-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathzilut.c
317 lines (298 loc) · 9.14 KB
/
zilut.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <complex.h>
#include "./LIB/zheads.h"
#include "./LIB/zprotos.h"
#include "./LIB/zdefs.h"
int zilut( csptr csmat, iluptr lu, int lfil, double tol, FILE *fp )
{
/*----------------------------------------------------------------------------
* ILUT preconditioner
* incomplete LU factorization with dual truncation mechanism
* NOTE : no pivoting implemented as yet in GE for diagonal elements
*----------------------------------------------------------------------------
* Parameters
*----------------------------------------------------------------------------
* on entry:
* =========
* csmat = matrix stored in SpaFmt format -- see heads.h for details
* lu = pointer to a ILUSpar struct -- see heads.h for details
* lfil = integer. The fill-in parameter. Each column of L and
* each column of U will have a maximum of lfil elements.
* WARNING: THE MEANING OF LFIL HAS CHANGED WITH RESPECT TO
* EARLIER VERSIONS.
* lfil must be .ge. 0.
* tol = real*8. Sets the threshold for dropping small terms in the
* factorization. See below for details on dropping strategy.
* fp = file pointer for error log ( might be stdout )
*
* on return:
* ==========
* ierr = return value.
* ierr = 0 --> successful return.
* ierr = -1 --> Illegal value for lfil
* ierr = -2 --> zero diagonal or zero col encountered
* lu->n = dimension of the matrix
* ->L = L part -- stored in SpaFmt format
* ->D = Diagonals
* ->U = U part -- stored in SpaFmt format
*----------------------------------------------------------------------------
* Notes:
* ======
* All the diagonals of the input matrix must not be zero
*----------------------------------------------------------------------------
* Dual drop-off strategy works as follows.
*
* 1) Theresholding in L and U as set by tol. Any element whose size
* is less than some tolerance (relative to the norm of current
* row in u) is dropped.
*
* 2) Keeping only the largest lfil elements in the i-th column of L
* and the largest lfil elements in the i-th column of U.
*
* Flexibility: one can use tol=0 to get a strategy based on keeping the
* largest elements in each column of L and U. Taking tol .ne. 0 but lfil=n
* will give the usual threshold strategy (however, fill-in is then
* impredictible).
*
* w = complex working array
*
*--------------------------------------------------------------------------*/
int n = csmat->n;
int len, lenu, lenl;
int nzcount, *ja, *jbuf, *iw, i, j, k;
int col, jpos, jrow, upos;
double tnorm, *wn, shf, tolnorm;
complex double t, fact, lxu, *ma, *D, *w;
csptr L, U;
if( lfil < 0 ) {
fprintf( fp, "ilut: Illegal value for lfil.\n" );
return -1;
}
zsetupILU( lu, n );
L = lu->L;
U = lu->U;
D = lu->D;
iw = (int *)Malloc( n*sizeof(int), "ilut" );
jbuf = (int *)Malloc( n*sizeof(int), "ilut" );
wn = (double *)Malloc( n * sizeof(double), "ilut" );
w = (complex double *)Malloc( csmat->n*sizeof(complex double), "main" );
/* set indicator array jw to -1 */
for( i = 0; i < n; i++ ) iw[i] = -1;
/* beginning of main loop */
for( i = 0; i < n; i++ ) {
nzcount = csmat->nzcount[i];
ja = csmat->ja[i];
ma = csmat->ma[i];
/*---------- unpack L-part and U-part of column of A in arrays w */
tnorm = 0.0;
lenu = 0;
lenl = 0;
jbuf[i] = i;
w[i] = 0 + 0.0*I;
iw[i] = i;
for( j = 0; j < nzcount; j++ ) {
col = ja[j];
t = ma[j];
tnorm += cabs(t);
if( col < i ) {
iw[col] = lenl;
jbuf[lenl] = col;
w[lenl] = t;
lenl++;
} else if( col == i ) {
w[i] = t;
} else {
lenu++;
jpos = i + lenu;
iw[col] = jpos;
jbuf[jpos] = col;
w[jpos] = t;
}
}
j = -1;
len = 0;
if( tnorm == 0.0 ) {
fprintf( fp, "ilut: zero row encountered.\n" );
return -2;
}
/* |rho + I *(del + eta) | > average |off-diagonal entry| */
/*--------------------
del^2 + 2 del * eta - theta^2 > 0 when del > eta and signs OK */
shf = (tnorm - 2.0*cabs(w[i]))/(double)nzcount;
/* shf = tnorm/(double)nzcount; */
shf = cimag(w[i])<=0 ? -shf : shf;
w[i] += shf*I;
tnorm /= (double) nzcount;
tolnorm = tol * tnorm;
/*---------- eliminate previous rows */
while( ++j < lenl ) {
/*----------------------------------------------------------------------------
* in order to do the elimination in the correct order we must select the
* smallest column index among jbuf[k], k = j+1, ..., lenl
*--------------------------------------------------------------------------*/
jrow = jbuf[j];
jpos = j;
/*---------- determine smallest column index */
for( k = j + 1; k < lenl; k++ ) {
if( jbuf[k] < jrow ) {
jrow = jbuf[k];
jpos = k;
}
}
if( jpos != j ) {
/*---------- swaps */
col = jbuf[j];
jbuf[j] = jbuf[jpos];
jbuf[jpos] = col;
iw[jrow] = j;
iw[col] = jpos;
t = w[j];
w[j] = w[jpos];
w[jpos] = t;
}
/*---------- get the multiplier */
fact = w[j] * D[jrow];
w[j] = fact;
/* zero out element in row by resetting iw(n+jrow) to -1 */
iw[jrow] = -1;
/*---------- combine current row and row jrow */
nzcount = U->nzcount[jrow];
ja = U->ja[jrow];
ma = U->ma[jrow];
for( k = 0; k < nzcount; k++ ) {
col = ja[k];
jpos = iw[col];
lxu = -fact * ma[k];
/*---------- if fill-in element is small then disregard */
if( cabs( lxu ) < tolnorm && jpos == -1 ) continue;
if( col < i ) {
/*---------- dealing with lower part */
if( jpos == -1 ) {
/*---------- this is a fill-in element */
jbuf[lenl] = col;
iw[col] = lenl;
w[lenl] = lxu;
lenl++;
} else {
w[jpos] += lxu;
}
} else {
/*---------- dealing with upper part */
if( jpos == -1 && cabs(lxu) > tolnorm) {
/*---------- this is a fill-in element */
lenu++;
upos = i + lenu;
jbuf[upos] = col;
w[upos] = lxu;
iw[col] = upos;
} else {
w[jpos] += lxu;
}
}
}
}
/*---------- restore iw */
iw[i] = -1;
for( j = 0; j < lenu; j++ ) {
iw[jbuf[i+j+1]] = -1;
}
/*---------- case when diagonal is zero */
if( cabs(w[i]) == 0.0) {
fprintf( fp, "zero diagonal encountered.\n" );
for( j = i; j < n; j++ ) {
L->ja[j] = NULL;
L->ma[j] = NULL;
U->ja[j] = NULL;
U->ma[j] = NULL;
}
return -2;
}
D[i] = 1.0 / w[i];
/*-------------------- update/store row of L-matrix */
//-------------------- len = min( lenl, lfil );
if(lenl < lfil) len = lenl;
else len = lfil;
/*--------------------*/
for( j = 0; j < lenl; j++ ) {
wn[j] = cabs( w[j] );
iw[j] = j;
}
qsplit( wn, iw, &lenl, &len );
L->nzcount[i] = len;
if( len > 0 ) {
ja = L->ja[i] = (int *)Malloc( len*sizeof(int), "ilut" );
ma = L->ma[i] = (complex double *)Malloc( len*sizeof(complex double), "ilut" );
}
for( j = 0; j < len; j++ ) {
jpos = iw[j];
ja[j] = jbuf[jpos];
ma[j] = w[jpos];
}
for( j = 0; j < lenl; j++ ) iw[j] = -1;
/*-------------------- update/store U-matrix */
/*---------- len = min(lfil, lenu) */
len = (lenu < lfil) ? lenu : lfil;
for( j = 0; j < lenu; j++ ) {
wn[j] = cabs( w[i+j+1] );
iw[j] = i+j+1;
}
qsplit( wn, iw, &lenu, &len );
U->nzcount[i] = len;
if( len > 0 ) {
ja = U->ja[i] = (int *)Malloc( len*sizeof(int), "ilut" );
ma = U->ma[i] = (complex double *)Malloc( len*sizeof(complex double), "ilut" );
}
for( j = 0; j < len; j++ ) {
jpos = iw[j];
ja[j] = jbuf[jpos];
ma[j] = w[jpos];
}
for( j = 0; j < lenu; j++ ) {
iw[j] = -1;
}
}
free( w );
free( iw );
free( jbuf );
free( wn );
return 0;
}
int zlutsolC( complex double *y, complex double *x, iluptr lu )
{
/*----------------------------------------------------------------------
* performs a forward followed by a backward solve
* for LU matrix as produced by ilut
* y = right-hand-side
* x = solution on return
* lu = LU matrix as produced by ilut.
*--------------------------------------------------------------------*/
int n = lu->n, i, j, nzcount, *ja;
complex double *D, *ma;
csptr L, U;
L = lu->L;
U = lu->U;
D = lu->D;
/* Block L solve */
for( i = 0; i < n; i++ ) {
x[i] = y[i];
nzcount = L->nzcount[i];
ja = L->ja[i];
ma = L->ma[i];
for( j = 0; j < nzcount; j++ ) {
x[i] -= x[ja[j]] * ma[j];
}
}
/* Block -- U solve */
for( i = n-1; i >= 0; i-- ) {
nzcount = U->nzcount[i];
ja = U->ja[i];
ma = U->ma[i];
for( j = 0; j < nzcount; j++ ) {
x[i] -= x[ja[j]] * ma[j];
}
x[i] *= D[i];
}
return 0;
}