forked from WisconsinAIVision/yolact_edge
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
707 lines (573 loc) · 31 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
from yolact_edge.utils import timer
from yolact_edge.data import *
from yolact_edge.utils.augmentations import SSDAugmentation, SSDAugmentationVideo, BaseTransform, BaseTransformVideo
from yolact_edge.utils.functions import MovingAverage, SavePath
from yolact_edge.layers.modules import MultiBoxLoss
from yolact_edge.layers.modules.optical_flow_loss import OpticalFlowLoss
from yolact_edge.yolact import Yolact
import os
import sys
import time
import math
from pathlib import Path
import torch
from torch.autograd import Variable
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torch.utils.data as data
import numpy as np
import argparse
import datetime
from yolact_edge.utils.tensorboard_helper import SummaryHelper
import yolact_edge.utils.misc as misc
import torch.distributed as dist
import torch.multiprocessing as mp
from yolact_edge.utils.logging_helper import setup_logger
import logging
import random
# Oof
import eval as eval_script
def str2bool(v):
return v.lower() in ("yes", "true", "t", "1")
parser = argparse.ArgumentParser(
description='Yolact Training Script')
parser.add_argument('--batch_size', default=8, type=int,
help='Batch size for training')
parser.add_argument('--resume', default=None, type=str,
help='Checkpoint state_dict file to resume training from. If this is "interrupt"'\
', the model will resume training from the interrupt file.')
parser.add_argument('--start_iter', default=0, type=int,
help='Resume training at this iter. If this is -1, the iteration will be'\
'determined from the file name.')
parser.add_argument('--random_seed', default=42, type=int,
help='Random seed used across all workers')
parser.add_argument('--num_workers', default=4, type=int,
help='Number of workers used in dataloading')
parser.add_argument('--num_gpus', default=None, type=int,
help='Number of GPUs used in training')
port = 2 ** 15 + 2 ** 14 + hash(os.getuid()) % 2 ** 14
parser.add_argument("--dist_url", default="tcp://127.0.0.1:{}".format(port))
parser.add_argument('--cuda', default=True, type=str2bool,
help='Use CUDA to train model')
parser.add_argument('--lr', '--learning_rate', default=None, type=float,
help='Initial learning rate. Leave as None to read this from the config.')
parser.add_argument('--momentum', default=None, type=float,
help='Momentum for SGD. Leave as None to read this from the config.')
parser.add_argument('--decay', '--weight_decay', default=None, type=float,
help='Weight decay for SGD. Leave as None to read this from the config.')
parser.add_argument('--gamma', default=None, type=float,
help='For each lr step, what to multiply the lr by. Leave as None to read this from the config.')
parser.add_argument('--save_folder', default='weights/',
help='Directory for saving checkpoint models')
parser.add_argument('--log_folder', default='../../logs/',
help='Directory for saving Tensorboard logs')
parser.add_argument('--config', default=None,
help='The config object to use.')
parser.add_argument('--save_interval', default=10000, type=int,
help='The number of iterations between saving the model.')
parser.add_argument('--validation_size', default=5000, type=int,
help='The number of images to use for validation.')
parser.add_argument('--validation_epoch', default=2, type=int,
help='Output validation information every n iterations. If -1, do no validation.')
parser.add_argument('--keep_latest', dest='keep_latest', action='store_true',
help='Only keep the latest checkpoint instead of each one.')
parser.add_argument('--keep_latest_interval', default=100000, type=int,
help='When --keep_latest is on, don\'t delete the latest file at these intervals. This should be a multiple of save_interval or 0.')
parser.add_argument('--dataset', default=None, type=str,
help='If specified, override the dataset specified in the config with this one (example: coco2017_dataset).')
parser.add_argument('--yolact_transfer', dest='yolact_transfer', action='store_true',
help='Split pretrained FPN weights to two phase FPN (for models trained by YOLACT).')
parser.add_argument('--coco_transfer', dest='coco_transfer', action='store_true',
help='[Deprecated] Split pretrained FPN weights to two phase FPN (for models trained by YOLACT).')
parser.add_argument('--drop_weights', default=None, type=str,
help='Drop specified weights (split by comma) from existing model.')
parser.add_argument('--interrupt_no_save', dest='interrupt_no_save', action='store_true',
help='Just exit when keyboard interrupt occurs for testing.')
parser.add_argument('--no_warmup_rescale', dest='warmup_rescale', action='store_false',
help='Do not rescale warmup coefficients on multiple GPU training.')
parser.set_defaults(keep_latest=False)
args = parser.parse_args()
if args.config is not None:
set_cfg(args.config)
if args.dataset is not None:
set_dataset(args.dataset)
cfg.num_classes = len(cfg.dataset.class_names) + 1 # FIXME: this could be better handled
# Update training parameters from the config if necessary
def replace(name):
if getattr(args, name) == None: setattr(args, name, getattr(cfg, name))
replace('lr')
replace('decay')
replace('gamma')
replace('momentum')
lr = args.lr
loss_types = ['B', 'C', 'M', 'P', 'D', 'E', 'S', 'F', 'R', 'W']
if torch.cuda.is_available():
if args.cuda:
torch.set_default_tensor_type('torch.cuda.FloatTensor')
if not args.cuda:
print("WARNING: It looks like you have a CUDA device, but aren't " +
"using CUDA.\nRun with --cuda for optimal training speed.")
torch.set_default_tensor_type('torch.FloatTensor')
else:
torch.set_default_tensor_type('torch.FloatTensor')
def multi_gpu_rescale(args):
# auto rescale parameters when GPU count > 1 or batch size is not 8
scale_factor = args.num_gpus * args.batch_size // 8
args.lr *= scale_factor
global lr
lr = args.lr
if args.warmup_rescale:
cfg.lr_warmup_init = 0
cfg.lr_warmup_until = 1000
args.save_interval = args.save_interval // scale_factor
# cfg.lr_warmup_init *= scale_factor
cfg.max_iter = cfg.max_iter // scale_factor
cfg.lr_steps = tuple([lr_step // scale_factor for lr_step in cfg.lr_steps])
def train(rank, args):
if args.num_gpus > 1:
multi_gpu_rescale(args)
if rank == 0:
if not os.path.exists(args.save_folder):
os.mkdir(args.save_folder)
# fix the seed for reproducibility
seed = args.random_seed + rank
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
# set up logger
setup_logger(output=os.path.join(args.log_folder, cfg.name), distributed_rank=rank)
logger = logging.getLogger("yolact.train")
w = SummaryHelper(distributed_rank=rank, log_dir=os.path.join(args.log_folder, cfg.name))
w.add_text("argv", " ".join(sys.argv))
logger.info("Args: {}".format(" ".join(sys.argv)))
import git
with git.Repo(search_parent_directories=True) as repo:
w.add_text("git_hash", repo.head.object.hexsha)
logger.info("git hash: {}".format(repo.head.object.hexsha))
if args.num_gpus > 1:
try:
logger.info("Initializing torch.distributed backend...")
dist.init_process_group(
backend='nccl',
init_method=args.dist_url,
world_size=args.num_gpus,
rank=rank
)
except Exception as e:
logger.error("Process group URL: {}".format(args.dist_url))
raise e
misc.barrier()
if torch.cuda.device_count() > 1:
logger.info('Multiple GPUs detected! Turning off JIT.')
collate_fn = detection_collate
if cfg.dataset.name == 'YouTube VIS':
dataset = YoutubeVIS(image_path=cfg.dataset.train_images,
info_file=cfg.dataset.train_info,
configs=cfg.dataset,
transform=SSDAugmentationVideo(MEANS))
if cfg.dataset.joint == 'coco':
joint_dataset = COCODetection(image_path=cfg.joint_dataset.train_images,
info_file=cfg.joint_dataset.train_info,
transform=SSDAugmentation(MEANS))
joint_collate_fn = detection_collate
if args.validation_epoch > 0:
setup_eval()
val_dataset = YoutubeVIS(image_path=cfg.dataset.valid_images,
info_file=cfg.dataset.valid_info,
configs=cfg.dataset,
transform=BaseTransformVideo(MEANS))
collate_fn = collate_fn_youtube_vis
elif cfg.dataset.name == 'FlyingChairs':
dataset = FlyingChairs(image_path=cfg.dataset.trainval_images,
info_file=cfg.dataset.trainval_info)
collate_fn = collate_fn_flying_chairs
else:
dataset = COCODetection(image_path=cfg.dataset.train_images,
info_file=cfg.dataset.train_info,
transform=SSDAugmentation(MEANS))
if args.validation_epoch > 0:
setup_eval()
val_dataset = COCODetection(image_path=cfg.dataset.valid_images,
info_file=cfg.dataset.valid_info,
transform=BaseTransform(MEANS))
# Set cuda device early to avoid duplicate model in master GPU
if args.cuda:
torch.cuda.set_device(rank)
# Parallel wraps the underlying module, but when saving and loading we don't want that
yolact_net = Yolact()
net = yolact_net
net.train()
# I don't use the timer during training (I use a different timing method).
# Apparently there's a race condition with multiple GPUs.
# use timer for experiments
timer.disable_all()
# Both of these can set args.resume to None, so do them before the check
if args.resume == 'interrupt':
args.resume = SavePath.get_interrupt(args.save_folder)
elif args.resume == 'latest':
args.resume = SavePath.get_latest(args.save_folder, cfg.name)
if args.resume is not None:
logger.info('Resuming training, loading {}...'.format(args.resume))
yolact_net.load_weights(args.resume, args=args)
if args.start_iter == -1:
args.start_iter = SavePath.from_str(args.resume).iteration
else:
logger.info('Initializing weights...')
yolact_net.init_weights(backbone_path=args.save_folder + cfg.backbone.path)
if cfg.flow.train_flow:
criterion = OpticalFlowLoss()
else:
criterion = MultiBoxLoss(num_classes=cfg.num_classes,
pos_threshold=cfg.positive_iou_threshold,
neg_threshold=cfg.negative_iou_threshold,
negpos_ratio=3)
if args.cuda:
net.cuda(rank)
if misc.is_distributed_initialized():
net = nn.parallel.DistributedDataParallel(net, device_ids=[rank], output_device=rank, broadcast_buffers=False,
find_unused_parameters=True)
optimizer = optim.SGD(filter(lambda x: x.requires_grad, net.parameters()),
lr=args.lr, momentum=args.momentum,
weight_decay=args.decay)
# loss counters
iteration = max(args.start_iter, 0)
w.set_step(iteration)
last_time = time.time()
epoch_size = len(dataset) // args.batch_size // args.num_gpus
num_epochs = math.ceil(cfg.max_iter / epoch_size)
# Which learning rate adjustment step are we on? lr' = lr * gamma ^ step_index
step_index = 0
from yolact_edge.data.sampler_utils import InfiniteSampler, build_batch_data_sampler
infinite_sampler = InfiniteSampler(dataset, seed=args.random_seed, num_replicas=args.num_gpus,
rank=rank, shuffle=True)
train_sampler = build_batch_data_sampler(infinite_sampler, images_per_batch=args.batch_size)
data_loader = data.DataLoader(dataset,
num_workers=args.num_workers,
collate_fn=collate_fn,
multiprocessing_context="fork" if args.num_workers > 1 else None,
batch_sampler=train_sampler)
data_loader_iter = iter(data_loader)
if cfg.dataset.joint:
joint_infinite_sampler = InfiniteSampler(joint_dataset, seed=args.random_seed, num_replicas=args.num_gpus,
rank=rank, shuffle=True)
joint_train_sampler = build_batch_data_sampler(joint_infinite_sampler, images_per_batch=args.batch_size)
joint_data_loader = data.DataLoader(joint_dataset,
num_workers=args.num_workers,
collate_fn=joint_collate_fn,
multiprocessing_context="fork" if args.num_workers > 1 else None,
batch_sampler=joint_train_sampler)
joint_data_loader_iter = iter(joint_data_loader)
save_path = lambda epoch, iteration: SavePath(cfg.name, epoch, iteration).get_path(root=args.save_folder)
time_avg = MovingAverage()
data_time_avg = MovingAverage(10)
global loss_types # Forms the print order
loss_avgs = { k: MovingAverage(100) for k in loss_types }
def backward_and_log(prefix, net_outs, targets, masks, num_crowds, extra_loss=None):
optimizer.zero_grad()
out = net_outs["pred_outs"]
losses = criterion(out, targets, masks, num_crowds)
losses = {k: v.mean() for k, v in losses.items()} # Mean here because Dataparallel
if extra_loss is not None:
assert type(extra_loss) == dict
losses.update(extra_loss)
loss = sum([losses[k] for k in losses])
# Backprop
loss.backward() # Do this to free up vram even if loss is not finite
if torch.isfinite(loss).item():
optimizer.step()
# Add the loss to the moving average for bookkeeping
for k in losses:
loss_avgs[k].add(losses[k].item())
w.add_scalar('{prefix}/{key}'.format(prefix=prefix, key=k), losses[k].item())
return losses
logger.info('Begin training!')
# try-except so you can use ctrl+c to save early and stop training
try:
for epoch in range(num_epochs):
# Resume from start_iter
if (epoch+1)*epoch_size < iteration:
continue
while True:
data_start_time = time.perf_counter()
datum = next(data_loader_iter)
data_end_time = time.perf_counter()
data_time = data_end_time - data_start_time
if iteration != args.start_iter:
data_time_avg.add(data_time)
# Stop if we've reached an epoch if we're resuming from start_iter
if iteration == (epoch+1)*epoch_size:
break
# Stop at the configured number of iterations even if mid-epoch
if iteration == cfg.max_iter:
break
# Change a config setting if we've reached the specified iteration
changed = False
for change in cfg.delayed_settings:
if iteration >= change[0]:
changed = True
cfg.replace(change[1])
# Reset the loss averages because things might have changed
for avg in loss_avgs:
avg.reset()
# If a config setting was changed, remove it from the list so we don't keep checking
if changed:
cfg.delayed_settings = [x for x in cfg.delayed_settings if x[0] > iteration]
# Warm up by linearly interpolating the learning rate from some smaller value
if cfg.lr_warmup_until > 0 and iteration <= cfg.lr_warmup_until and cfg.lr_warmup_init < args.lr:
set_lr(optimizer, (args.lr - cfg.lr_warmup_init) * (iteration / cfg.lr_warmup_until) + cfg.lr_warmup_init)
elif cfg.lr_schedule == 'cosine':
set_lr(optimizer, args.lr * ((math.cos(math.pi * iteration / cfg.max_iter) + 1.) * .5))
# Adjust the learning rate at the given iterations, but also if we resume from past that iteration
while cfg.lr_schedule == 'step' and step_index < len(cfg.lr_steps) and iteration >= cfg.lr_steps[step_index]:
step_index += 1
set_lr(optimizer, args.lr * (args.gamma ** step_index))
global lr
w.add_scalar('meta/lr', lr)
if cfg.dataset.name == "FlyingChairs":
imgs_1, imgs_2, flows = prepare_flow_data(datum)
net_outs = net(None, extras=(imgs_1, imgs_2))
# Compute Loss
optimizer.zero_grad()
losses = criterion(net_outs, flows)
losses = { k: v.mean() for k,v in losses.items() } # Mean here because Dataparallel
loss = sum([losses[k] for k in losses])
# Backprop
loss.backward() # Do this to free up vram even if loss is not finite
if torch.isfinite(loss).item():
optimizer.step()
# Add the loss to the moving average for bookkeeping
for k in losses:
loss_avgs[k].add(losses[k].item())
w.add_scalar('loss/%s' % k, losses[k].item())
elif cfg.dataset.joint or not cfg.dataset.is_video:
if cfg.dataset.joint:
joint_datum = next(joint_data_loader_iter)
# Load training data
# Note, for training on multiple gpus this will use the custom replicate and gather I wrote up there
images, targets, masks, num_crowds = prepare_data(joint_datum)
else:
images, targets, masks, num_crowds = prepare_data(datum)
extras = {"backbone": "full", "interrupt": False,
"moving_statistics": {"aligned_feats": []}}
net_outs = net(images,extras=extras)
run_name = "joint" if cfg.dataset.joint else "compute"
losses = backward_and_log(run_name, net_outs, targets, masks, num_crowds)
# Forward Pass
if cfg.dataset.is_video:
# reference frames
references = []
moving_statistics = {"aligned_feats": [], "conf_hist": []}
for idx, frame in enumerate(datum[:0:-1]):
images, annots = frame
extras = {"backbone": "full", "interrupt": True, "keep_statistics": True,
"moving_statistics": moving_statistics}
with torch.no_grad():
net_outs = net(images, extras=extras)
moving_statistics["feats"] = net_outs["feats"]
moving_statistics["lateral"] = net_outs["lateral"]
keys_to_save = ("outs_phase_1", "outs_phase_2")
for key in set(net_outs.keys()) - set(keys_to_save):
del net_outs[key]
references.append(net_outs)
# key frame with annotation, but not compute full backbone
frame = datum[0]
images, annots = frame
frame = (images, annots,)
images, targets, masks, num_crowds = prepare_data(frame)
extras = {"backbone": "full", "interrupt": not cfg.flow.base_backward,
"moving_statistics": moving_statistics}
gt_net_outs = net(images, extras=extras)
if cfg.flow.base_backward:
losses = backward_and_log("compute", gt_net_outs, targets, masks, num_crowds)
keys_to_save = ("outs_phase_1", "outs_phase_2")
for key in set(gt_net_outs.keys()) - set(keys_to_save):
del gt_net_outs[key]
# now do the warp
if len(references) > 0:
reference_frame = references[0]
extras = {"backbone": "partial", "moving_statistics": moving_statistics}
net_outs = net(images, extras=extras)
extra_loss = yolact_net.extra_loss(net_outs, gt_net_outs)
losses = backward_and_log("warp", net_outs, targets, masks, num_crowds, extra_loss=extra_loss)
cur_time = time.time()
elapsed = cur_time - last_time
last_time = cur_time
w.add_scalar('meta/data_time', data_time)
w.add_scalar('meta/iter_time', elapsed)
# Exclude graph setup from the timing information
if iteration != args.start_iter:
time_avg.add(elapsed)
if iteration % 10 == 0:
eta_str = str(datetime.timedelta(seconds=(cfg.max_iter-iteration) * time_avg.get_avg())).split('.')[0]
if torch.cuda.is_available():
max_mem_mb = torch.cuda.max_memory_allocated() / 1024.0 / 1024.0
# torch.cuda.reset_max_memory_allocated()
else:
max_mem_mb = None
logger.info("""\
eta: {eta} epoch: {epoch} iter: {iter} \
{losses} {loss_total} \
time: {time} data_time: {data_time} lr: {lr} {memory}\
""".format(
eta=eta_str, epoch=epoch, iter=iteration,
losses=" ".join(
["{}: {:.3f}".format(k, loss_avgs[k].get_avg()) for k in losses]
),
loss_total="T: {:.3f}".format(sum([loss_avgs[k].get_avg() for k in losses])),
data_time="{:.3f}".format(data_time_avg.get_avg()),
time="{:.3f}".format(elapsed),
lr="{:.6f}".format(lr), memory="max_mem: {:.0f}M".format(max_mem_mb)
))
if rank == 0 and iteration % 100 == 0:
if cfg.flow.train_flow:
import flowiz as fz
from yolact_edge.layers.warp_utils import deform_op
tgt_size = (64, 64)
flow_size = flows.size()[2:]
vis_data = []
for pred_flow in net_outs:
vis_data.append(pred_flow)
deform_gt = deform_op(imgs_2, flows)
flows_pred = [F.interpolate(x, size=flow_size, mode='bilinear', align_corners=False) for x in net_outs]
deform_preds = [deform_op(imgs_2, x) for x in flows_pred]
vis_data.append(F.interpolate(flows, size=tgt_size, mode='area'))
vis_data = [F.interpolate(flow[:1], size=tgt_size) for flow in vis_data]
vis_data = [fz.convert_from_flow(flow[0].data.cpu().numpy().transpose(1, 2, 0))
.transpose(2, 0, 1).astype('float32') / 255
for flow in vis_data]
def convert_image(image):
image = F.interpolate(image, size=tgt_size, mode='area')
image = image[0]
image = image.data.cpu().numpy()
image = image[::-1]
image = image.transpose(1, 2, 0)
image = image * np.array(STD) + np.array(MEANS)
image = image.transpose(2, 0, 1)
image = image / 255
image = np.clip(image, -1, 1)
image = image[::-1]
return image
vis_data.append(convert_image(imgs_1))
vis_data.append(convert_image(imgs_2))
vis_data.append(convert_image(deform_gt))
vis_data.extend([convert_image(x) for x in deform_preds])
vis_data_stack = np.stack(vis_data, axis=0)
w.add_images("preds_flow", vis_data_stack)
elif cfg.flow.warp_mode == "flow":
import flowiz as fz
tgt_size = (64, 64)
vis_data = []
for pred_flow, _, _ in net_outs["preds_flow"]:
vis_data.append(pred_flow)
vis_data = [F.interpolate(flow[:1], size=tgt_size) for flow in vis_data]
vis_data = [fz.convert_from_flow(flow[0].data.cpu().numpy().transpose(1, 2, 0))
.transpose(2, 0, 1).astype('float32') / 255
for flow in vis_data]
input_image = F.interpolate(images, size=tgt_size, mode='area')
input_image = input_image[0]
input_image = input_image.data.cpu().numpy()
input_image = input_image.transpose(1, 2, 0)
input_image = input_image * np.array(STD[::-1]) + np.array(MEANS[::-1])
input_image = input_image.transpose(2, 0, 1)
input_image = input_image / 255
input_image = np.clip(input_image, -1, 1)
vis_data.append(input_image)
vis_data_stack = np.stack(vis_data, axis=0)
w.add_images("preds_flow", vis_data_stack)
iteration += 1
w.set_step(iteration)
if rank == 0 and iteration % args.save_interval == 0 and iteration != args.start_iter:
if args.keep_latest:
latest = SavePath.get_latest(args.save_folder, cfg.name)
logger.info('Saving state, iter: {}'.format(iteration))
yolact_net.save_weights(save_path(epoch, iteration))
if args.keep_latest and latest is not None:
if args.keep_latest_interval <= 0 or iteration % args.keep_latest_interval != args.save_interval:
logger.info('Deleting old save...')
os.remove(latest)
misc.barrier()
# This is done per epoch
if args.validation_epoch > 0:
if epoch % args.validation_epoch == 0 and epoch > 0:
if rank == 0:
compute_validation_map(yolact_net, val_dataset)
misc.barrier()
except KeyboardInterrupt:
misc.barrier()
if args.interrupt_no_save:
logger.info('No save on interrupt, just exiting...')
elif rank == 0:
print('Stopping early. Saving network...')
# Delete previous copy of the interrupted network so we don't spam the weights folder
SavePath.remove_interrupt(args.save_folder)
yolact_net.save_weights(save_path(epoch, repr(iteration) + '_interrupt'))
return
if rank == 0:
yolact_net.save_weights(save_path(epoch, iteration))
def set_lr(optimizer, new_lr):
global lr
lr = new_lr
for param_group in optimizer.param_groups:
param_group['lr'] = new_lr
def prepare_flow_data(datum):
imgs_1, imgs_2, flows = datum
if args.cuda:
imgs_1 = Variable(imgs_1.cuda(non_blocking=True), requires_grad=False)
imgs_2 = Variable(imgs_2.cuda(non_blocking=True), requires_grad=False)
flows = Variable(flows.cuda(non_blocking=True), requires_grad=False)
else:
imgs_1 = Variable(imgs_1, requires_grad=False)
imgs_2 = Variable(imgs_2, requires_grad=False)
flows = Variable(flows, requires_grad=False)
return imgs_1, imgs_2, flows
def prepare_data(datum):
images, (targets, masks, num_crowds) = datum
if args.cuda:
images = Variable(images.cuda(non_blocking=True), requires_grad=False)
targets = [Variable(ann.cuda(non_blocking=True), requires_grad=False) if ann is not None else ann for ann in targets]
masks = [Variable(mask.cuda(non_blocking=True), requires_grad=False) if mask is not None else mask for mask in masks]
else:
images = Variable(images, requires_grad=False)
targets = [Variable(ann, requires_grad=False) for ann in targets]
masks = [Variable(mask, requires_grad=False) for mask in masks]
return images, targets, masks, num_crowds
def compute_validation_loss(net, data_loader, criterion):
global loss_types
with torch.no_grad():
losses = {}
# Don't switch to eval mode because we want to get losses
iterations = 0
for datum in data_loader:
images, targets, masks, num_crowds = prepare_data(datum)
out = net(images)
_losses = criterion(out, targets, masks, num_crowds)
for k, v in _losses.items():
v = v.mean().item()
if k in losses:
losses[k] += v
else:
losses[k] = v
iterations += 1
if args.validation_size <= iterations * args.batch_size:
break
for k in losses:
losses[k] /= iterations
loss_labels = sum([[k, losses[k]] for k in loss_types if k in losses], [])
print(('Validation ||' + (' %s: %.3f |' * len(losses)) + ')') % tuple(loss_labels), flush=True)
def compute_validation_map(yolact_net, dataset):
with torch.no_grad():
yolact_net.eval()
logger = logging.getLogger("yolact.eval")
logger.info("Computing validation mAP (this may take a while)...")
eval_script.evaluate(yolact_net, dataset, train_mode=True, train_cfg=cfg)
yolact_net.train()
def setup_eval():
eval_script.parse_args(['--no_bar', '--fast_eval', '--max_images='+str(args.validation_size)])
if __name__ == '__main__':
if args.num_gpus is None:
args.num_gpus = torch.cuda.device_count()
if args.num_gpus > 1:
mp.spawn(train, nprocs=args.num_gpus, args=(args, ), daemon=False)
else:
train(0, args=args)