Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Sparse Jacobian/Hessian not GPU-compatible #226

Open
4 tasks
tmigot opened this issue May 7, 2024 · 0 comments
Open
4 tasks

Sparse Jacobian/Hessian not GPU-compatible #226

tmigot opened this issue May 7, 2024 · 0 comments
Labels
bug Something isn't working

Comments

@tmigot
Copy link
Member

tmigot commented May 7, 2024

See the following tests:

  • multiple_precision_nls_array(T -> nls_from_T(T; jacobian_backend = ADNLPModels.ForwardDiffADJacobian, hessian_backend = ADNLPModels.ForwardDiffADHessian, jacobian_residual_backend = ADNLPModels.ForwardDiffADJacobian, hessian_residual_backend = ADNLPModels.ForwardDiffADHessian), CuArray, exclude = [jprod, jprod_residual, hprod_residual], linear_api = true)
  • multiple_precision_nlp_array(T -> nlp_from_T(T; jacobian_backend = ADNLPModels.ForwardDiffADJacobian, hessian_backend = ADNLPModels.ForwardDiffADHessian), CuArray, exclude = [jth_hprod, hprod, jprod], linear_api = true)
  • multiple_precision_nls_array(T -> nls_from_T(T; jacobian_backend = ADNLPModels.ForwardDiffADJacobian, hessian_backend = ADNLPModels.ForwardDiffADHessian, jacobian_residual_backend = ADNLPModels.ForwardDiffADJacobian, hessian_residual_backend = ADNLPModels.ForwardDiffADHessian), CuArray, exclude = [jprod, jprod_residual, hprod_residual], linear_api = true)
  • multiple_precision_nlp_array(T -> nlp_from_T(T; jacobian_backend = ADNLPModels.ForwardDiffADJacobian, hessian_backend = ADNLPModels.ForwardDiffADHessian), CuArray, exclude = [jth_hprod, hprod, jprod], linear_api = true)

    A MWE:
using CUDA, ADNLPModels, NLPModels, Symbolics

hs6_autodiff(::Type{T}; kwargs...) where {T <: Number} = hs6_autodiff(Vector{T}; kwargs...)
function hs6_autodiff(::Type{S} = Vector{Float64}; kwargs...) where {S}
  x0 = S([-12 // 10; 1])
  f(x) = (1 - x[1])^2
  c(x) = [10 * (x[2] - x[1]^2)]
  lcon = fill!(S(undef, 1), 0)
  ucon = fill!(S(undef, 1), 0)

  return ADNLPModel(f, x0, c, lcon, ucon, name = "hs6_autodiff"; kwargs...)
end
S = CuArray{Float64}
function c!(cx, x)
    cx .= [10 * (x[2] - x[1]^2)]
    return cx
end
x0 = S([-12 // 10; 1])
output = similar(x0, 1)
# nlp = hs6_autodiff(CuArray{Float64})
# ADNLPModels.SparseADJacobian(2, x -> (1 - x[1])^2, 1, c!, x0 = x0)
# J = ADNLPModels.compute_jacobian_sparsity(c!, output, x0)
J = Symbolics.jacobian_sparsity(c!, cx, x0)
@tmigot tmigot added the bug Something isn't working label May 7, 2024
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
bug Something isn't working
Projects
None yet
Development

No branches or pull requests

1 participant