diff --git a/minisom.py b/minisom.py index 3117ec8..9579063 100644 --- a/minisom.py +++ b/minisom.py @@ -75,7 +75,7 @@ class MiniSom(object): Y_HEX_CONV_FACTOR = (3.0 / 2.0) / sqrt(3) def __init__(self, x, y, input_len, sigma=1, learning_rate=0.5, - learning_rate_decay_function='asymptotic_decay', + decay_function='asymptotic_decay', neighborhood_function='gaussian', topology='rectangular', activation_distance='euclidean', random_seed=None, sigma_decay_function='asymptotic_decay'): @@ -114,14 +114,23 @@ def __init__(self, x, y, input_len, sigma=1, learning_rate=0.5, By default, at the iteration t, we have: learning_rate(t) = learning_rate / (1 + t * (100 / max_iter)) - learning_rate_decay_function : string, optional + decay_function : string or function, optional (default='inverse_decay_to_zero') Function that reduces learning_rate at each iteration. Possible values: 'inverse_decay_to_zero', 'linear_decay_to_zero', - 'asymptotic_decay' + 'asymptotic_decay' or callable + + If a custom decay function is passed + it will need to to take in input + three parameters in the following order: + + 1. learning rate + 2. current iteration + 3. maximum number of iterations allowed - The default function is: - learning_rate(t) = learning_rate / (1 + t * (100 / max_iter)) + + Note that if a lambda function is used to define the decay + MiniSom will not be pickable anymore. neighborhood_function : string, optional (default='gaussian') Function that weights the neighborhood of a position in the map. @@ -188,13 +197,16 @@ def euclidean(x, w): 'linear_decay_to_zero': self._linear_decay_to_zero, 'asymptotic_decay': self._asymptotic_decay} - if learning_rate_decay_function not in lr_decay_functions: - msg = '%s not supported. Functions available: %s' - raise ValueError(msg % (learning_rate_decay_function, - ', '.join(lr_decay_functions.keys()))) + if isinstance(decay_function, str): + if decay_function not in lr_decay_functions: + msg = '%s not supported. Functions available: %s' + raise ValueError(msg % (decay_function, + ', '.join(lr_decay_functions.keys()))) - self._learning_rate_decay_function = \ - lr_decay_functions[learning_rate_decay_function] + self._learning_rate_decay_function = \ + lr_decay_functions[decay_function] + elif callable(decay_function): + self._learning_rate_decay_function = decay_function sig_decay_functions = { 'inverse_decay_to_one': self._inverse_decay_to_one, @@ -276,17 +288,6 @@ def activate(self, x): def _inverse_decay_to_zero(self, learning_rate, t, max_iter): """Decay function of the learning process that asymptotically approaches zero. - - Parameters - ---------- - learning_rate : float - Current learning rate. - - t : int - Current iteration. - - max_iter : int - Maximum number of iterations for the training. """ C = max_iter / 100.0 return learning_rate * C / (C + t) @@ -294,33 +295,11 @@ def _inverse_decay_to_zero(self, learning_rate, t, max_iter): def _linear_decay_to_zero(self, learning_rate, t, max_iter): """Decay function of the learning process that linearly decreases to zero. - - Parameters - ---------- - learning_rate : float - Current learning rate. - - t : int - Current iteration. - - max_iter : int - Maximum number of iterations for the training. """ return learning_rate * (1 - t / max_iter) def _inverse_decay_to_one(self, sigma, t, max_iter): """Decay function of sigma that asymptotically approaches one. - - Parameters - ---------- - sigma : float - Current sigma. - - t : int - Current iteration. - - max_iter : int - Maximum number of iterations for the training. """ C = (sigma - 1) / max_iter return sigma / (1 + (t * C)) @@ -328,35 +307,13 @@ def _inverse_decay_to_one(self, sigma, t, max_iter): def _linear_decay_to_one(self, sigma, t, max_iter): """Decay function of sigma that linearly decreases to one. - - Parameters - ---------- - sigma : float - Current sigma. - - t : int - Current iteration. - - max_iter : int - Maximum number of iterations for the training. """ return sigma + (t * (1 - sigma) / max_iter) def _asymptotic_decay(self, dynamic_parameter, t, max_iter): - """Legacy default decay function of the learning process + """Decay function of the learning process and sigma that decays these values asymptotically to 1/3 of their original values. - - Parameters - ---------- - dynamic_parameter : float - Current learning rate/sigma. - - t : int - Current iteration. - - max_iter : int - Maximum number of iterations for the training. """ return dynamic_parameter / (1 + t / (max_iter / 2)) @@ -1030,3 +987,10 @@ def euclidean(x, w): som2.train_random(data, 10) # same state after training assert_array_almost_equal(som1._weights, som2._weights) + + def test_decay_function_value(self): + with self.assertRaises(ValueError): + MiniSom(5, 5, 2, decay_function='strawberry') + MiniSom(5, 5, 2, decay_function='linear_decay_to_zero') + som1 = MiniSom(5, 5, 2, decay_function=lambda x, y, z: 1) + som1.train(random.rand(100, 2), 10)