLi4iJXodH5o5UhNdS02+3cecVut2NhwQWjUc5MFPvbpfUOh4OTotSxxeFwwGq1Xpd/fbshxnzfJd4PsVAR7w0KE3Dv9vu+lSsiQRAwMzMDnU7Hyd0bpVndyHjWu20mk2Eh+Ntxf5DQVX19PZ8H4O6J+d759Of7HJRxXv0j4oODwtLtwh8gr0p34cIF1hx4N8e4EcUtKkjp6+tb8XowGERfXx8qKythMpl4rH6/n5XSrrffSCSCQCBwVceC+qcdPnwY/f39uHTp0rqYJqTMR1rK77XfZzAYsH379rvO4yWIYQcRItaBbDaLl19+GUBe5cvr9XIT0sIClbm5OS6CUSgUqKurY2lQj8eDpqYmrkicmprCgQMHuAPwuXPnUFRUxC2aysrKEI/HIZPJ4PF4uLBleHgYly5dQm1tLRYXF7G0tAS9Xs/HPHv2LHw+H5RKJSfVlEolBgcHYTAYWEB+ZGQEExMTkEqlyGQyqKmpweTkJEpLS+H3+xEMBlFfXw+32426ujoW3y8qKkJ1dTX6+/vhdDrxb//2b/D7/Uin02hqamKFt+HhYUxOTnJIoqamBhMTE5DJZCgrK8Po6CgaGhqwsLCA+vp6Fpy/dOkSsxSKioqwsLAAp9OJjo4OAMDU1BQGBgZQUVGB2dlZFBcXw+/3o7m5GZOTk6yUJ5fLIZfL4XK5YDKZUFZWhubm5jtzAa0B0fMVIWIdIKpVKpVCb28vtw8qL8+XWS8tLcHlcnFslDQZBgYGMDExwfq43d3dSKfTmJychEqlYpoYsRJICGl8fBznzp2DSqXCwMDAChU2Ktwh+cypqSmk02kMDg5Cr9fD4XDA4/Fgenoavb29mJ6ehlKpxNDQEOvnCoLAxjgYDCIajWJ2dpblF91uN4B8VSF1uaBSaYrFUu80g8GAy5cvc8MAAu0/FAohFou9nTD0c9sk2r/f72cWQiaTQV9fH1QqFaanpzE+Po50Oo35+Xn2lP1+P5aXlzkJRx2xL126hFQqxXoipAsdj8e5qevdBDHm+y6x1nLreqf0veSgrmZWrAfXGvNaZP3rbXcj87+ZmPmNzOtWgJI6zz77LB5++OEVZeIajQaZTAbJZBI6nY69NSquEASBlb8oyebz+WCz2VirmTxDr9fL3ms4HOaOy1RRV1paColEwsLx7e3tCIfDrNq2uLiIrVu3svqaPxCAUqFAJBKByWRCPB5nHjqQD1EEg0EuIx8cHMTi4iI6Ojo4YUXMCbvdzloTQF5QaGlpCTabjQ12JBJBZWUlJ+9W739gYABLS0vYtGkTHA4He6d+vx8VFRX8uYWFBSiVSsRiMS6JlkqlXPHX1dXFOsG5XI4rBRUKBWtrFxUVIRQKQa1Wc6NNp9MJtVp918R8ReP7LkEEeL/fj4aGBgCAz+fDm2++iUOHDiEYDOLixYs4dOgQX1y32viSFB8J0Kx+r7OzE2azGc3NzYjFYujv70dVVdWKHmrZbBbd3d1YXFyEXq9HS0sLCwKtPh4AzMzMYGlpCRaLhXV6V29z6dIlpvy8/vrr2L59OxuQwm1zuRxOnTqFLVu28Hd1PeNLMdJCjymVSuHy5cvYsWPHLdUxoDHSNXU1Jkvh3Onvq21zrX1cbZ/0uVgsBqlUukIUiLi2crl8RQGPIAgszkRsAlKbo+uFzicpyOl0OvbIk8nkCrEeQRA4vk1yqGth9XecTCbZK1UqlSx2X6j1cbWH8lr7isfj3BEll8ux0D5tv94CklsJscjiNoG+yHQ6jf/7f/8vrFYrG1+JRIJf/vKXLGrzi1/8Eu3t7VheXkZpaSkmJydRXV2N2dlZVu4qbM2yefNmJBIJTExMwGg0sm6sIAhoaWnB1NQUKisrMTIygmw2C5fLhUAggPb2djQ3N8NsNmNhYQELCwtQq9X4+7//e3znO9/B6Ogonn32WQiCgNLSUtx///3cQt5ms8FsNuMHP/gB/vAP/5BVzy5cuIB0Og21Wo2KigqMj49DIpHgtddew86dO6FSqTA/P8+dErxeL2w2OyQS4IUXXsCmTZvw+OOP48c//jG0Wi1GR0d5yWqxWODz+WAwGPCrX/2KFd6qqqowPDyMbDbLehi5XA5WqxVutxuxWAzJZBLd3Rfw8Y//FtxuNyYnJ5HJZJDJZFBRUQGXy8U81qKiIuzevXuFfsaNQiKRMAWLlMjC4TA3PVUqlYhEIiguLuaOv1VVVazTm81mWXuWxkiaEKSVTEaFRHvoNYPBwGGByspKjtFSW5/q6mqo1WoMDQ2teKCmUimYTCYMDg4ikUigo6MD2WwWIyMj3IVEKpUyZ5bEjAoLIHw+H0wmE4vXZ7NZHD9+HLlcXr3NaMzrS8hkMgwNDcFqtUKpVLKBp7FPTEwgm82iqqoKPT092Lp1KyQSCZdiU8UaxWupG4lMJlvR8j2dTnOsnYpT0uk0ZmZmkMlk0NLSwslIpVKJeDzO3U5I/P9ugWh83wWo8sjlcq14UkulUnz84x/Hj3/8Y3z2s5+FVCrBD37wAzidTphMJly6dAnl5eW4cKEHH/vYR/Hmm28iGAxCIpHgiSeegEQiwf/+3/8bRUVFnDCYm5tDWVkZXnrpJWi1WmzatAm/+tWvuINrbW0t/u7v/g5/8Rd/AaPRiL/9279FRUXF26LhWpSWluLKlSuIRqMwGIxYXFzEV7/6VTQ1NWHTpnZ86lOfRG1tLTfapP3+/d//PR544AHuqtvZ2Qm1WoMHHrgfP/nJT7Bnzx4WjQ+Hw1xqm8lkUFtbu0KDYGBgAIuLi5iamoLFYoHBYIBGo8Hw8DAUCgUOHz6MTCaD9vZ2PP/886iqqoJGU4zXXnsV7e3t2LRpE/r7+1FcXIzJyUlUVVXh/PnzeO211wAAhw4dwokTJzA+Po6amhocPnwYk5NTKCqSorGxkbvn3gxyuRwOHz4Mo9EIAMy3JS9TIpGwNxaLxRAKhTA+Po7a2lq0t7fD7/fjyJEj0Ov1KC8vR0VFBRYWFnDs2DE89dRTMBgMOHXqFOx2O2ZmZpjjm06nUVZWBr//N7FS6plHokFl5eVQCQJ6e3vx8MMP47XXXoPL5YLZbIbRaGSpTSCfZJufn0cqlcKRI0fQ2NiIvr4+aDQaWCwWDA4Ocndio9EImUyGaDSKxsZGhEIhzM7Osgd94cIF6PV6dHR0sPEtKyvj/oN6vR5VVVWYmppiYXOKU7/xxhtoaWnB0NAQGhsbkU6n8corr2DHjh3o6uqCwWDgApb9+/dzzPv06dP80CopKcHevXtZbEilUqGlpQVut5tbW128eJEr3drb27Fx48abvgZuNcSE27uARCJBeXk5bDbbijp6arO9b98+WK1WbplCHXXj8TgkEgk2bmzjdi3pdF6CsbW1FWq1mhtnlpWVQaPRQK1WMxk+mUxiw4YNUCiUUKvVMBjy3kdjYyPm5ua4GimVSsFsNkOhyJPR9Xr920pgArc3ikQi2LZtKwBwGxbywnO5HMxmCy91Y7EYVCo1lEoFxsfH8ZWvfIV7ypWWlnI7IwCQy/Otb2jZW1RUhGQyCbVaDZVKxd5RJBJ5e4wK9npaW1tZT1ipVECpVCIcDmPbtm2QyWTQaDRvtxCXYmhoCIKQ18mNx+OQSqXct85sNkOtzh8rlUq9q+9aEARYLBYm6wuCwCyDwrim3W5nxoLJZGI9ZOrAoNPp2GhSTz7qQiGRSNibNpvN3B6dNApI01kul0Ov10On06GkpATZt1dYVA5MovZ07QWDQfbQVSoVgsEgTCYTTCYTbDYbTCYTdxmhz1ksFhawByQIBoMIBAKsLaFQKLBhwwZuzw7kCy4KBaZILB/Id0ux2+0oLy+HTqfja5NCFxKJBDabDel0GjKZjD1q6rYRCAR4PyqVCiUlJRzCkkql3HaK5uh2u/k7p33fbRFWMeZ7kyg8bdQ0keKPqVSKY1CZTAaRSARqtZqFvEmzNp1O8xhpyWcwGLg9C/UMS6VSLENIhshsNiMcDq/Q8aXkA3U5JuEVWnIBYA8byBtXGgO1fKdyWEokkWGhEApp+1KZqMFg4CUwtWkXhLyGcTwe595b1HlCIpEwLevIkSNYXl7G7/zO73BVUigUWjE3OlYmk4Fer2cBczr/dN7oNQoJRCIR6HQ6jk/q9Xo2QDf7XRdWtJHnV19fvyL2WBjLLfT6Cz9X+D55d7T/1dsUjqFw3mtVU4bDYU4C0usUzy9sm07aEjMzM9iwYcOK8aze9+pzULhtX18fampqWH949fkpjDsXlmLTPJPJJD8kV5/nwnOWSCT4AbTWeSz8bOEcC6+NwvfulpivaHzfJT6gp49xKyuvVsPn8yGTyXAW+73C6jnc6HzoO6YHmtVqRSQS4YdNKpWCTqfjB5dKpYLX62WDsZrkn0wmkUwm33FdptNp7taxntdvJfKJYy+USsUKpbRrgR7Wq5XaKCmnVquvqqd8I9cViewUbk+rhpspoLhbjK8Y872FuBpl6700YO8l1pOtfzcoLPm8lSj0tK7mgd2MAT569CjKyso4Fut2u6FWq7mZ5+XLl9HW1gatVoszZ85wu/iGhgYm/M/MzPCqpqGhgZOPxFx49dVXcd9990EQBG40GovFMDw8jN27d0Or1cLlyvffC4fDGBsb4w7WFHOORCL8WbvdDpfLBb1ez0YsFArBaDQiGAxCo9HA5/NBq9Xi6NGjTDPLZDIs2GO327lDs91uh1arRTKZxPT0NIaGhnDvvffyca1WK3dlpsabMpmMqXVGoxHRaBTj4+M8/2g0yp1VCvUYYrEY7HY73G43fD4fBEFAdXU1BgcHMTo6CqPRiG3btr2d5LXB7/djfn4eRqORH4KFvQ31ev1dJSYvGt93iavdxIIgcFtulUqFdDrN/Ep6f/Vn5+fnuQPCe4WrGR7qhkuiKNSccnW3iGQyyUIotNwkUA+7whb3BOpdtx6Ew2Gk0+kbMs7JZJLFXIjfmU6n4fP5uKWT2+2GTqeD0WhcVznsahBV6tVXX4XD4UAoFEJLSwvi8TguXLgAg8GAwcFBpv4RR/aNN97AgQMHEI1G0dPTA5/Ph9bWVly8eJFDNtR6ShAEvPbaa2/3pfPCZitBRUUFLl68iG3btiEcDuPkyZPYvn07tFot5ufnMT8/j7q6OnR3d8NoNGLTpk04e/Ys9wHs6upCMpnkXntqtRr9/f1cWUcdN+RyOYaGhrglvdVqxcLCAh566CHE43FcuXIFfr8fsVgM7e3tLJV59uxZ7pxhNBqxvLyMaDQKn88HqVTKvOfi4mKoVCruV0jfCQCmyVETUr1ej2w2i8cffxwDAwM8Jrvdzrxil8uFo0ePQiqVYtu2bcwyIZ7w8vIyzGYzysrKMD4+jtbWVtH4fpBR6FlduHABEomEn/xLS0us1vTWW2+hubkZEomEn8x9fX1oampCTU0NvF4v5ufnoVAo+IKjJQ31DSNQPJYoYX6/nz/n8/mgUCgQCARgNBqZ5lZaWgqlUskPiNOnT+Oee+5BJpNBf38/HA4HfD4fSwHK5XKEQiFks1lMTk6io6MDy8vLEASBPSm/34/FxUU8/PDDmJ6ehiAITL0KhUJwuVyQy+XcPbihoYHpUg0NDchkMpiamkIymYTL5UJTUxNrwi4uLnISkYoQNmzYgGg0iqWlJUxPT8NkMqGiogJDQ0MoLS3F4OAglEolKisrMTs7i87OTrS1tSEQCEAikbC2bU1Nzbq+W6vVimQyCZvNBoPBwBSosrIyDiMYjUa43W5OJpERoWRZJpPB1q1bWdbRYrGgpKQEdrsdKpUKTqcTJSUlmJmZQXl5XlWsqKgIbW1tWFhYQFlZGXQ6HWQyGR+PlMzIKw0EAjCbzSzgr1QqUVJSAq/Xiw0bNmBoaAhNTU1YXl5GS0sLkskkV7Hp9XoUFxdDoVBw7iKbzcJoNPLDoa2tjbcjBgl913Qs8vRJ8UwikcDr9cLpdHK3l1gsBqvVykI7EokEMzMzqKmpgclk4io4q9XKcxaEvGIbnTulUon5+XkYDAY+30ajET6fjxk4xN5Y78P/duGGY74nT57E9773PVy4cAEulwvPP/88nnzySQD5m///+//+Pxw+fJjl7A4ePIjvfve7cDqdvA+fz4cvfvGLePHFFyGVSvH000/j+9///oryv97eXnz+85/H+fPnUVJSgi9+8Yv46le/uu5x3q6YL7B2MgLI16C//PLLSCQS2LJlC+LxOHsszz//PNOSCiufzGYzHn/8cVy8eBEzMzPMNCgu1sJmK8HQ0BAqKiqwtLS0gmFhNBqRTCZ52QbkWRfFxcXQ6/Xwer0rvMFHHnkEEokEvb29XNL6xBNPQC6X4/jx46iurkZXVxfq6upw6dIlmM1m5HI5bNiwAQMDA5zUKy8vx+zsLGZmZrBlyxbkcjkcOnQIL774IndnJk1Yomap1Wokk0k88cQTGBsbw5kzZ/DJT34S09PTbBAHBgagUqkgl8uxsLAAq9UKm82GxcVFGI1G5HI53HfffUy9m5mZwaFDh1BWVobz58/DarXCZDLhxIkTeOKJJxCLxXD8+HH2hogaplAo8JGPfOS6RR3X+q7XKkSh1+bn5yGTyWC32xEIBOB2u9HU1MTvx+NxTE9Po7Gxcc1kXWEiafXf10uMrXVNrhUaW70/+nt6ehperxctLS3M8Cj8zFpzXp34Wmu/a4V/6HOXL19Gc3PzDRUkXes7WGtc79uYbzQaRXt7Oz772c/iIx/5yIr3YrEYenp68K1vfYu5jV/60pfwxBNPoLu7m7d75plneMmQTqfxu7/7u/jc5z6Hn/70pzyJBx98EAcPHsSPfvQjXLlyBZ/97GdhNBrxuc997kaH/J5i9YVc+H95eTkOHTrENKULFy6wSDUp8lutVoRCIVb0j0ajSCaTrPlKGWK3283ar0QFoqx1cXExt5yvrq5GLBZb8bny8nLO9lOXA5VKheLiYphMJuZGUkkseRS1tbXQarX8m8IhVVVVsFgsmJiYYC/H4XBwNwEAqKmpwdLSEmupJhIJvhEWFhbYq5LJZKirq2Pa3tzcHMrLy9HY2MgFGCUlJVCr1VCr1QgGgygrKwOQZzq0tbUhFAoxXQrIU67UajXm5+exY8cO7rbgcDhQW1uLpaUlaDQapimtJwYsCAImJyf5fKvV6hXVeoIg4K233oJGo4HBYEA6nUZjYyOPNZlMYmFhASUlJSuOpVar0dTUhGw2iwsXLqCjo2MFa+D8+fPYvn07pNI8ra6oqIiLea437mw2y4U9hfPIZDK4ePEiNxpdKyEpCAJKSkpQVVXFrIypqSkolUp2pFYbtNUGvqenh6mTxHBwu92IRCL8ACK64fT0NDZv3oz29vZrPlRWPzwKWRFEZVz9GQB8za13lXM78K7YDhKJZIXnuxbOnz+Pjo4OTE9Po7KyEoODg2htbeWLCgCOHDmCRx99FHNzc3A6nfjhD3+Ib37zm3C73XxDff3rX8cLL7yAoaGhdY3tdrIdrnUTXMtbWevJf639XM1rWGu7a433Wse51uduZKz0/lqe0OTkJCdPCuPb1/KaCt8nXMszXOvzq1vcF25zvXOWyWTwL//y/4PDYUdpaSkCgQDi8Th2797NNL4TJ07A4/EglUqhvr4eXq8XW7duhd1uxxtvvAGPx4NsNouWlhak02lW7tq6dSvUajX+5V/+BVVVVbDZbAgEAiguLkZPTw8+/elPI5FI4Oc//znKy8uRzWah0Wg4abZz507Mz89zEiocDkOlUsFgMCCRSCAUCjFVTxAEKBQKjIyM4JlnnkEgEMDg4CDMZjPzeGdnZ+FwODA2NsYPduLfGgwGtLS0YGZmBrOzswiFQqipqUEul2PjbDKZsHXrVvz6179GPB7Hxo0bEQgEkMlk4HK5EI1GsXv3brS0tODs2bMAgP7+ftTV1SGVSqGlpQUVFRVYXFxEb28vtxdSKBSorq5GOByGz+fjMML8/DxKS0uxsLCAp556ColEAp2dndDpdJidnWUHp6SkBB0dHe9fz/dGQbxSosmcPXsWRqORDS8AHDx4EFKpFF1dXXjqqadw9uxZ7Nu3bwUv86GHHsJf/dVfwe/3r1B4IhB9h1AYE30vQDf65OQk5ufnoVKpsLCwgJqaGtjtdm4DfvLkSVgsFjQ1NWF2dhZSqZRbpgwNDbEmA5VKlpWVrWhDRF7bhQsXsHv3bjYy9EOQSPL82bfeegvbt29n3i5dEED+u4hEIigrK2OuZCH3spBvunq5Vvj/ak5rMBhcUZHU3d2N+vp6mEwmdHV1oaWlhZNzEomEpQl7enpQV1eH6elpTvhEo1Fs3rwZUqkUJ06cQFNTE0KhELxeL7LZLPbu3cvEfWrHDmCFkI1Ekue2UoKNwju9vb3YtWsXn7N0Oo3Ozk7s37//ut+3VCqFTqdFLBZDKpXCxMQEnE4naxYoFAq0tbXh+eefRzqdXvE6ABaqoTBKOBxGcXExFhcXUV9fD5VKBbVajcXFRUQiEWZSUA83Mnx+vx9SqRThcBizs7PYuHEj+vv7EQwG4fF4oNPpuAKwsMcaJaM2btyIqakp5sy6XC6EQiFEo1FIpVJEo1EuWae478zMDEwmEzKZDH+P/f39UCqVKCoqwtDQEHQ6HZfxtrW18ZxlMhnOnz+PiooKlsc0GAyYmZlBS0sLc8gNBgMuXryIiooK1pxwu90YHx/n1VU6nUZXVxfKy8sxOTnJDyhBELi8HQAikQgmJyeZf338+HFs2bLlrqOFvqfGN5FI4Gtf+xo++clP8pPA7Xa/g9cpk8lgNps58+l2u9+xPKDlrNvtXtP4fuc738G3v/3t92IaVwUlm/r7+7FlyxYEAgFMT08jFovhypUr+PCHP4y5uTkkEgm4XC7s27ePDSGQv/lTqRSKi4uRy+XQ2dmJ6upqLCwsoKKiAuFwGDt37oRSqeRzA+Ql9To7OyGR5CvZ4vE4stks5ufnkUgkUFRUBK1Wi0gkgrGxMdTX1yMWi73NpihFOBzG0tISZ4Vra2uRSCTYMPX09ADIG7RgMMiCK2azGUtLS2hsbMTk5CTUajVKSkrQ39+PzZs3Y2JiAg6HA+MTE9xmxu/344UXXkB1dTWUSiXKy8tRXl4OQRC4ampiYgLRaBQSSb5AgAoX5HI53nzzTW6GODY2Bp/Px8knh8OBxsZGZLNZHDt2DLW1tRgeHkYul0NVVRVmZmbg8XhQW1sLnU6HgYEBfkBTUcfs7Oy6vmuJRII9e/YAyBuVmpoaBIPBFctcs9mMj3/840wTm56e5jzGpk2bUFlZCZlMBoVCwZ+l0JNEIsG+fftWPFglkrw+A7ER9uzZw9574YPQbrcz48Bms6GkpATl5eX8EKeCGEoKOp1OfmgRDc7pdCIQCHBhilQq5YKa4uJiJBKJFRKY+/btQzAY5JBSUVERU9roXu/o6GChnkAwCNPbiTDqqQYATU1NiMfjfE3ky9/z90hNTc2KSjcAkMvlSCQS2LFjB2tBAHkbQg9gg8GA++67j+ff0dGBeDx+1yXc3jPjm06n8Vu/9VsQBAE//OEP36vDML7xjW/gj/7oj/j/UCiEioqK9/y4FBMdGRmB2WzGnj17MDAwALVajYmJCahU+RuMkkK1tbXM6TQYDBgZGWElKvKOiJ3gdrtZN4FasEilUhgMBoTDYUSjUWYlyGQyJv2Pjo6itbUVk5OTUCgUmJ2dRSaTgUajQTAYQCqVhFqjgd/vR2lpKYLBIGZnZ9HR0QGpVIqRkRFs2rQJvb29MJlMfDP6/X7I5XKMjIxAoVBgenoaNTU1KC4uxvz8PHQ6HaampiB7W/cAyMc07fb8Uv3s2bNob28H8BslNUo2qtVqTshRskWj0XD5KvVJI6+bmBGNjY3clp3i5X6/Hxs2bEAkEoFMJuPuu0SjSyaTaGlpYWHv9cR8JRLJiqQxgHc4EVTmSmhsbAQAlpQk76+wOSbwG0WywtgskL+HBEHg0IzT6eRuF4IgrOjEu3XrVo6vUufhq4GOTR51fX09U9EArChooPEWOg1A3iBTKTl5nPX19fw+UdpIBY5i7DTmeDzO9DPyXgvHAOTvj9XHLcTVik4UCsUK541yC+spHLmdeE9ivmR4JyYmcOzYsRUX2j/90z/hK1/5Cvx+P79GJPNf/vKXeOqpp/Af/sN/QCgUwgsvvMDbHD9+HPfffz+rLF0Pt6O8WBAExGIxruYhj4cMJZUR03KTSl7J+AqCAK/Xyx0H0un0in1ns1mYzWb2sOlCFgSBE1hKpZLJ8lR6S0aMDBVxTumzVOpc6D1JJBK+6YhSRrKMVDJMINoZeX1SqRQymYyX0tQ4khJ8yWQSkUgUwWAAbW1tfFyKTZJ3B2BFmXY4HGYlrWw2y3KERD8joy0I+TY5Wq2WvTyZTMaJR6LgkYYC7SeRSEAqlXJTyOt9136/n722bDaL6elplJeXo6ioiBNKgiDwcpc0Do4dO4ZNmzYhEolgcHAI27dvQ2lpfgViNBrR09PDOg4ajQbRaBRarRaXL1+GQqHAxo0bWU3tzJkziMfjaG5uRnl5OX93pAB37tw5lJSUwOl0clGEQqGASqVCLBbjDsKFc6PkJH3/ND8A6O7uxo4dO1YkASmMGAwG2RONRCLQaDRMI1tcXIRGo2FtXfKO9Xo9i/ps374der2evxef3w+jwcDthhKJBCvd0b1BYyb6WygU4vJ6UjFTKBSsJZLL5RCPx1FSUsL33Qc25kuGd3R0FMePH3+Hq797924EAgFcuHAB27ZtAwAcO3aMJepom29+85uclACAo0ePoqmpaV2G93aBsuX0ZZNQzdWe1qtLISUSCaxWK3te9D4ZJTIyJDRCCIVCK9gHVIxABHaj0ciyg8Fg8B3GhR4S9Pfqi7HQ81nrfVq+0nKUDCYZTa1Wy1ns4uJiaDQaaLVaOJ2lvE86DoCryvwVFnGEw2HodDretjAfIJFIYDabudMEecmF3wMZ+1wuB4PBALlc/o4ikWshl8vhlVdegVwuR0VFBaanp5HJZDA6OsqtetRqNWKxGLZv387dE/LfQQhOpxPPPfcccrkcTp8+DavVing8zq2Bzp8/D7vdjlwuh4WFBZhMJhQVFcFms8HlcmF4eJgT0NlsFgsLC5ienkY4HGahdJlMDqlUwsmzrq4u5sQ+8MADOHXqFId3SJWtubkZZWVluHDhAj/Q1Wo1V52VlOTpjS6Xi2PoJOKUX9nl8xWhUAi7d+/GxMQEj5Eq1ILBIGt/fOQjH8HJkyeRTCbR09ODoqIiTE1NYf/+/Sx9qVKpWOfjIx/5CE6cOMFjI3lRp9OJuro6HDt2DE6nExcvXsSDDz6I06dPQxAEmEwmhEIhvk59Ph8/lO4W3LDxpTgiYXJyknmgpaWl+OhHP4qenh689NJLnPQAwMpVLS0tePjhh/H7v//7+NGPfoR0Oo0vfOEL+MQnPsEn5lOf+hS+/e1v4/d+7/fwta99DX19ffj+97+Pv/mbv7lF0741EIS8jJ/f70d5eTl8Ph8WFhY4gZjJZHiZKJFIUFJSAp/Ph+XlZVRVVcFkMiEcDnPMljzdY8eOoaOjg3tpyeVy9nLT6TS6u7uxceNGyGQyzMzMoLq6msMKhw8fxlNPPQW1Wo1z584jmUygpqYGWq2W5QGp/Qudb2rzQt7uxMQENm7cyElLEu2h4o5oNAq/34+Ojg7Mzs4iEAigsrISWq2Wn/7j4+NYXl7G/fffj1QqBZ/PB7Vazb3JKPNNvcdSqRSmpqa4swMlDCUSCaLRKHp7e1FbW4uamhoolUqMjY0hnU6juLiYa/xff/11RCIRVFdXY8eOHZzhJg/+pZdeRkNDPaqrq5kxQN/d6kq+tUBJxeXlZcjlcm7LHolEoNfrUVFRgf7+fnYQUqkUysvLeUVis9m4t5pEImFFONL8zeVyKx6K4XCYixLi8TgqKioQjUaZeUA6utQPzWQyYmFhAVKpFFqtloWIyEPOZDJceEBFOySYL5fLodFo2MsPhUKora1FJpOBQqGAIOQ1oCkZVlRUhHQ6jcrKSu54kXg76U1iS0A+70PMBQDseedyOej1eszPz0Oj0cBms2F8fBxKpRJSqZQ9WLp3bDYbUqkUS2U6HA72jk1mMxoaGrC0tARBELjvnNPpZM/6bistBm4i7HDixAncd99973j9M5/5DP7iL/7iqjy648eP48CBAwDyRRZf+MIXVhRZ/OAHP7hqkYXVasUXv/hFfO1rX1v3OG+XqtmFCxewsLCA6upqDA0NcYZbKpXCbDZjbm6Ol2LFxcUoKipCJBLBfffdh5KSEly8eBGXL1/mm45idtu2bYPT6URnZyeWl5dZ2YluBoqvkodMiZJ0Oo3HHnsMGo0Gr7/+OrLZLHcjKPQMFQoFnnjiCSiVSrz44ovQ6/Xcusbr9bL85OLiIldHlZaWMg9Xo9Fg586dmJiYwKlTp1BdXc29wEgAWyKR4P7778ebb74JQRDg8/lgNBpx3333IRwO48UXX2RDZDabuY2Oz+fD1q1b4fP5WIKTNFk/8YlPQKFQ4K233mLjTasNj8fDy2aqdGpububY5LPPPouamloIQt7YezweyGQyPPbYY9c0vmuxS1a/T3S1Qo3ftZS1CulwpMlbuKQvZJLQ+/T3ajpdIXWOjlt4fAqDUGhidbihkGJXyGahziJ79+7l80JzIRTOtfC8FLJn1ipyoPnR3AoV0AqZNZ2dnVAqlWhvb18Rly/cvvAcA7+pM9izZ8+Kc36137ca73nY4cCBA9ekbKzHlpvNZi6ouBo2bdqEU6dO3ejwbjvIEGazWY71EWXHYrEwr5KMciQSQV1dHcdRSe6RFKCkUimXlAL5xAa1yAHySQYq1zWbzTAYDNxORyKRcJNDIL9sz2QyKCsrw+LiIpqbm9k7KLyQtVotdDodLBYLV5OpVCpks1mUlpaipKSEvR+1Wr1CTUoul6O8vJwZBmNjY8w1pQSSw+HA8tusA8qYS6VSLlIIBoNwOp0cXolEIigvL2cyPvUkS6VSnGF3OBwIBoOw2WyIRqNQKBTscVIcd25ujnVci4uL326llKeuTU5OoqGhgasCr4fr3bh0Tmlf1G2hsKXP6n3Rtqv/p9+Fxm6tVjuF4yYjWfgQWZ1gulbCqXB+UqkUBw4cWHGstR5O9Npa5+RaBo++/9VzKNyGmCWr31v9XRX+X1xcjL17975nxvVWQ5SUvEmsddrWkzVf7zbA2lqlaxUerPYwrrXdjYxpPWNdaxyFuFbs+GrHWb2vmzmn1/rsWu9dL+GWy+UwOzvLoRmTycQC39QCx2q1cqtzTXExysvKuNQ7Go3C6XSu0NoVcXux3uvpZnHHE27/nrGeL/VmtrmWkVjv0upax73aezdykV7PM7yR49/o8vBanteNjuVaeOutt7iXGRlgt9vNIveRSASjo6PcHmlpcRESiQQXL16Ew+FAfX09tm/fLhpeEQBE43vTEG+gf1+ghFNhZR/pHFBYgzLqVqsV6XSahYCI1SORSLixpwgRovEVIWIdKCoq4oTxjaClpeXWD0bEBwKi8RUh4joQVzki3gvcXfV2IkSIEPHvBKLnK0KEiH8XuNtWMKLnK0KECBF3AKLxFSFChIg7ANH4ihAhQsQdgGh8RYgQIeIOQDS+IkSIEHEHIBpfESJEiLgDEI2vCBEiRNwBiMZXhAgRIu4AROMrQoQIEXcAovEVIUKEiDsA0fiKECFCxB2AaHxFiBAh4g5ANL4iRIgQcQcgGl8RIkSIuAMQja8IESJE3AGIxleECBEi7gBE4ytChAgRdwCi8RUhQoSIOwDR+IoQIULEHYBofEWIECHiDkA0viJEiBBxByAaXxEiRIi4AxCNrwgRIkTcAYjGV4QIESLuAETjK0KECBF3AKLxFSFChIg7ANH4ihAhQsQdgGh8RYgQIeIOQDS+IkSIEHEHIBpfESJEiLgDEI2vCBEiRNwByO70AN4rCIIAAAiFQnd4JCJEiPj3ALI1ZHuuhw+s8fV6vQCAioqKOzwSESJE/HtCOByGwWC47nYfWONrNpsBADMzM+s6Ee8XhEIhVFRUYHZ2Fnq9/k4P55bhgzivD+KcAHFeV4MgCAiHw3A6neva/gNrfKXSfDjbYDB8oC4Qgl6vF+f1PsEHcU6AOK+1cCOOnphwEyFChIg7ANH4ihAhQsQdwAfW+CqVSvz5n/85lErlnR7KLYU4r/cPPohzAsR53SpIhPXyIkSIECFCxC3DB9bzFSFChIi7GaLxFSFChIg7ANH4ihAhQsQdgGh8RYgQIeIOQDS+IkSIEHEH8IE0vn/3d3+H6upqqFQq7Ny5E+fOnbvTQ7omvvOd72DHjh3Q6XSw2Wx48sknMTw8vGKbRCKBz3/+87BYLNBqtXj66aexuLi4YpuZmRl86EMfgkajgc1mw5/8yZ8gk8nczqlcFd/97nchkUjw5S9/mV97v85pfn4ev/3bvw2LxQK1Wo2NGzeiu7ub3xcEAX/2Z3+G0tJSqNVqHDx4EKOjoyv24fP58Mwzz0Cv18NoNOL3fu/3EIlEbvdUGNlsFt/61rdQU1MDtVqNuro6/Jf/8l9WiMS8H+Z18uRJPP7443A6nZBIJHjhhRdWvH+r5tDb24t7770XKpUKFRUV+Ou//usbH6zwAcPPfvYzQaFQCP/0T/8k9Pf3C7//+78vGI1GYXFx8U4P7ap46KGHhH/+538W+vr6hEuXLgmPPvqoUFlZKUQiEd7mD/7gD4SKigrhjTfeELq7u4Vdu3YJ99xzD7+fyWSEtrY24eDBg8LFixeFw4cPC1arVfjGN75xJ6a0AufOnROqq6uFTZs2CV/60pf49ffjnHw+n1BVVSX8zu/8jtDV1SVMTEwIr776qjA2NsbbfPe73xUMBoPwwgsvCJcvXxaeeOIJoaamRojH47zNww8/LLS3twudnZ3CqVOnhPr6euGTn/zknZiSIAiC8Jd/+ZeCxWIRXnrpJWFyclL45S9/KWi1WuH73/8+b/N+mNfhw4eFb37zm8Jzzz0nABCef/75Fe/fijkEg0HBbrcLzzzzjNDX1yc8++yzglqtFv7X//pfNzTWD5zx7ejoED7/+c/z/9lsVnA6ncJ3vvOdOziqG8PS0pIAQHjzzTcFQRCEQCAgyOVy4Ze//CVvMzg4KAAQzp49KwhC/qKTSqWC2+3mbX74wx8Ker1eSCaTt3cCBQiHw0JDQ4Nw9OhRYf/+/Wx8369z+trXvibs3bv3qu/ncjnB4XAI3/ve9/i1QCAgKJVK4dlnnxUEQRAGBgYEAML58+d5m1deeUWQSCTC/Pz8ezf4a+BDH/qQ8NnPfnbFax/5yEeEZ555RhCE9+e8VhvfWzWHv//7vxdMJtOKa/BrX/ua0NTUdEPj+0CFHVKpFC5cuICDBw/ya1KpFAcPHsTZs2fv4MhuDMFgEMBvlNkuXLiAdDq9Yl7Nzc2orKzkeZ09exYbN26E3W7nbR566CGEQiH09/ffxtGvxOc//3l86EMfWjF24P07p1//+tfYvn07Pvaxj8Fms2HLli34x3/8R35/cnISbrd7xbwMBgN27ty5Yl5GoxHbt2/nbQ4ePAipVIqurq7bN5kC3HPPPXjjjTcwMjICALh8+TJOnz6NRx55BMD7d16FuFVzOHv2LPbt2weFQsHbPPTQQxgeHobf71/3eD5QqmYejwfZbHbFzQoAdrsdQ0NDd2hUN4ZcLocvf/nL2LNnD9ra2gAAbrcbCoUCRqNxxbZ2ux1ut5u3WWve9N6dwM9+9jP09PTg/Pnz73jv/TqniYkJ/PCHP8Qf/dEf4U//9E9x/vx5/Kf/9J+gUCjwmc98hse11rgL52Wz2Va8L5PJYDab79i8vv71ryMUCqG5uRlFRUXIZrP4y7/8SzzzzDMA8L6dVyFu1RzcbjdqamresQ96z2QyrWs8Hyjj+0HA5z//efT19eH06dN3eijvCrOzs/jSl76Eo0ePQqVS3enh3DLkcjls374d/+2//TcAwJYtW9DX14cf/ehH+MxnPnOHR3fz+MUvfoGf/OQn+OlPf4oNGzbg0qVL+PKXvwyn0/m+ntfdjA9U2MFqtaKoqOgdGfPFxUU4HI47NKr14wtf+AJeeuklHD9+HOXl5fy6w+FAKpVCIBBYsX3hvBwOx5rzpvduNy5cuIClpSVs3boVMpkMMpkMb775Jn7wgx9AJpPBbre/7+YEAKWlpWhtbV3xWktLC2ZmZgD8ZlzXugYdDgeWlpZWvJ/JZODz+e7YvP7kT/4EX//61/GJT3wCGzduxKc//Wn85//8n/Gd73wHwPt3XoW4VXO4VdflB8r4KhQKbNu2DW+88Qa/lsvl8MYbb2D37t13cGTXhiAI+MIXvoDnn38ex44de8eSZtu2bZDL5SvmNTw8jJmZGZ7X7t27ceXKlRUXztGjR6HX699hLG4HHnjgAVy5cgWXLl3in+3bt+OZZ57hv99vcwKAPXv2vIMGODIygqqqKgBATU0NHA7HinmFQiF0dXWtmFcgEMCFCxd4m2PHjiGXy2Hnzp23YRbvRCwW4wYEhKKiIuRyOQDv33kV4lbNYffu3Th58iTS6TRvc/ToUTQ1Na075ADgg0k1UyqVwo9//GNhYGBA+NznPicYjcYVGfO7DX/4h38oGAwG4cSJE4LL5eKfWCzG2/zBH/yBUFlZKRw7dkzo7u4Wdu/eLezevZvfJ1rWgw8+KFy6dEk4cuSIUFJScldQzQiFbAdBeH/O6dy5c4JMJhP+8i//UhgdHRV+8pOfCBqNRvh//+//8Tbf/e53BaPRKPzqV78Sent7hQ9/+MNr0pm2bNkidHV1CadPnxYaGhruKNXsM5/5jFBWVsZUs+eee06wWq3CV7/6Vd7m/TCvcDgsXLx4Ubh48aIAQPif//N/ChcvXhSmp6dv2RwCgYBgt9uFT3/600JfX5/ws5/9TNBoNCLVTBAE4W//9m+FyspKQaFQCB0dHUJnZ+edHtI1AWDNn3/+53/mbeLxuPAf/+N/FEwmk6DRaISnnnpKcLlcK/YzNTUlPPLII4JarRasVqvwla98RUin07d5NlfHauP7fp3Tiy++KLS1tQlKpVJobm4W/uEf/mHF+7lcTvjWt74l2O12QalUCg888IAwPDy8Yhuv1yt88pOfFLRaraDX64Xf/d3fFcLh8O2cxgqEQiHhS1/6klBZWSmoVCqhtrZW+OY3v7mCTvV+mNfx48fXvJc+85nP3NI5XL58Wdi7d6+gVCqFsrIy4bvf/e4Nj1XU8xUhQoSIO4APVMxXhAgRIt4vEI2vCBEiRNwBiMZXhAgRIu4AROMrQoQIEXcAovEVIUKEiDsA0fiKECFCxB2AaHxFiBAh4g5ANL4iRIgQcQcgGl8RIkSIuAMQja8IESJE3AGIxleECBEi7gD+/19+m6Y/OAhnAAAAAElFTkSuQmCC\n" + }, + "metadata": {} + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "#### Or predict on an array of file paths" + ], + "metadata": { + "id": "VAdDQFT8oWx-" + } + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "scrolled": true, + "id": "x1omsXNcIMGo", + "outputId": "5d00a0e9-1d2d-4463-98c9-9feb0fb51387", + "colab": { + "base_uri": "https://localhost:8080/" + } + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Warning::Spark Session already created, some configs may not take.\n", + "| | col0 | col1 | col2 |\n", + "|---:|:--------------------|:--------------------------------------------------------|:------------------------------------------------------------|\n", + "| 0 | Component | TranSend | |\n", + "| 1 | Load balancing | Dynamic, by queueIengths at workernodes. | Static partitioningof read-only data |\n", + "| 2 | Application layer | ‘Composable TACCworkers | Fixed search serviceapplication |\n", + "| 3 | | Wovias disney | Dynamic HTML |\n", + "| 4 | BS § Service layer | logic, HTML / Java- | generation, HTML |\n", + "| 5 | | } —s Script UI | ; UL |\n", + "| 6 | Failure manage-ment | Centralized butfault-tolerant usingprocess-peers | Distributed to eachnode |\n", + "| 7 | D) Wer kernlans: | Wit’y end auches: | hel aeons Tein |\n", + "| 8 | ; ment | bound to their nodes | totheirnodes |\n", + "| 9 | S sUUser profile | Berkeley DB with | Parallel Informix |\n", + "| 10 | g (ACID) database | —_- read caches | ; server |\n", + "| 11 | Caching | Harvest cachesstore pre-and post-transformation Webdata | integrated cache ofrecent searches, forincremental delivery |\n", + "| | col0 | col1 | col2 |\n", + "|---:|:--------------------|:--------------------------------------------------------|:------------------------------------------------------------|\n", + "| 0 | Component | TranSend | |\n", + "| 1 | Load balancing | Dynamic, by queueIengths at workernodes. | Static partitioningof read-only data |\n", + "| 2 | Application layer | ‘Composable TACCworkers | Fixed search serviceapplication |\n", + "| 3 | | Wovias disney | Dynamic HTML |\n", + "| 4 | BS § Service layer | logic, HTML / Java- | generation, HTML |\n", + "| 5 | | } —s Script UI | ; UL |\n", + "| 6 | Failure manage-ment | Centralized butfault-tolerant usingprocess-peers | Distributed to eachnode |\n", + "| 7 | D) Wer kernlans: | Wit’y end auches: | hel aeons Tein |\n", + "| 8 | ; ment | bound to their nodes | totheirnodes |\n", + "| 9 | S sUUser profile | Berkeley DB with | Parallel Informix |\n", + "| 10 | g (ACID) database | —_- read caches | ; server |\n", + "| 11 | Caching | Harvest cachesstore pre-and post-transformation Webdata | integrated cache ofrecent searches, forincremental delivery |\n", + "| | col0 | col1 | col2 |\n", + "|---:|:--------------------|:--------------------------------------------------------|:------------------------------------------------------------|\n", + "| 0 | Component | TranSend | |\n", + "| 1 | Load balancing | Dynamic, by queueIengths at workernodes. | Static partitioningof read-only data |\n", + "| 2 | Application layer | ‘Composable TACCworkers | Fixed search serviceapplication |\n", + "| 3 | | Wovias disney | Dynamic HTML |\n", + "| 4 | BS § Service layer | logic, HTML / Java- | generation, HTML |\n", + "| 5 | | } —s Script UI | ; UL |\n", + "| 6 | Failure manage-ment | Centralized butfault-tolerant usingprocess-peers | Distributed to eachnode |\n", + "| 7 | D) Wer kernlans: | Wit’y end auches: | hel aeons Tein |\n", + "| 8 | ; ment | bound to their nodes | totheirnodes |\n", + "| 9 | S sUUser profile | Berkeley DB with | Parallel Informix |\n", + "| 10 | g (ACID) database | —_- read caches | ; server |\n", + "| 11 | Caching | Harvest cachesstore pre-and post-transformation Webdata | integrated cache ofrecent searches, forincremental delivery |\n" + ] + } + ], + "source": [ + "dfs = p.predict('/content/table_image.jpg','/content/table_regions1.png' )\n", + "for df in dfs :\n", + " print(dfs.to_markdown())" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python [conda env:ocr_5_0_2] *", + "language": "python", + "name": "conda-env-ocr_5_0_2-py" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.18" + }, + "colab": { + "provenance": [] + } + }, + "nbformat": 4, + "nbformat_minor": 0 +}