-
Notifications
You must be signed in to change notification settings - Fork 42
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
out of place Jacobian decomposition mutates #108
Comments
Confirmed to not be due to scalar indexing: using Flux, SparseDiffTools, BenchmarkTools, CuArrays, ForwardDiff, LinearAlgebra, Random
CuArrays.allowscalar(false)
N = 10
T = Float32
A = rand(T, N,N)
cuA = A |> gpu
function f!(out, A)
out .= A .+ A .* A .+ 1f0
end
krn(x) = x + x*x + 1f0
function f!(out, A::CuMatrix{Float32})
out .= krn.(A)
end
function f(A)
return A .+ A .* A .+ 1f0
end
function f(A::CuMatrix{Float32})
return krn.(A)
end
J = rand(T, N^2, N^2)
@info "test cpu (inplace)"
cache = SparseDiffTools.ForwardColorJacCache(f!,A, dx = similar(A))
SparseDiffTools.forwarddiff_color_jacobian!(J, f!, A, cache)
(N<5) && @info "test ∇f cpu inplace: $(J)"
(N>5) && @btime SparseDiffTools.forwarddiff_color_jacobian!($J, $f!, $A, $cache)
@info "test cpu (out of place)"
cacheoos = SparseDiffTools.ForwardColorJacCache(f,A, dx = similar(A))
J = SparseDiffTools.forwarddiff_color_jacobian(f, A, cacheoos)
(N<5) && @info "test ∇f cpu oop: $(J)"
(N>5) && @btime SparseDiffTools.forwarddiff_color_jacobian($f, $A, $cacheoos)
@info "test gpu (inplace)"
cuJ = J |> gpu
cucache = SparseDiffTools.ForwardColorJacCache(f!,cuA, dx = similar(cuA))
SparseDiffTools.forwarddiff_color_jacobian!(cuJ, f!, cuA, cucache)
(N<5) && @info "test ∇f gpu inplace: $(cuJ)"
(N>5) && @btime SparseDiffTools.forwarddiff_color_jacobian!($cuJ, $f!, $cuA, $cucache)
@info "test gpu (outofplace)"
cucacheoop = SparseDiffTools.ForwardColorJacCache(f,cuA, dx = similar(cuA))
cuJ = SparseDiffTools.forwarddiff_color_jacobian(f, cuA, cucacheoop)
(N<5) && @info "test ∇f gpu oop: $(cuJ)"
(N>5) && @btime SparseDiffTools.forwarddiff_color_jacobian($f, $cuA, $cucacheoop) The problem is likely the fact that https://github.com/JuliaDiff/SparseDiffTools.jl/blob/v1.8.0/src/differentiation/compute_jacobian_ad.jl#L123-L126 produces too many kernels. It's somewhat tied up with #106 and the upstream issue https://github.com/JuliaGPU/CuArrays.jl/issues/571 |
#115 makes this much faster. I'll leave this open because it's not perfect (it now mutates), but the speed boost will essentially make this issue go away for most people. |
Performance results are highly variable when using cached out of place methods. I've gotten segfaults, although I cannot reliably reproduce that portion of the issue. Using CuArrays seems to amplify the issue.
Output:
The text was updated successfully, but these errors were encountered: