-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathmain.py
300 lines (241 loc) · 11.3 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
# ./main.py
import os
import gradio as gr
import autogen
import json
from src.mapper.e5map import E5Mapper
from src.mapper.scimap import scimap
from src.mapper.parser import MapperParser
from src.datatonic.dataloader import DataLoader
from src.teams.agentteam import codingteam, covid19team, financeteam, debateteam, homeworkteam, consultingteam
from src.agentics.agents import AgentsFactory
title = """# Welcome to 👩🏻🔬🧪SciTonic
this is a highly adaptive technical operator that will listen to your query and load datasets and multi-agent teams based on those. Simply describe your problem in detail, ask a question and provide a reasoning method to get started:
"""
def update_config_file(api_key):
config_path = "./src/config/OAI_CONFIG_LIST.json"
with open(config_path, "r") as file:
config = json.load(file)
for item in config:
item["api_key"] = api_key
with open(config_path, "w") as file:
json.dump(config, file, indent=4)
def process_audio_image_input(input_type, input_data, MODEL_ID):
PAT = os.getenv("CLARIFAI_PAT")
if not PAT:
raise ValueError("Clarifai Personal Access Token not set in environment variables")
channel = ClarifaiChannel.get_grpc_channel()
stub = service_pb2_grpc.V2Stub(channel)
metadata = (("authorization", "Key " + PAT),)
if input_type == "audio":
file_bytes = input_data
elif input_type == "image":
file_bytes = base64.b64encode(input_data).decode("utf-8")
post_model_outputs_response = stub.PostModelOutputs(
service_pb2.PostModelOutputsRequest(
model_id=MODEL_ID,
inputs=[
resources_pb2.Input(
data=resources_pb2.Data(
audio=resources_pb2.Audio(base64=file_bytes) if input_type == "audio" else None,
image=resources_pb2.Image(base64=file_bytes) if input_type == "image" else None
)
)
],
),
metadata=metadata,
)
if post_model_outputs_response.status.code != status_code_pb2.SUCCESS:
print(post_model_outputs_response.status)
raise Exception(
"Post model outputs failed, status: "
+ post_model_outputs_response.status.description
)
output = post_model_outputs_response.outputs[0]
return output.data.text.raw
def process_query(oai_key, query, max_auto_reply):
update_config_file(oai_key)
os.environ['OAI_KEY'] = oai_key
llm_config = autogen.config_list_from_json(
env_or_file="./src/config/OAI_CONFIG_LIST.json",
filter_dict={"model": {"gpt-4", "gpt-3.5-turbo-16k", "gpt-4-1106-preview"}}
)
# Initialize mappers
taskmapper = E5Mapper(oai_key)
teammapper = scimap(oai_key)
# Get responses from mappers
taskmap_response = taskmapper.get_completion(query)
teammap_response = teammapper.get_completion(query)
# Parse responses
task = MapperParser.parse_taskmapper_response(taskmap_response)
team = MapperParser.parse_teammapper_response(teammap_response)
# Load dataset based on task
data_loader = DataLoader()
dataset = data_loader.load_and_process(task.lower())
# Save dataset to a JSON file and get the file path
json_file_name = "dataset.json" # Provide a suitable file name
json_file_path = os.path.join("src/datatonic/", json_file_name) # Define the complete file path
data_loader.save_to_json(dataset, json_file_path)
# Initialize AgentsFactory with the path to the JSON file
agents_factory = AgentsFactory(llm_config, json_file_path)
# Retrieve the Boss Assistant agent
boss_assistant = agents_factory.scitonic()
# Select and initiate team based on team mapping
team_function = {
"CodingTeam": codingteam,
"Covid19Team": covid19team,
"FinanceTeam": financeteam,
"DebateTeam": debateteam,
"HomeworkTeam": homeworkteam,
"ConsultingTeam": consultingteam
}
team_action = team_function.get(team, lambda: "No appropriate team found for the given input.")
return team_action()
def main():
with gr.Blocks() as demo:
gr.Markdown(title)
with gr.Row():
txt_oai_key = gr.Textbox(label="OpenAI API Key", type="password")
txt_pat = gr.Textbox(label="Clarifai PAT", type="password", placeholder="Enter Clarifai PAT here")
txt_query = gr.Textbox(label="Describe your problem in detail:")
txt_max_auto_reply = gr.Number(label="Max Auto Replies", value=50)
audio_input = gr.Audio(label="Or speak your problem here:", type="numpy",)
image_input = gr.Image(label="Or upload an image related to your problem:", type="numpy", )
btn_submit = gr.Button("Submit")
output = gr.Textbox(label="Output",)
def process_and_submit(oai_key, pat, query, max_auto_reply, audio, image):
os.environ['CLARIFAI_PAT'] = pat
os.environ['OAI_KEY'] = oai_key
if audio is not None:
query = process_audio_image_input("audio", audio, "asr-wav2vec2-base-960h-english")
elif image is not None:
query = process_audio_image_input("image", image, "general-english-image-caption-blip")
return process_query(oai_key, query, max_auto_reply)
btn_submit.click(
process_and_submit,
inputs=[txt_oai_key, txt_pat, txt_query, txt_max_auto_reply, audio_input, image_input],
outputs=output
)
demo.launch()
if __name__ == "__main__":
main()
# import os
# import gradio as gr
# import autogen
# import json
# from src.mapper.e5map import E5Mapper
# from src.mapper.scimap import scimap
# from src.mapper.parser import MapperParser
# from src.datatonic.dataloader import DataLoader
# from src.teams.agentteam import codingteam, covid19team, financeteam, debateteam, homeworkteam, consultingteam
# from src.agentics.agents import AgentsFactory
# title = """# Welcome to 👩🏻🔬🧪SciTonic
# this is a highly adaptive technical operator that will listen to your query and load datasets and multi-agent teams based on those. Simply describe your problem in detail, ask a question and provide a reasoning method to get started:
# """
# def update_config_file(api_key):
# config_path = "./src/config/OAI_CONFIG_LIST.json"
# with open(config_path, "r") as file:
# config = json.load(file)
# for item in config:
# item["api_key"] = api_key
# with open(config_path, "w") as file:
# json.dump(config, file, indent=4)
# def process_audio_image_input(input_type, input_data, MODEL_ID):
# PAT = os.getenv("CLARIFAI_PAT")
# if not PAT:
# raise ValueError("Clarifai Personal Access Token not set in environment variables")
# channel = ClarifaiChannel.get_grpc_channel()
# stub = service_pb2_grpc.V2Stub(channel)
# metadata = (("authorization", "Key " + PAT),)
# if input_type == "audio":
# file_bytes = input_data
# elif input_type == "image":
# file_bytes = base64.b64encode(input_data).decode("utf-8")
# post_model_outputs_response = stub.PostModelOutputs(
# service_pb2.PostModelOutputsRequest(
# model_id=MODEL_ID,
# inputs=[
# resources_pb2.Input(
# data=resources_pb2.Data(
# audio=resources_pb2.Audio(base64=file_bytes) if input_type == "audio" else None,
# image=resources_pb2.Image(base64=file_bytes) if input_type == "image" else None
# )
# )
# ],
# ),
# metadata=metadata,
# )
# if post_model_outputs_response.status.code != status_code_pb2.SUCCESS:
# print(post_model_outputs_response.status)
# raise Exception(
# "Post model outputs failed, status: "
# + post_model_outputs_response.status.description
# )
# output = post_model_outputs_response.outputs[0]
# return output.data.text.raw
# def process_query(oai_key, query, max_auto_reply):
# update_config_file(oai_key)
# os.environ['OAI_KEY'] = oai_key
# llm_config = autogen.config_list_from_json(
# env_or_file="./src/config/OAI_CONFIG_LIST.json",
# filter_dict={"model": {"gpt-4", "gpt-3.5-turbo-16k", "gpt-4-1106-preview"}}
# )
# # Initialize mappers
# taskmapper = E5Mapper(oai_key)
# teammapper = scimap(oai_key)
# # Get responses from mappers
# taskmap_response = taskmapper.get_completion(query)
# teammap_response = teammapper.get_completion(query)
# # Parse responses
# task = MapperParser.parse_taskmapper_response(taskmap_response)
# team = MapperParser.parse_teammapper_response(teammap_response)
# # Load dataset based on task
# data_loader = DataLoader()
# dataset = data_loader.load_and_process(task.lower())
# # Save dataset to a JSON file and get the file path
# json_file_name = "dataset.json" # Provide a suitable file name
# json_file_path = os.path.join("./src/datatonic/", json_file_name) # Define the complete file path
# data_loader.save_to_json(dataset, json_file_path)
# # Initialize AgentsFactory with the path to the JSON file
# agents_factory = AgentsFactory(llm_config, json_file_path)
# # Retrieve the Boss Assistant agent
# boss_assistant = agents_factory.scitonic()
# # Select and initiate team based on team mapping
# team_function = {
# "CodingTeam": codingteam,
# "Covid19Team": covid19team,
# "FinanceTeam": financeteam,
# "DebateTeam": debateteam,
# "HomeworkTeam": homeworkteam,
# "ConsultingTeam": consultingteam
# }
# team_action = team_function.get(team, lambda: "No appropriate team found for the given input.")
# return team_action()
# def main():
# with gr.Blocks() as demo:
# gr.Markdown(title)
# with gr.Row():
# txt_oai_key = gr.Textbox(label="OpenAI API Key", type="password")
# txt_pat = gr.Textbox(label="Clarifai PAT", type="password", placeholder="Enter Clarifai PAT here")
# txt_query = gr.Textbox(label="Describe your problem in detail:")
# txt_max_auto_reply = gr.Number(label="Max Auto Replies", value=50)
# audio_input = gr.Audio(label="Or speak your problem here:", type="numpy",)
# image_input = gr.Image(label="Or upload an image related to your problem:", type="numpy", )
# btn_submit = gr.Button("Submit")
# output = gr.Textbox(label="Output",)
# def process_and_submit(oai_key, pat, query, max_auto_reply, audio, image):
# os.environ['CLARIFAI_PAT'] = pat
# os.environ['OAI_KEY'] = oai_key
# if audio is not None:
# query = process_audio_image_input("audio", audio, "asr-wav2vec2-base-960h-english")
# elif image is not None:
# query = process_audio_image_input("image", image, "general-english-image-caption-blip")
# return process_query(oai_key, query, max_auto_reply)
# btn_submit.click(
# process_and_submit,
# inputs=[txt_oai_key, txt_pat, txt_query, txt_max_auto_reply, audio_input, image_input],
# outputs=output
# )
# demo.launch()
# if __name__ == "__main__":
# main()