-
Notifications
You must be signed in to change notification settings - Fork 428
/
Copy pathminisom.py
1082 lines (903 loc) · 42.7 KB
/
minisom.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
from numpy import (array, unravel_index, nditer, linalg, random, subtract, max,
power, exp, zeros, ones, arange, outer, meshgrid, dot,
logical_and, mean, cov, argsort, linspace,
einsum, prod, nan, sqrt, hstack, diff, argmin, multiply,
nanmean, nansum, tile, array_equal, isclose)
from numpy.linalg import norm
from collections import defaultdict, Counter
from warnings import warn
from sys import stdout
from time import time
from datetime import timedelta
import pickle
import os
# for unit tests
from numpy.testing import assert_almost_equal, assert_array_almost_equal
from numpy.testing import assert_array_equal
import unittest
"""
Minimalistic implementation of the Self Organizing Maps (SOM).
"""
def _build_iteration_indexes(data_len, num_iterations,
verbose=False, random_generator=None,
use_epochs=False):
"""Returns an iterable with the indexes of the samples
to pick at each iteration of the training.
If random_generator is not None, it must be an instance
of numpy.random.RandomState and it will be used
to randomize the order of the samples."""
if use_epochs:
iterations_per_epoch = arange(data_len)
if random_generator:
random_generator.shuffle(iterations_per_epoch)
iterations = tile(iterations_per_epoch, num_iterations)
else:
iterations = arange(num_iterations) % data_len
if random_generator:
random_generator.shuffle(iterations)
if verbose:
return _wrap_index__in_verbose(iterations)
else:
return iterations
def _wrap_index__in_verbose(iterations):
"""Yields the values in iterations printing the status on the stdout."""
m = len(iterations)
digits = len(str(m))
progress = '\r [ {s:{d}} / {m} ] {s:3.0f}% - ? it/s'
progress = progress.format(m=m, d=digits, s=0)
stdout.write(progress)
beginning = time()
stdout.write(progress)
for i, it in enumerate(iterations):
yield it
sec_left = ((m-i+1) * (time() - beginning)) / (i+1)
time_left = str(timedelta(seconds=sec_left))[:7]
progress = '\r [ {i:{d}} / {m} ]'.format(i=i+1, d=digits, m=m)
progress += ' {p:3.0f}%'.format(p=100*(i+1)/m)
progress += ' - {time_left} left '.format(time_left=time_left)
stdout.write(progress)
def fast_norm(x):
"""Returns norm-2 of a 1-D numpy array.
"""
return sqrt(dot(x, x.T))
class MiniSom(object):
Y_HEX_CONV_FACTOR = (3.0 / 2.0) / sqrt(3)
def __init__(self, x, y, input_len, sigma=1, learning_rate=0.5,
decay_function='asymptotic_decay',
neighborhood_function='gaussian', topology='rectangular',
activation_distance='euclidean', random_seed=None,
sigma_decay_function='asymptotic_decay'):
"""Initializes a Self Organizing Maps.
A rule of thumb to set the size of the grid for a dimensionality
reduction task is that it should contain 5*sqrt(N) neurons
where N is the number of samples in the dataset to analyze.
E.g. if your dataset has 150 samples, 5*sqrt(150) = 61.23
hence a map 8-by-8 should perform well.
Parameters
----------
x : int
x dimension of the SOM.
y : int
y dimension of the SOM.
input_len : int
Number of the elements of the vectors in input.
sigma : float, optional (default=1)
Spread of the neighborhood function.
Needs to be adequate to the dimensions of the map
and the neighborhood function. In some cases it
helps to set sigma as sqrt(x^2 +y^2).
learning_rate : float, optional (default=0.5)
Initial learning rate.
Adequate values are dependent on the data used for training.
By default, at the iteration t, we have:
learning_rate(t) = learning_rate / (1 + t * (100 / max_iter))
decay_function : string or callable, optional
(default='inverse_decay_to_zero')
Function that reduces learning_rate at each iteration.
Possible values: 'inverse_decay_to_zero', 'linear_decay_to_zero',
'asymptotic_decay' or callable
If a custom decay function using a callable
it will need to to take in input
three parameters in the following order:
1. learning rate
2. current iteration
3. maximum number of iterations allowed
Note that if a lambda function is used to define the decay
MiniSom will not be pickable anymore.
neighborhood_function : string, optional (default='gaussian')
Function that weights the neighborhood of a position in the map.
Possible values: 'gaussian', 'mexican_hat', 'bubble', 'triangle'
topology : string, optional (default='rectangular')
Topology of the map.
Possible values: 'rectangular', 'hexagonal'
activation_distance : string, callable optional (default='euclidean')
Distance used to activate the map.
Possible values: 'euclidean', 'cosine', 'manhattan', 'chebyshev'
Example of callable that can be passed:
def euclidean(x, w):
return linalg.norm(subtract(x, w), axis=-1)
random_seed : int, optional (default=None)
Random seed to use.
sigma_decay_function : string, optional
(default='inverse_decay_to_one')
Function that reduces sigma at each iteration.
Possible values: 'inverse_decay_to_one', 'linear_decay_to_one',
'asymptotic_decay'
The default function is:
sigma(t) = sigma / (1 + (t * (sigma - 1) / max_iter))
"""
if sigma > sqrt(x*x + y*y):
warn('Warning: sigma might be too high ' +
'for the dimension of the map.')
self._random_generator = random.RandomState(random_seed)
self._learning_rate = learning_rate
self._sigma = sigma
self._input_len = input_len
# random initialization
self._weights = self._random_generator.rand(x, y, input_len)*2-1
self._weights /= linalg.norm(self._weights, axis=-1, keepdims=True)
self._activation_map = zeros((x, y))
self._neigx = arange(x)
self._neigy = arange(y) # used to evaluate the neighborhood function
if topology not in ['hexagonal', 'rectangular']:
msg = '%s not supported only hexagonal and rectangular available'
raise ValueError(msg % topology)
self.topology = topology
self._xx, self._yy = meshgrid(self._neigx, self._neigy)
self._xx = self._xx.astype(float)
self._yy = self._yy.astype(float)
if topology == 'hexagonal':
self._xx[::-2] -= 0.5
self._yy *= self.Y_HEX_CONV_FACTOR
if neighborhood_function in ['triangle']:
warn('triangle neighborhood function does not ' +
'take in account hexagonal topology')
lr_decay_functions = {
'inverse_decay_to_zero': self._inverse_decay_to_zero,
'linear_decay_to_zero': self._linear_decay_to_zero,
'asymptotic_decay': self._asymptotic_decay}
if isinstance(decay_function, str):
if decay_function not in lr_decay_functions:
msg = '%s not supported. Functions available: %s'
raise ValueError(msg % (decay_function,
', '.join(lr_decay_functions.keys())))
self._learning_rate_decay_function = \
lr_decay_functions[decay_function]
elif callable(decay_function):
self._learning_rate_decay_function = decay_function
sig_decay_functions = {
'inverse_decay_to_one': self._inverse_decay_to_one,
'linear_decay_to_one': self._linear_decay_to_one,
'asymptotic_decay': self._asymptotic_decay}
if sigma_decay_function not in sig_decay_functions:
msg = '%s not supported. Functions available: %s'
raise ValueError(msg % (sigma_decay_function,
', '.join(sig_decay_functions.keys())))
self._sigma_decay_function = sig_decay_functions[sigma_decay_function]
neig_functions = {'gaussian': self._gaussian,
'mexican_hat': self._mexican_hat,
'bubble': self._bubble,
'triangle': self._triangle}
if neighborhood_function not in neig_functions:
msg = '%s not supported. Functions available: %s'
raise ValueError(msg % (neighborhood_function,
', '.join(neig_functions.keys())))
if neighborhood_function in ['triangle',
'bubble'] and (divmod(sigma, 1)[1] != 0
or sigma < 1):
warn('sigma should be an integer >=1 when triangle or bubble' +
'are used as neighborhood function')
self.neighborhood = neig_functions[neighborhood_function]
distance_functions = {'euclidean': self._euclidean_distance,
'cosine': self._cosine_distance,
'manhattan': self._manhattan_distance,
'chebyshev': self._chebyshev_distance}
if isinstance(activation_distance, str):
if activation_distance not in distance_functions:
msg = '%s not supported. Distances available: %s'
raise ValueError(msg % (activation_distance,
', '.join(distance_functions.keys())))
self._activation_distance = distance_functions[activation_distance]
elif callable(activation_distance):
self._activation_distance = activation_distance
def get_weights(self):
"""Returns the weights of the neural network."""
return self._weights
def get_euclidean_coordinates(self):
"""Returns the position of the neurons on an euclidean
plane that reflects the chosen topology in two meshgrids xx and yy.
Neuron with map coordinates (1, 4) has coordinate (xx[1, 4], yy[1, 4])
in the euclidean plane.
Only useful if the topology chosen is not rectangular.
"""
return self._xx.T, self._yy.T
def convert_map_to_euclidean(self, xy):
"""Converts map coordinates into euclidean coordinates
that reflects the chosen topology.
Only useful if the topology chosen is not rectangular.
"""
return self._xx.T[xy], self._yy.T[xy]
def _activate(self, x):
"""Updates matrix activation_map, in this matrix
the element i,j is the response of the neuron i,j to x."""
self._activation_map = self._activation_distance(x, self._weights)
def activate(self, x):
"""Returns the activation map to x."""
self._activate(x)
return self._activation_map
def _inverse_decay_to_zero(self, learning_rate, t, max_iter):
"""Decay function of the learning process that asymptotically
approaches zero.
"""
C = max_iter / 100.0
return learning_rate * C / (C + t)
def _linear_decay_to_zero(self, learning_rate, t, max_iter):
"""Decay function of the learning process that linearly
decreases to zero.
"""
return learning_rate * (1 - t / max_iter)
def _inverse_decay_to_one(self, sigma, t, max_iter):
"""Decay function of sigma that asymptotically approaches one.
"""
C = (sigma - 1) / max_iter
return sigma / (1 + (t * C))
def _linear_decay_to_one(self, sigma, t, max_iter):
"""Decay function of sigma that linearly decreases
to one.
"""
return sigma + (t * (1 - sigma) / max_iter)
def _asymptotic_decay(self, dynamic_parameter, t, max_iter):
"""Decay function of the learning process
and sigma that decays these values asymptotically to 1/3
of their original values.
"""
return dynamic_parameter / (1 + t / (max_iter / 2))
def _gaussian(self, c, sigma):
"""Returns a Gaussian centered in c."""
d = 2*sigma*sigma
ax = exp(-power(self._xx-self._xx.T[c], 2)/d)
ay = exp(-power(self._yy-self._yy.T[c], 2)/d)
return (ax * ay).T # the external product gives a matrix
def _mexican_hat(self, c, sigma):
"""Mexican hat centered in c."""
p = power(self._xx-self._xx.T[c], 2) + power(self._yy-self._yy.T[c], 2)
d = 2*sigma*sigma
return (exp(-p/d)*(1-2/d*p)).T
def _bubble(self, c, sigma):
"""Constant function centered in c with spread sigma.
sigma should be an odd value.
"""
ax = logical_and(self._neigx > c[0]-sigma,
self._neigx < c[0]+sigma)
ay = logical_and(self._neigy > c[1]-sigma,
self._neigy < c[1]+sigma)
return outer(ax, ay)*1.
def _triangle(self, c, sigma):
"""Triangular function centered in c with spread sigma."""
triangle_x = (-abs(c[0] - self._neigx)) + sigma
triangle_y = (-abs(c[1] - self._neigy)) + sigma
triangle_x[triangle_x < 0] = 0.
triangle_y[triangle_y < 0] = 0.
return outer(triangle_x, triangle_y)
def _cosine_distance(self, x, w):
num = (w * x).sum(axis=2)
denum = multiply(linalg.norm(w, axis=2), linalg.norm(x))
return 1 - num / (denum+1e-8)
def _euclidean_distance(self, x, w):
return linalg.norm(subtract(x, w), axis=-1)
def _manhattan_distance(self, x, w):
return linalg.norm(subtract(x, w), ord=1, axis=-1)
def _chebyshev_distance(self, x, w):
return max(subtract(x, w), axis=-1)
def _check_iteration_number(self, num_iteration):
if num_iteration < 1:
raise ValueError('num_iteration must be > 1')
def _check_input_len(self, data):
"""Checks that the data in input is of the correct shape."""
data_len = len(data[0])
if self._input_len != data_len:
msg = 'Received %d features, expected %d.' % (data_len,
self._input_len)
raise ValueError(msg)
def winner(self, x):
"""Computes the coordinates of the winning neuron for the sample x."""
self._activate(x)
return unravel_index(self._activation_map.argmin(),
self._activation_map.shape)
def update(self, x, win, t, max_iteration):
"""Updates the weights of the neurons.
Parameters
----------
x : np.array
Current pattern to learn.
win : tuple
Position of the winning neuron for x (array or tuple).
t : int
rate of decay for sigma and learning rate
max_iteration : int
If use_epochs is True:
Number of epochs the SOM will be trained for
If use_epochs is False:
Maximum number of iterations (one iteration per sample).
"""
eta = self._learning_rate_decay_function(self._learning_rate,
t, max_iteration)
sig = self._sigma_decay_function(self._sigma, t, max_iteration)
# improves the performances
g = self.neighborhood(win, sig)*eta
# w_new = eta * neighborhood_function * (x-w)
self._weights += einsum('ij, ijk->ijk', g, x-self._weights)
def quantization(self, data):
"""Assigns a code book (weights vector of the winning neuron)
to each sample in data."""
self._check_input_len(data)
winners_coords = argmin(self._distance_from_weights(data), axis=1)
return self._weights[unravel_index(winners_coords,
self._weights.shape[:2])]
def random_weights_init(self, data):
"""Initializes the weights of the SOM
picking random samples from data."""
self._check_input_len(data)
it = nditer(self._activation_map, flags=['multi_index'])
while not it.finished:
rand_i = self._random_generator.randint(len(data))
self._weights[it.multi_index] = data[rand_i]
it.iternext()
def pca_weights_init(self, data):
"""Initializes the weights to span the first two principal components.
This initialization doesn't depend on random processes and
makes the training process converge faster.
It is strongly reccomended to normalize the data before initializing
the weights and use the same normalization for the training data.
"""
if self._input_len == 1:
msg = 'The data needs at least 2 features for pca initialization'
raise ValueError(msg)
self._check_input_len(data)
if len(self._neigx) == 1 or len(self._neigy) == 1:
msg = 'PCA initialization inappropriate:' + \
'One of the dimensions of the map is 1.'
warn(msg)
pc_length, eigvecs = linalg.eig(cov(data))
pc = (eigvecs.T @ data)
pc_order = argsort(-pc_length)
for i, c1 in enumerate(linspace(-1, 1, len(self._neigx))):
for j, c2 in enumerate(linspace(-1, 1, len(self._neigy))):
self._weights[i, j] = c1*pc[pc_order[0]] + \
c2*pc[pc_order[1]]
def _check_fixed_points(self, fixed_points, data):
for k in fixed_points.keys():
if not isinstance(k, int):
raise TypeError(f'fixed points indexes must ' +
'be integers.')
if k >= len(data) or k < 0:
raise ValueError(f'an index of a fixed point ' +
'cannot be grater than len(data)' +
' or less than 0.')
if fixed_points[k][0] >= self._weights.shape[0] or \
fixed_points[k][1] >= self._weights.shape[1]:
raise ValueError(f'coordinates for fixed point' +
' are out of boundaries.')
if fixed_points[k][0] < 0 or \
fixed_points[k][1] < 0:
raise ValueError(f'coordinates cannot be negative.')
def train(self, data, num_iteration,
random_order=False, verbose=False,
use_epochs=False, fixed_points=None):
"""Trains the SOM.
Parameters
----------
data : np.array or list
Data matrix.
num_iteration : int
If use_epochs is False, the weights will be
updated num_iteration times. Otherwise they will be updated
len(data)*num_iteration times.
random_order : bool (default=False)
If True, samples are picked in random order.
Otherwise the samples are picked sequentially.
verbose : bool (default=False)
If True the status of the training will be
printed each time the weights are updated.
use_epochs : bool (default=False)
If True the SOM will be trained for num_iteration epochs.
In one epoch the weights are updated len(data) times and
the learning rate is constat throughout a single epoch.
fixed_points : dict (default=None)
A dictionary k : (c_1, c_2), that will force the
training algorithm to use the neuron with coordinates
(c_1, c_2) as winner for the sample k instead of
the best matching unit.
"""
self._check_iteration_number(num_iteration)
self._check_input_len(data)
random_generator = None
if random_order:
random_generator = self._random_generator
iterations = _build_iteration_indexes(len(data), num_iteration,
verbose, random_generator,
use_epochs)
if use_epochs:
def get_decay_rate(iteration_index, data_len):
return int(iteration_index / data_len)
else:
def get_decay_rate(iteration_index, data_len):
return int(iteration_index)
if fixed_points:
self._check_fixed_points(fixed_points, data)
else:
fixed_points = {}
for t, iteration in enumerate(iterations):
decay_rate = get_decay_rate(t, len(data))
self.update(data[iteration],
fixed_points.get(iteration,
self.winner(data[iteration])),
decay_rate, num_iteration)
if verbose:
print('\n quantization error:', self.quantization_error(data))
def train_random(self, data, num_iteration, verbose=False):
"""Trains the SOM picking samples at random from data.
Parameters
----------
data : np.array or list
Data matrix.
num_iteration : int
Maximum number of iterations (one iteration per sample).
verbose : bool (default=False)
If True the status of the training
will be printed at each time the weights are updated.
"""
self.train(data, num_iteration, random_order=True, verbose=verbose)
def train_batch(self, data, num_iteration, verbose=False):
"""Trains the SOM using all the vectors in data sequentially.
Parameters
----------
data : np.array or list
Data matrix.
num_iteration : int
Maximum number of iterations (one iteration per sample).
verbose : bool (default=False)
If True the status of the training
will be printed at each time the weights are updated.
"""
self.train(data, num_iteration, random_order=False, verbose=verbose)
def distance_map(self, scaling='sum'):
"""Returns the distance map of the weights.
If scaling is 'sum' (default), each cell is the normalised sum of
the distances between a neuron and its neighbours. Note that this
method uses the euclidean distance.
Parameters
----------
scaling : string (default='sum')
If set to 'mean', each cell will be the normalized
by the average of the distances of the neighbours.
If set to 'sum', the normalization is done
by the sum of the distances.
"""
if scaling not in ['sum', 'mean']:
raise ValueError(f'scaling should be either "sum" or "mean" ('
f'"{scaling}" not valid)')
um = nan * zeros((self._weights.shape[0],
self._weights.shape[1],
8)) # 2 spots more for hexagonal topology
ii = [[0, -1, -1, -1, 0, 1, 1, 1]]*2
jj = [[-1, -1, 0, 1, 1, 1, 0, -1]]*2
if self.topology == 'hexagonal':
ii = [[1, 1, 1, 0, -1, 0], [0, 1, 0, -1, -1, -1]]
jj = [[1, 0, -1, -1, 0, 1], [1, 0, -1, -1, 0, 1]]
for x in range(self._weights.shape[0]):
for y in range(self._weights.shape[1]):
w_2 = self._weights[x, y]
e = y % 2 == 0 # only used on hexagonal topology
for k, (i, j) in enumerate(zip(ii[e], jj[e])):
if (x+i >= 0 and x+i < self._weights.shape[0] and
y+j >= 0 and y+j < self._weights.shape[1]):
w_1 = self._weights[x+i, y+j]
um[x, y, k] = fast_norm(w_2-w_1)
if scaling == 'mean':
um = nanmean(um, axis=2)
if scaling == 'sum':
um = nansum(um, axis=2)
return um/um.max()
def activation_response(self, data):
"""
Returns a matrix where the element i,j is the number of times
that the neuron i,j have been winner.
"""
self._check_input_len(data)
a = zeros((self._weights.shape[0], self._weights.shape[1]))
for x in data:
a[self.winner(x)] += 1
return a
def _distance_from_weights(self, data):
"""Returns a matrix d where d[i,j] is the euclidean distance between
data[i] and the j-th weight.
"""
input_data = array(data)
weights_flat = self._weights.reshape(-1, self._weights.shape[2])
input_data_sq = power(input_data, 2).sum(axis=1, keepdims=True)
weights_flat_sq = power(weights_flat, 2).sum(axis=1, keepdims=True)
cross_term = dot(input_data, weights_flat.T)
return sqrt(-2 * cross_term + input_data_sq + weights_flat_sq.T)
def quantization_error(self, data):
"""Returns the quantization error computed as the average
distance between each input sample and its best matching unit."""
self._check_input_len(data)
return norm(data-self.quantization(data), axis=1).mean()
def divergence_measure(self, data):
"""Returns the divergence measure computed as
sum_i, sum_c (neighborhood(c, sigma) * || d_i - w_c ||^2
"""
divergence = 0
for d in data:
divergence += multiply(self.neighborhood(self.winner(d),
self._sigma),
norm(d - self.get_weights(), axis=2)).sum()
return divergence
def topographic_error(self, data):
"""Returns the topographic error computed by finding
the best-matching and second-best-matching neuron in the map
for each input and then evaluating the positions.
A sample for which these two nodes are not adjacent counts as
an error. The topographic error is given by the
the total number of errors divided by the total of samples.
If the topographic error is 0, no error occurred.
If 1, the topology was not preserved for any of the samples."""
self._check_input_len(data)
total_neurons = prod(self._activation_map.shape)
if total_neurons == 1:
warn('The topographic error is not defined for a 1-by-1 map.')
return nan
if self.topology == 'hexagonal':
return self._topographic_error_hexagonal(data)
else:
return self._topographic_error_rectangular(data)
def _topographic_error_hexagonal(self, data):
"""Return the topographic error for hexagonal grid"""
b2mu_inds = argsort(self._distance_from_weights(data), axis=1)[:, :2]
b2mu_coords = [[self._get_euclidean_coordinates_from_index(bmu[0]),
self._get_euclidean_coordinates_from_index(bmu[1])]
for bmu in b2mu_inds]
b2mu_coords = array(b2mu_coords)
b2mu_neighbors = [isclose(1, norm(bmu1 - bmu2))
for bmu1, bmu2 in b2mu_coords]
te = 1 - mean(b2mu_neighbors)
return te
def _topographic_error_rectangular(self, data):
"""Return the topographic error for rectangular grid"""
t = 1.42
# b2mu: best 2 matching units
b2mu_inds = argsort(self._distance_from_weights(data), axis=1)[:, :2]
b2my_xy = unravel_index(b2mu_inds, self._weights.shape[:2])
b2mu_x, b2mu_y = b2my_xy[0], b2my_xy[1]
dxdy = hstack([diff(b2mu_x), diff(b2mu_y)])
distance = norm(dxdy, axis=1)
return (distance > t).mean()
def _get_euclidean_coordinates_from_index(self, index):
"""Returns the Euclidean coordinated of a neuron using its
index as the input"""
if index < 0:
return (-1, -1)
y = self._weights.shape[1]
coords = self.convert_map_to_euclidean((int(index/y), index % y))
return coords
def win_map(self, data, return_indices=False):
"""Returns a dictionary wm where wm[(i,j)] is a list with:
- all the patterns that have been mapped to the position (i,j),
if return_indices=False (default)
- all indices of the elements that have been mapped to the
position (i,j) if return_indices=True"""
self._check_input_len(data)
winmap = defaultdict(list)
for i, x in enumerate(data):
winmap[self.winner(x)].append(i if return_indices else x)
return winmap
def labels_map(self, data, labels):
"""Returns a dictionary wm where wm[(i,j)] is a dictionary
that contains the number of samples from a given label
that have been mapped in position i,j.
Parameters
----------
data : np.array or list
Data matrix.
label : np.array or list
Labels for each sample in data.
"""
self._check_input_len(data)
if not len(data) == len(labels):
raise ValueError('data and labels must have the same length.')
winmap = defaultdict(list)
for x, l in zip(data, labels):
winmap[self.winner(x)].append(l)
for position in winmap:
winmap[position] = Counter(winmap[position])
return winmap
class TestMinisom(unittest.TestCase):
def setUp(self):
self.som = MiniSom(5, 5, 1)
for i in range(5):
for j in range(5):
# checking weights normalization
assert_almost_equal(1.0, linalg.norm(self.som._weights[i, j]))
self.som._weights = zeros((5, 5, 1)) # fake weights
self.som._weights[2, 3] = 5.0
self.som._weights[1, 1] = 2.0
self.hex_som = MiniSom(5, 5, 1, topology='hexagonal')
for i in range(5):
for j in range(5):
# checking weights normalization
assert_almost_equal(1.0, linalg.norm(
self.hex_som._weights[i, j]))
self.hex_som._weights = zeros((5, 5, 1)) # fake weights
def test_inverse_decay_to_zero_function(self):
C = 3 / 100
assert self.som._inverse_decay_to_zero(1, 2, 3) == 1 * C / (C + 2)
def test_linear_decay_to_zero_function(self):
assert self.som._linear_decay_to_zero(1, 2, 3) == 1 * (1 - 2 / 3)
def test_inverse_decay_to_one_function(self):
C = (1 - 1) / 3
assert self.som._inverse_decay_to_one(1, 2, 3) == 1 / (1 + (2 * C))
def test_linear_decay_to_one_function(self):
assert self.som._linear_decay_to_one(1, 2, 3) == 1 + (2 * (1 - 1) / 3)
def test_asymptotic_decay_function(self):
assert self.som._asymptotic_decay(1, 2, 3) == 1 / (1 + 2 / (3 / 2))
def test_fast_norm(self):
assert fast_norm(array([1, 3])) == sqrt(1+9)
def test_euclidean_distance(self):
x = zeros((1, 2))
w = ones((2, 2, 2))
d = self.som._euclidean_distance(x, w)
assert_array_almost_equal(d, [[1.41421356, 1.41421356],
[1.41421356, 1.41421356]])
def test_cosine_distance(self):
x = zeros((1, 2))
w = ones((2, 2, 2))
d = self.som._cosine_distance(x, w)
assert_array_almost_equal(d, [[1., 1.],
[1., 1.]])
def test_manhattan_distance(self):
x = zeros((1, 2))
w = ones((2, 2, 2))
d = self.som._manhattan_distance(x, w)
assert_array_almost_equal(d, [[2., 2.],
[2., 2.]])
def test_chebyshev_distance(self):
x = array([1, 3])
w = ones((2, 2, 2))
d = self.som._chebyshev_distance(x, w)
assert_array_almost_equal(d, [[2., 2.],
[2., 2.]])
def test_check_input_len(self):
with self.assertRaises(ValueError):
self.som.train_batch([[1, 2]], 1)
with self.assertRaises(ValueError):
self.som.random_weights_init(array([[1, 2]]))
with self.assertRaises(ValueError):
self.som._check_input_len(array([[1, 2]]))
self.som._check_input_len(array([[1]]))
self.som._check_input_len([[1]])
def test_unavailable_neigh_function(self):
with self.assertRaises(ValueError):
MiniSom(5, 5, 1, neighborhood_function='boooom')
def test_unavailable_distance_function(self):
with self.assertRaises(ValueError):
MiniSom(5, 5, 1, activation_distance='ridethewave')
def test_gaussian(self):
bell = self.som._gaussian((2, 2), 1)
assert bell.max() == 1.0
assert bell.argmax() == 12 # unravel(12) = (2,2)
def test_mexican_hat(self):
bell = self.som._mexican_hat((2, 2), 1)
assert bell.max() == 1.0
assert bell.argmax() == 12 # unravel(12) = (2,2)
def test_bubble(self):
bubble = self.som._bubble((2, 2), 1)
assert bubble[2, 2] == 1
assert sum(sum(bubble)) == 1
def test_triangle(self):
bubble = self.som._triangle((2, 2), 1)
assert bubble[2, 2] == 1
assert sum(sum(bubble)) == 1
def test_win_map(self):
winners = self.som.win_map([[5.0], [2.0]])
assert winners[(2, 3)][0] == [5.0]
assert winners[(1, 1)][0] == [2.0]
def test_win_map_indices(self):
winners = self.som.win_map([[5.0], [2.0]], return_indices=True)
assert winners[(2, 3)] == [0]
assert winners[(1, 1)] == [1]
def test_labels_map(self):
labels_map = self.som.labels_map([[5.0], [2.0]], ['a', 'b'])
assert labels_map[(2, 3)]['a'] == 1
assert labels_map[(1, 1)]['b'] == 1
with self.assertRaises(ValueError):
self.som.labels_map([[5.0]], ['a', 'b'])
def test_activation_reponse(self):
response = self.som.activation_response([[5.0], [2.0]])
assert response[2, 3] == 1
assert response[1, 1] == 1
def test_activate(self):
assert self.som.activate(5.0).argmin() == 13.0 # unravel(13) = (2,3)
def test_distance_from_weights(self):
data = arange(-5, 5).reshape(-1, 1)
weights = self.som._weights.reshape(-1, self.som._weights.shape[2])
distances = self.som._distance_from_weights(data)
for i in range(len(data)):
for j in range(len(weights)):
assert (distances[i][j] == norm(data[i] - weights[j]))
def test_quantization_error(self):
assert self.som.quantization_error([[5], [2]]) == 0.0
assert self.som.quantization_error([[4], [1]]) == 1.0
def test_topographic_error(self):
# 5 will have bmu_1 in (2,3) and bmu_2 in (2, 4)
# which are in the same neighborhood
self.som._weights[2, 4] = 6.0
# 15 will have bmu_1 in (4, 4) and bmu_2 in (0, 0)
# which are not in the same neighborhood
self.som._weights[4, 4] = 15.0
self.som._weights[0, 0] = 14.
assert self.som.topographic_error([[5]]) == 0.0
assert self.som.topographic_error([[15]]) == 1.0
def test_hexagonal_topographic_error(self):
# 15 will have bmu_1 in (4, 4) and bmu_2 in (0, 0)
# which are not in the same neighborhood
self.hex_som._weights[4, 4] = 15.0
self.hex_som._weights[0, 0] = 14.
# 10 bmu_1 and bmu_2 of 10 are in the same neighborhood
self.hex_som._weights[2, 2] = 10.0
self.hex_som._weights[2, 3] = 9.0
assert self.hex_som.topographic_error([[10]]) == 0.0
assert self.hex_som.topographic_error([[15]]) == 1.0
def test_quantization(self):
q = self.som.quantization(array([[4], [2]]))
assert q[0] == 5.0
assert q[1] == 2.0
def test_divergence_measure(self):
# test that doesn't use vectorization
test_data = array([[4], [2]])
r = 0
for d in test_data:
for i in self.som._neigx:
for j in self.som._neigy:
w = self.som.get_weights()[i, j]
h = self.som.neighborhood(self.som.winner(d),
self.som._sigma)[i, j]
r += h * norm(d - w)
assert_array_almost_equal(r, self.som.divergence_measure(test_data))
# handwritten test
som = MiniSom(2, 1, 2, random_seed=1)
som._weights = array([[[0., 1.]], [[1., 0.]]])
test_data = array([[1., 0.], [0., 1.]])
h1 = som.neighborhood(som.winner(test_data[0]), som._sigma)
h2 = som.neighborhood(som.winner(test_data[1]), som._sigma)
r = h1[0][0] * sqrt(2) + h1[1][0] * 0
r += h2[0][0] * 0 + h2[1][0] * sqrt(2)
assert_array_almost_equal(r, som.divergence_measure(test_data))
def test_random_seed(self):
som1 = MiniSom(5, 5, 2, sigma=1.0, learning_rate=0.5, random_seed=1)
som2 = MiniSom(5, 5, 2, sigma=1.0, learning_rate=0.5, random_seed=1)
# same initialization
assert_array_almost_equal(som1._weights, som2._weights)
data = random.rand(100, 2)
som1 = MiniSom(5, 5, 2, sigma=1.0, learning_rate=0.5, random_seed=1)
som1.train_random(data, 10)
som2 = MiniSom(5, 5, 2, sigma=1.0, learning_rate=0.5, random_seed=1)
som2.train_random(data, 10)
# same state after training
assert_array_almost_equal(som1._weights, som2._weights)
def test_train_batch(self):
som = MiniSom(5, 5, 2, sigma=1.0, learning_rate=0.5, random_seed=1)
data = array([[4, 2], [3, 1]])
q1 = som.quantization_error(data)
som.train(data, 10)
assert q1 > som.quantization_error(data)
data = array([[1, 5], [6, 7]])
q1 = som.quantization_error(data)
som.train_batch(data, 10, verbose=True)
assert q1 > som.quantization_error(data)
def test_train_random(self):
som = MiniSom(5, 5, 2, sigma=1.0, learning_rate=0.5, random_seed=1)
data = array([[4, 2], [3, 1]])
q1 = som.quantization_error(data)
som.train(data, 10, random_order=True)
assert q1 > som.quantization_error(data)
data = array([[1, 5], [6, 7]])
q1 = som.quantization_error(data)
som.train_random(data, 10, verbose=True)
assert q1 > som.quantization_error(data)
def test_train_use_epochs(self):
som = MiniSom(5, 5, 2, sigma=1.0, learning_rate=0.5, random_seed=1)
data = array([[4, 2], [3, 1]])
q1 = som.quantization_error(data)
som.train(data, 10, use_epochs=True)
assert q1 > som.quantization_error(data)
def test_train_fixed_points(self):
som = MiniSom(5, 5, 2, sigma=1.0, learning_rate=0.5, random_seed=1)
data = array([[4, 2], [3, 1]])
som.train(data, 10, fixed_points={0: (0, 0)})
with self.assertRaises(ValueError):
som.train(data, 10, fixed_points={0: (5, 0)})
with self.assertRaises(ValueError):
som.train(data, 10, fixed_points={2: (0, 0)})
with self.assertRaises(ValueError):
som.train(data, 10, fixed_points={0: (-1, 0)})
with self.assertRaises(ValueError):
som.train(data, 10, fixed_points={-1: (0, 0)})
with self.assertRaises(TypeError):
som.train(data, 10, fixed_points={'oops': (0, 0)})
def test_use_epochs_variables(self):
len_data = 100000
num_epochs = 100
random_gen = random.RandomState(1)
iterations = _build_iteration_indexes(len_data, num_epochs,
random_generator=random_gen,
use_epochs=True)