forked from aoliao12138/ReRF
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrerf_render.py
383 lines (301 loc) · 13.7 KB
/
rerf_render.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
import argparse
import json
import os
from bitarray import bitarray
from codec import recover_misc,recover_misc_deform,\
decode_jpeg_huffman,decode_entropy_motion_npy,unproject_pca_mmap
import torch
from tqdm import tqdm, trange
import cv2
import mmcv
import imageio
from PIL import Image
import numpy as np
import math
from lib import utils, dvgo, dvgo_video
from run import seed_everything,load_everything_frame
import torch.nn.functional as F
def rodrigues_rotation_matrix(axis, theta):
axis = np.asarray(axis)
theta = np.asarray(theta)
axis = axis / math.sqrt(np.dot(axis, axis))
a = math.cos(theta / 2.0)
b, c, d = -axis * math.sin(theta / 2.0)
aa, bb, cc, dd = a * a, b * b, c * c, d * d
bc, ad, ac, ab, bd, cd = b * c, a * d, a * c, a * b, b * d, c * d
return np.array([[aa + bb - cc - dd, 2 * (bc + ad), 2 * (bd - ac)],
[2 * (bc - ad), aa + cc - bb - dd, 2 * (cd + ab)],
[2 * (bd + ac), 2 * (cd - ab), aa + dd - bb - cc]])
def list_type(string):
my_list=string.split(',')
return [int(x) for x in my_list]
@torch.no_grad()
def render_viewpoints_frames(model, cfg,render_poses, HW, Ks, frame_ids,ndc, render_kwargs,
gt_imgs=None, savedir=None, render_factor=0,
eval_ssim=False, eval_lpips_alex=False, eval_lpips_vgg=False, model_callback=None):
'''Render images for the given viewpoints; run evaluation if gt given.
'''
assert len(render_poses) == len(HW) and len(HW) == len(Ks)
if render_factor != 0:
HW = np.copy(HW)
Ks = np.copy(Ks)
HW //= render_factor
Ks[:, :2, :3] //= render_factor
rgbs = []
depths = []
psnrs = []
ssims = []
lpips_alex = []
lpips_vgg = []
if model_callback is None:
model_callback = lambda x, y, z: (x, y)
for i, c2w in enumerate(tqdm(render_poses)):
model, render_kwargs = model_callback(model, render_kwargs, frame_ids[i])
H, W = HW[i]
K = Ks[i]
rays_o, rays_d, viewdirs = dvgo.get_rays_of_a_view(
H, W, K, c2w, ndc, inverse_y=render_kwargs['inverse_y'],
flip_x=cfg.data.flip_x, flip_y=cfg.data.flip_y)
keys = ['rgb_marched', 'depth', 'rgb_marched_raw']
rays_o = rays_o.flatten(0, -2).cuda()
rays_d = rays_d.flatten(0, -2).cuda()
viewdirs = viewdirs.flatten(0, -2).cuda()
render_result_chunks = [
{k: v for k, v in model(ro, rd, vd, **render_kwargs).items() if k in keys}
for ro, rd, vd in zip(rays_o.split(8192*64, 0), rays_d.split(8192*64, 0), viewdirs.split(8192*64, 0))
]
render_result = {
k: torch.cat([ret[k] for ret in render_result_chunks]).reshape(H, W, -1)
for k in render_result_chunks[0].keys()
}
rgb = render_result['rgb_marched'].cpu().numpy()
depth = render_result['depth'].cpu().numpy()
rgbs.append(rgb)
depths.append(depth)
if savedir is not None:
print(f'Writing images to {savedir}')
rgb8 = utils.to8b(rgb)
filename = os.path.join(savedir, '{:03d}.jpg'.format(i))
imageio.imwrite(filename, rgb8)
depth8 = utils.to8b(1 - depth / np.max(depth))
filename = os.path.join(savedir, '{:03d}_depth.jpg'.format(i))
imageio.imwrite(filename, depth8)
if gt_imgs is not None and render_factor == 0:
p = -10. * np.log10(np.mean(np.square(rgb - gt_imgs[i])))
psnrs.append(p)
if eval_ssim:
ssims.append(utils.rgb_ssim(rgb, gt_imgs[i], max_val=1))
if eval_lpips_alex:
lpips_alex.append(utils.rgb_lpips(rgb, gt_imgs[i], net_name='alex', device=c2w.device))
if eval_lpips_vgg:
lpips_vgg.append(utils.rgb_lpips(rgb, gt_imgs[i], net_name='vgg', device=c2w.device))
if len(psnrs):
print('Testing psnr', np.mean(psnrs), '(avg)')
if eval_ssim: print('Testing ssim', np.mean(ssims), '(avg)')
if eval_lpips_vgg: print('Testing lpips (vgg)', np.mean(lpips_vgg), '(avg)')
if eval_lpips_alex: print('Testing lpips (alex)', np.mean(lpips_alex), '(avg)')
rgbs = np.array(rgbs)
depths = np.array(depths)
return rgbs, depths
def config_parser():
'''Define command line arguments
'''
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--config', required=True,
help='config file path')
parser.add_argument("--seed", type=int, default=777,
help='Random seed')
parser.add_argument("--compression_path", type=str, default='', help='path to the folder stored compressed files')
parser.add_argument("--pca", action='store_true', help='Whether to use pca to compress')
parser.add_argument('--pca_chs', type=list_type, help='Determine the channels to be used for each component of PCA',
default='7,13')
parser.add_argument("--render_start_frame", type=int, default=0, help='start frame')
parser.add_argument("--render_360", type=int, default=-1, help='total num of frames to render')
parser.add_argument("--group_size", type=int, default=-1,
help='key frame cover how many frames')
parser.add_argument("--frame_num", type=int, default=20000,
help='frame_num')
parser.add_argument('--fp16', action='store_true')
return parser
parser = config_parser()
args = parser.parse_args()
cfg = mmcv.Config.fromfile(args.config)
n_channel=cfg.fine_model_and_render.rgbnet_dim+1
voxel_size=cfg.voxel_size
# init enviroment
if torch.cuda.is_available():
torch.set_default_tensor_type('torch.cuda.FloatTensor')
device = torch.device('cuda')
else:
device = torch.device('cpu')
seed_everything(args)
file_path=args.compression_path
os.makedirs(os.path.join(cfg.basedir, cfg.expname), exist_ok=True)
frame_id = args.render_start_frame
data_dict = load_everything_frame(args=args, cfg=cfg, frame_id=frame_id, only_current=True)
model = dvgo_video.DirectVoxGO_Video()
model.current_frame_id = frame_id
if os.path.exists( os.path.join(args.compression_path, f'rgb_net.tar')):
last_ckpt_path = os.path.join(args.compression_path, f'rgb_net.tar')
else:
last_ckpt_path = os.path.join(cfg.basedir, cfg.expname, f'rgb_net.tar')
ckpt = torch.load(last_ckpt_path)
model.load_rgb_net_mmap(cfg,ckpt)
jsonfile = os.path.join(file_path, f'model_kwargs.json')
with open(jsonfile) as f:
model_kwargs = json.load(f)
model_kwargs['rgbnet'] = model.rgbnet
dvgo_model=dvgo.DirectVoxGO(**model_kwargs)
pca=args.pca
pca_chs=args.pca_chs
group_size=args.group_size if args.group_size !=-1 else args.frame_num
def mmap_decode():
frame_count = 0
frame_id = args.render_start_frame
while(True):
key_frame = (frame_id % group_size == 0)
jsonfile=os.path.join(file_path,f'header_{frame_id}.json')
with open(jsonfile) as f:
headers = json.load(f)
header = headers["headers"][0]
mask_size = header['mask_size']
if mask_size % 8 != 0:
mask_size_8 = (mask_size // 8 + 1) * 8
else:
mask_size_8 = mask_size
with open(os.path.join(file_path, f'mask_{frame_id}.rerf'), 'rb') as masked_file:
mask_bits = bitarray()
mask_bits.fromfile(masked_file)
mask=torch.from_numpy(np.unpackbits(mask_bits).reshape(mask_size_8)[:mask_size].astype(np.bool)).cuda()
quality=header["quality"]
if not key_frame and pca:
rec_feature = []
rec_feature.append(decode_jpeg_huffman(
os.path.join(file_path, f'feature_{frame_id}_{quality}.rerf'), headers["headers"][0], device=device))
rec_feature.append(decode_jpeg_huffman(
os.path.join(file_path, f'feature_{frame_id}_{quality-1}.rerf'), headers["headers"][1], device=device))
residual_rec_dct = unproject_pca_mmap(rec_feature, file_path, frame_id, device,voxel_size)
else:
residual_rec_dct = decode_jpeg_huffman(
os.path.join(file_path, f'feature_{frame_id}_{quality}.rerf'), header, device=device)
if key_frame or frame_count==0 or (not os.path.exists(os.path.join(file_path, f'deform_mask_{frame_id}.rerf'))) or \
(not os.path.exists(os.path.join(file_path, f'deform_{frame_id}.npy'))):
former_rec=torch.zeros(( mask.size(0), n_channel, voxel_size**3),device=device) #big_data_0
former_rec[:, 0, :] = former_rec[:, 0, :] - 4.1
former_rec = recover_misc(residual_rec_dct, former_rec, header, mask,n_channel=n_channel,device=device)
else:
with open(os.path.join(file_path, f'deform_mask_{frame_id}.rerf'), 'rb') as masked_file:
mask_bits = bitarray()
mask_bits.fromfile(masked_file)
deform_mask = np.unpackbits(mask_bits).reshape(mask_size_8)[:mask_size].astype(np.bool)
deform = np.load(os.path.join(file_path, f'deform_{frame_id}.npy'))
deform = decode_entropy_motion_npy(deform, deform_mask, device)
if not key_frame and pca:
header["size"][1]+=headers["headers"][1]["size"][1]
header["origin_size"][0]+=headers["headers"][1]["origin_size"][0]
former_rec = recover_misc_deform(residual_rec_dct, former_rec, header, mask, deform,model_kwargs,
n_channel=n_channel, device=device)
yield former_rec
frame_count += 1
frame_id+=1
mmap_iter=mmap_decode()
model_receive=next(mmap_iter)
dvgo_model.density=torch.nn.Parameter(model_receive[:,:1])
dvgo_model.k0.k0=torch.nn.Parameter(model_receive[:,1:])
dvgo_model.k0.eval()
stepsize = cfg.fine_model_and_render.stepsize
render_viewpoints_kwargs = {
'model': dvgo_model,
'ndc': cfg.data.ndc,
'render_kwargs': {
'near': data_dict['near'],
'far': data_dict['far'],
'bg': 1 if cfg.data.white_bkgd else 0,
'stepsize': stepsize,
'inverse_y': cfg.data.inverse_y,
'flip_x': cfg.data.flip_x,
'flip_y': cfg.data.flip_y,
'render_depth': True,
'frame_ids': frame_id
},
}
if args.render_360 > 0:
render_poses = data_dict['poses'][data_dict['i_train']]
render_poses = torch.tensor(render_poses).cpu()
bbox_path = os.path.join(cfg.data['datadir'], 'bbox.json')
with open(bbox_path, 'r') as f:
bbox_json = json.load(f)
xyz_min_fine = torch.tensor(bbox_json['xyz_min'])
xyz_max_fine = torch.tensor(bbox_json['xyz_max'])
bbox = torch.stack([xyz_min_fine, xyz_max_fine]).cpu()
center = torch.mean(bbox.float(), dim=0)
up = -torch.mean(render_poses[:, 0:3, 1], dim=0)
up = up / torch.norm(up)
radius = torch.norm(render_poses[0, 0:3, 3] - center) * 2
center = center + up * radius * 0.002
v = torch.tensor([0, 0, -1], dtype=torch.float32).cpu()
v = v - up.dot(v) * up
v = v / torch.norm(v)
#
s_pos = center - v * radius - up * radius * 0
center = center.numpy()
up = up.numpy()
radius = radius.item()
s_pos = s_pos.numpy()
lookat = center - s_pos
lookat = lookat / np.linalg.norm(lookat)
xaxis = np.cross(lookat, up)
xaxis = xaxis / np.linalg.norm(xaxis)
sTs = []
sKs = []
HWs = []
frame_ids=[]
HW=data_dict['HW'][data_dict['i_train']][0]
sK=data_dict['Ks'][data_dict['i_train']][0]
for i in range(0, args.render_360, 1):
angle = 3.1415926 * 2 * i / 360.0
pos = s_pos - center
pos = rodrigues_rotation_matrix(up, -angle).dot(pos)
pos = pos + center
lookat = center - pos
lookat = lookat / np.linalg.norm(lookat)
xaxis = np.cross(lookat, up)
xaxis = xaxis / np.linalg.norm(xaxis)
yaxis = -np.cross(xaxis, lookat)
yaxis = yaxis / np.linalg.norm(yaxis)
nR = np.array([xaxis, yaxis, lookat, pos]).T
nR = np.concatenate([nR, np.array([[0, 0, 0, 1]])])
sTs.append(nR)
sKs.append(sK)
HWs.append(HW)
frame_ids.append(i%cfg.frame_num)
sTs = np.stack(sTs)
sKs = np.stack(sKs)
def model_callback(model, render_kwargs, frame_id):
if frame_id != args.render_start_frame:
model_receive = next(mmap_iter)
model.density = torch.nn.Parameter(model_receive[:, :1])
model.k0.k0 = torch.nn.Parameter(model_receive[:, 1:])
density = F.max_pool3d(model.density, kernel_size=3, padding=1, stride=1)
alpha = 1 - torch.exp(
-F.softplus(density + model_kwargs['act_shift']) * model_kwargs['voxel_size_ratio'])
mask = (alpha >= model.mask_cache_thres).squeeze(0).squeeze(0)
xyz_min = torch.Tensor(model_kwargs['xyz_min'])
xyz_max = torch.Tensor(model_kwargs['xyz_max'])
model.mask_cache.mask= mask
xyz_len = xyz_max - xyz_min
model.mask_cache.xyz2ijk_scale= (torch.Tensor(list(mask.shape)) - 1) / xyz_len
model.mask_cache.xyz2ijk_shift= -xyz_min * model.mask_cache.xyz2ijk_scale
return model, render_kwargs
render_viewpoints_kwargs['model_callback'] = model_callback
testsavedir = os.path.join(cfg.basedir, cfg.expname, f'render_360_rerf_{args.render_360}')
os.makedirs(testsavedir, exist_ok=True)
with torch.cuda.amp.autocast(enabled=args.fp16):
rgbs, depths = render_viewpoints_frames(
cfg=cfg,
render_poses=torch.tensor(sTs).float(),
HW=HWs,
Ks=torch.tensor(sKs).float(),frame_ids=frame_ids,
gt_imgs=None,
savedir=testsavedir,
**render_viewpoints_kwargs)