diff --git a/docs/src/backends.md b/docs/src/backends.md index 6cc5d878ce..9c8e88d8ed 100644 --- a/docs/src/backends.md +++ b/docs/src/backends.md @@ -50,22 +50,6 @@ For those who haven't had the pleasure of hacking on 15 different plotting APIs: However, you will probably have a hard time choosing the right backend for your task at hand. This document is meant to be a guide and introduction to make that choice. -# Persistent backend selection - -Plots uses the [Preferences](https://github.com/JuliaPackaging/Preferences.jl) mechanism to make the default backend choice persistent across julia restart. - -```julia -$ JULIA_PKG_PRECOMPILE_AUTO=0 julia -e 'import Plots; Plots.set_default_backend!(:pythonplot)' -$ julia # restart, show persistent mode -julia> using Plots -[ Info: Precompiling Plots [91a5bcdd-55d7-5caf-9e0b-520d859cae80] -[ Info: PythonPlot # precompiles for this backend -julia> plot(1:2) |> display # uses `PythonPlot` by default -``` - -You can clear preferences with `Plots.set_default_backend!()`. -Alternatively, one can use the environment variable `PLOTS_DEFAULT_BACKEND` to select the default backend (but this will need to trigger manual precompilation using `Base.compilecache(Plots)`). - # At a glance My favorites: `GR` for speed, `Plotly(JS)` for interactivity, `UnicodePlots` for REPL/SSH and `PythonPlot` otherwise.