You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
We cluster beliefs according to suitable features and use previously computed values of beliefs in the same cluster as b to predict the value of b. This allows us to learn which parts of the belief space is worth exploring. Currently, we use the initial upper bound and the entropy of b as the features and discretize the belief space into a finite number of bins according to these two features. The average value of beliefs in a bin is used as the prediction for the value of any new belief falling into the bin. If a bin is empty, the initial upper bound of the new belief is used as its predicted value.
-- SARSOP Paper
C++ Implementation
The text was updated successfully, but these errors were encountered: