-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdilatedresonance.py
50 lines (37 loc) · 1.46 KB
/
dilatedresonance.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
from typing import List
from matplotlib import pyplot as plt
import torch
from torch.nn import functional as F
from util import playable
from util.playable import listen_to_sound
import matplotlib
matplotlib.use('Qt5Agg')
from matplotlib import pyplot as plt
def conv(signal: torch.Tensor, mix: torch.Tensor, filters: List[torch.Tensor]):
_, _, n_samples = signal.shape
output = [signal]
current = signal
for i, f in enumerate(filters):
dilation = 2 ** i
current = F.pad(current, (dilation, 0))
current = F.conv1d(current, weight=f.view(1, 1, 2), stride=1, dilation=dilation)[..., :n_samples]
output.append(current)
mix = torch.softmax(mix, dim=-1)
output = torch.stack(output, dim=-1)
output = output * mix[None, None, None, :]
output = torch.sum(output, dim=-1)
return output
if __name__ == '__main__':
n_samples = 2 ** 16
impulse_size = 256
n_conv_layers = 16
signal = torch.zeros(1, 1, n_samples)
signal[:, :, :impulse_size] = torch.zeros(impulse_size).uniform_(-1, 1) * torch.hann_window(impulse_size)
layers = [torch.zeros(1, 1, 2).uniform_(-1, 1) for _ in range(n_conv_layers)]
mix = torch.zeros(n_conv_layers + 1).uniform_(-1, 1)
result = conv(signal, mix, layers)
result = result / torch.abs(result).max()
plt.plot(result.view(-1).data.cpu().numpy()[:])
plt.show()
samples = playable(result, samplerate=22050, normalize=True)
listen_to_sound(samples)