-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_avvp.py
255 lines (221 loc) · 11.6 KB
/
main_avvp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
from __future__ import print_function
import argparse
import torch
import torch.nn as nn
import torch.optim as optim
from dataloader_avvp import *
from main_network import AVVPNet
from utils.eval_metrics import segment_level, event_level
import pandas as pd
def seed_everything(seed_value):
np.random.seed(seed_value)
torch.manual_seed(seed_value)
torch.cuda.manual_seed(seed_value)
torch.cuda.manual_seed_all(seed_value)
def train(args, model, train_loader, optimizer, criterion, epoch):
model.train()
for batch_idx, sample in enumerate(train_loader):
audio, video, video_st, target = sample['audio'].to('cuda'), sample['video_s'].to('cuda'), sample[
'video_st'].to('cuda'), sample['label'].type(torch.FloatTensor).to('cuda')
optimizer.zero_grad()
output, a_prob, v_prob, _ = model(audio, video, video_st)
output.clamp_(min=1e-7, max=1 - 1e-7)
a_prob.clamp_(min=1e-7, max=1 - 1e-7)
v_prob.clamp_(min=1e-7, max=1 - 1e-7)
# label smoothing
a = 1.0
v = 0.9
Pa = a * target + (1 - a) * 0.5
Pv = v * target + (1 - v) * 0.5
# individual guided learning
loss = criterion(a_prob, Pa) + criterion(v_prob, Pv) + criterion(output, target)
loss.backward()
optimizer.step()
if batch_idx % args.log_interval == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(audio), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.item()))
def eval(model, val_loader, set):
categories = ['Speech', 'Car', 'Cheering', 'Dog', 'Cat', 'Frying_(food)',
'Basketball_bounce', 'Fire_alarm', 'Chainsaw', 'Cello', 'Banjo',
'Singing', 'Chicken_rooster', 'Violin_fiddle', 'Vacuum_cleaner',
'Baby_laughter', 'Accordion', 'Lawn_mower', 'Motorcycle', 'Helicopter',
'Acoustic_guitar', 'Telephone_bell_ringing', 'Baby_cry_infant_cry', 'Blender',
'Clapping']
model.eval()
# load annotations
df = pd.read_csv(set, header=0, sep='\t')
data_dir = './data/'
df_a = pd.read_csv(data_dir + "AVVP_eval_audio.csv", header=0, sep='\t')
df_v = pd.read_csv(data_dir + "AVVP_eval_visual.csv", header=0, sep='\t')
id_to_idx = {id: index for index, id in enumerate(categories)}
F_seg_a = []
F_seg_v = []
F_seg = []
F_seg_av = []
F_event_a = []
F_event_v = []
F_event = []
F_event_av = []
with torch.no_grad():
for batch_idx, sample in enumerate(val_loader):
audio, video, video_st, target = sample['audio'].to('cuda'), sample['video_s'].to('cuda'), sample[
'video_st'].to('cuda'), sample['label'].to('cuda')
output, a_prob, v_prob, frame_prob = model(audio, video, video_st)
o = (output.cpu().detach().numpy() >= 0.5).astype(np.int_)
Pa = frame_prob[0, :, 0, :].cpu().detach().numpy()
Pv = frame_prob[0, :, 1, :].cpu().detach().numpy()
# filter out false positive events with predicted weak labels
Pa = (Pa >= 0.5).astype(np.int_) * np.repeat(o, repeats=10, axis=0)
Pv = (Pv >= 0.5).astype(np.int_) * np.repeat(o, repeats=10, axis=0)
# extract audio GT labels
GT_a = np.zeros((25, 10))
GT_v = np.zeros((25, 10))
df_vid_a = df_a.loc[df_a['filename'] == df.loc[batch_idx, :][0]]
filenames = df_vid_a["filename"]
events = df_vid_a["event_labels"]
onsets = df_vid_a["onset"]
offsets = df_vid_a["offset"]
num = len(filenames)
if num > 0:
for i in range(num):
x1 = int(onsets[df_vid_a.index[i]])
x2 = int(offsets[df_vid_a.index[i]])
event = events[df_vid_a.index[i]]
idx = id_to_idx[event]
GT_a[idx, x1:x2] = 1
# extract visual GT labels
df_vid_v = df_v.loc[df_v['filename'] == df.loc[batch_idx, :][0]]
filenames = df_vid_v["filename"]
events = df_vid_v["event_labels"]
onsets = df_vid_v["onset"]
offsets = df_vid_v["offset"]
num = len(filenames)
if num > 0:
for i in range(num):
x1 = int(onsets[df_vid_v.index[i]])
x2 = int(offsets[df_vid_v.index[i]])
event = events[df_vid_v.index[i]]
idx = id_to_idx[event]
GT_v[idx, x1:x2] = 1
GT_av = GT_a * GT_v
# obtain prediction matrices
SO_a = np.transpose(Pa)
SO_v = np.transpose(Pv)
SO_av = SO_a * SO_v
# segment-level F1 scores
f_a, f_v, f, f_av = segment_level(SO_a, SO_v, SO_av, GT_a, GT_v, GT_av)
F_seg_a.append(f_a)
F_seg_v.append(f_v)
F_seg.append(f)
F_seg_av.append(f_av)
# event-level F1 scores
f_a, f_v, f, f_av = event_level(SO_a, SO_v, SO_av, GT_a, GT_v, GT_av)
F_event_a.append(f_a)
F_event_v.append(f_v)
F_event.append(f)
F_event_av.append(f_av)
print('Audio Event Detection Segment-level F1: {:.1f}'.format(100 * np.mean(np.array(F_seg_a))))
print('Visual Event Detection Segment-level F1: {:.1f}'.format(100 * np.mean(np.array(F_seg_v))))
print('Audio-Visual Event Detection Segment-level F1: {:.1f}'.format(100 * np.mean(np.array(F_seg_av))))
avg_type = (100 * np.mean(np.array(F_seg_av)) + 100 * np.mean(np.array(F_seg_a)) + 100 * np.mean(
np.array(F_seg_v))) / 3.
avg_event = 100 * np.mean(np.array(F_seg))
print('Segment-levelType@Avg. F1: {:.1f}'.format(avg_type))
print('Segment-level Event@Avg. F1: {:.1f}'.format(avg_event))
print('Audio Event Detection Event-level F1: {:.1f}'.format(100 * np.mean(np.array(F_event_a))))
print('Visual Event Detection Event-level F1: {:.1f}'.format(100 * np.mean(np.array(F_event_v))))
print('Audio-Visual Event Detection Event-level F1: {:.1f}'.format(100 * np.mean(np.array(F_event_av))))
avg_type_event = (100 * np.mean(np.array(F_event_av)) + 100 * np.mean(np.array(F_event_a)) + 100 * np.mean(
np.array(F_event_v))) / 3.
avg_event_level = 100 * np.mean(np.array(F_event))
print('Event-level Type@Avg. F1: {:.1f}'.format(avg_type_event))
print('Event-level Event@Avg. F1: {:.1f}'.format(avg_event_level))
return avg_type
def main():
# Training settings
data_dir = 'data/'
parser = argparse.ArgumentParser(description='PyTorch Implementation of MM_Pyramid')
parser.add_argument(
"--audio_dir", type=str, default=data_dir + 'feats/vggish/', help="audio dir")
parser.add_argument(
"--video_dir", type=str, default=data_dir + 'feats/res152/',
help="video dir")
parser.add_argument(
"--st_dir", type=str, default=data_dir + 'feats/r2plus1d_18/',
help="video dir")
parser.add_argument(
"--label_train", type=str, default=data_dir + "AVVP_train.csv", help="weak train csv file")
parser.add_argument(
"--label_val", type=str, default=data_dir + "AVVP_val_pd.csv", help="weak val csv file")
parser.add_argument(
"--label_test", type=str, default=data_dir + "AVVP_test_pd.csv", help="weak test csv file")
parser.add_argument('--batch_size', type=int, default=16, metavar='N',
help='input batch size for training (default: 16)')
parser.add_argument('--head', type=int, default=8,
help='head number of multi-head attention')
parser.add_argument('--epochs', type=int, default=40, metavar='N',
help='number of epochs to train (default: 60)')
parser.add_argument('--lr', type=float, default=1e-4, metavar='LR',
help='learning rate (default: 1e-4)')
parser.add_argument('--stepsize', type=int, default=10,
help='step size of learning scheduler')
parser.add_argument('--gamma', type=float, default=0.1,
help='gamma of learning scheduler')
parser.add_argument(
"--model", type=str, default='MM_Pyramid', help="with model to use")
parser.add_argument(
"--mode", type=str, default='train', help="with mode to use")
parser.add_argument('--seed', type=int, default=1, metavar='S',
help='random seed (default: 1)')
parser.add_argument('--log-interval', type=int, default=50, metavar='N',
help='how many batches to wait before logging training status')
parser.add_argument(
"--model_save_dir", type=str, default='models/', help="model save dir")
parser.add_argument(
'--gpu', type=str, default='0', help='gpu device number')
parser.add_argument('--levels', type=int, default=4, help='levels of TCN')
parser.add_argument('--hid_dim', type=int, default=512, help='number of hidden units per layer')
parser.add_argument('--ffn_dim', type=int, default=512, help='dimension of feed forward layer')
args = parser.parse_args()
# os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
seed_everything(args.seed)
n_channels = [args.hid_dim] * args.levels
model = AVVPNet(args.head, args.hid_dim, args.ffn_dim, n_channels).to('cuda')
if args.mode == 'train':
train_dataset = LLP_dataset(label=args.label_train, audio_dir=args.audio_dir, video_dir=args.video_dir,
st_dir=args.st_dir, transform=transforms.Compose([
ToTensor()]))
val_dataset = LLP_dataset(label=args.label_val, audio_dir=args.audio_dir, video_dir=args.video_dir,
st_dir=args.st_dir, transform=transforms.Compose([
ToTensor()]))
train_loader = DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True, num_workers=12,
pin_memory=True)
val_loader = DataLoader(val_dataset, batch_size=1, shuffle=False, num_workers=1, pin_memory=True)
optimizer = optim.Adam(model.parameters(), lr=args.lr)
scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=args.stepsize, gamma=args.gamma)
criterion = nn.BCELoss()
best_F = 0
for epoch in range(1, args.epochs + 1):
train(args, model, train_loader, optimizer, criterion, epoch=epoch)
scheduler.step(epoch)
F = eval(model, val_loader, args.label_val)
if F >= best_F:
best_F = F
torch.save(model.state_dict(), args.model_save_dir + args.model + ".pt")
elif args.mode == 'val':
test_dataset = LLP_dataset(label=args.label_val, audio_dir=args.audio_dir, video_dir=args.video_dir,
st_dir=args.st_dir, transform=transforms.Compose([
ToTensor()]))
test_loader = DataLoader(test_dataset, batch_size=1, shuffle=False, num_workers=1, pin_memory=True)
model.load_state_dict(torch.load(args.model_save_dir + args.model + ".pt"))
eval(model, test_loader, args.label_val)
else:
test_dataset = LLP_dataset(label=args.label_test, audio_dir=args.audio_dir, video_dir=args.video_dir,
st_dir=args.st_dir, transform=transforms.Compose([
ToTensor()]))
test_loader = DataLoader(test_dataset, batch_size=1, shuffle=False, num_workers=1, pin_memory=True)
model.load_state_dict(torch.load(args.model_save_dir + args.model + ".pt"))
eval(model, test_loader, args.label_test)
if __name__ == '__main__':
main()