-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathmain.py
109 lines (88 loc) · 2.37 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
#coding=utf-8
import os
import random
import numpy as np
import tensorflow as tf
from dataPro import *
from baseDNNModel import *
from modelTrainer import *
from generateEggs import *
flags = tf.app.flags
flags.DEFINE_string(
"gpuId",
"3",
"Which gpu is assigned.")
flags.DEFINE_string(
"fileRootPath",
"./files",
"File path for all files.")
flags.DEFINE_string(
"dataRootPath",
"./files",
"Data file path for all data.")
flags.DEFINE_string(
"path4SaveEggsFile",
"./files",
"The path for saving eggs file.")
flags.DEFINE_string(
"path4Summaries",
"./files/summaries",
"The path for saving summaries.")
flags.DEFINE_string(
"path4SaveModel",
"./files/trainedModel",
"The path for saving model.")
flags.DEFINE_string(
"oneCLDataPath4Training",
"./files/4_training/PC3",
"The path for training in one cell line.")
flags.DEFINE_string(
"oneCLDataPath4GenerateEggs",
"./files/after_merge/PC3",
"The path for generating eggs in one cell line.")
flags.DEFINE_float(
"testSize",
1e-1,
"The threshold for validation data.")
flags.DEFINE_float(
"learningRate",
1e-4,
"The learning rate for training.")
flags.DEFINE_float(
"dropOutRate",
0.5,
"The threshold for validation data.")
flags.DEFINE_float(
"threshold4Val",
0.5,
"The threshold for validation data.")
flags.DEFINE_float(
"threshold4Convegence",
1e-40,
"The threshold for training convegence.")
flags.DEFINE_integer(
"batchSize",
150,
"How many samples are trained in each iteration.")
flags.DEFINE_integer(
"trainEpoches",
1000,
"How many times training through all train data.")
flags.DEFINE_integer(
"nWeight",
10,
"The weighted for negative samples in objective funcion.")
FLAGS = flags.FLAGS
if __name__ == "__main__":
os.environ["CUDA_VISIBLE_DEVICES"] = FLAGS.gpuId
insDataPro = DataPro(FLAGS)
insDataPro.loadDataInL1000()
insDataPro.loadOneCLData()
insDataPro.transferLabel2TwoCol()
numOfNeurons = [1956, 200, 10, 2]
insDNNModel = BaseDNNModel(FLAGS, numOfNeurons)
insDNNModel.buildBaseDNNModelGraph()
insModelTrainer = ModelTrainer(FLAGS, insDataPro, insDNNModel)
modelSavePath = insModelTrainer.trainDNN()
insGenerateEggs = GenerateEggs(FLAGS, insDataPro, modelSavePath)
insGenerateEggs.generateEggs2Files()