forked from PaddlePaddle/PaddleSpeech
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test.py
149 lines (133 loc) · 5.76 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
"""Evaluation for DeepSpeech2 model."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import argparse
import functools
import paddle.fluid as fluid
from data_utils.data import DataGenerator
from model_utils.model import DeepSpeech2Model
from model_utils.model_check import check_cuda, check_version
from utils.error_rate import char_errors, word_errors
from utils.utility import add_arguments, print_arguments
parser = argparse.ArgumentParser(description=__doc__)
add_arg = functools.partial(add_arguments, argparser=parser)
# yapf: disable
add_arg('batch_size', int, 128, "Minibatch size.")
add_arg('beam_size', int, 500, "Beam search width.")
add_arg('num_proc_bsearch', int, 8, "# of CPUs for beam search.")
add_arg('num_conv_layers', int, 2, "# of convolution layers.")
add_arg('num_rnn_layers', int, 3, "# of recurrent layers.")
add_arg('rnn_layer_size', int, 2048, "# of recurrent cells per layer.")
add_arg('alpha', float, 2.5, "Coef of LM for beam search.")
add_arg('beta', float, 0.3, "Coef of WC for beam search.")
add_arg('cutoff_prob', float, 1.0, "Cutoff probability for pruning.")
add_arg('cutoff_top_n', int, 40, "Cutoff number for pruning.")
add_arg('use_gru', bool, False, "Use GRUs instead of simple RNNs.")
add_arg('use_gpu', bool, True, "Use GPU or not.")
add_arg('share_rnn_weights',bool, True, "Share input-hidden weights across "
"bi-directional RNNs. Not for GRU.")
add_arg('test_manifest', str,
'data/librispeech/manifest.test-clean',
"Filepath of manifest to evaluate.")
add_arg('mean_std_path', str,
'data/librispeech/mean_std.npz',
"Filepath of normalizer's mean & std.")
add_arg('vocab_path', str,
'data/librispeech/vocab.txt',
"Filepath of vocabulary.")
add_arg('model_path', str,
'./checkpoints/libri/step_final',
"If None, the training starts from scratch, "
"otherwise, it resumes from the pre-trained model.")
add_arg('lang_model_path', str,
'models/lm/common_crawl_00.prune01111.trie.klm',
"Filepath for language model.")
add_arg('decoding_method', str,
'ctc_beam_search',
"Decoding method. Options: ctc_beam_search, ctc_greedy",
choices = ['ctc_beam_search', 'ctc_greedy'])
add_arg('error_rate_type', str,
'wer',
"Error rate type for evaluation.",
choices=['wer', 'cer'])
add_arg('specgram_type', str,
'linear',
"Audio feature type. Options: linear, mfcc.",
choices=['linear', 'mfcc'])
# yapf: disable
args = parser.parse_args()
def evaluate():
"""Evaluate on whole test data for DeepSpeech2."""
# check if set use_gpu=True in paddlepaddle cpu version
check_cuda(args.use_gpu)
# check if paddlepaddle version is satisfied
check_version()
if args.use_gpu:
place = fluid.CUDAPlace(0)
else:
place = fluid.CPUPlace()
data_generator = DataGenerator(
vocab_filepath=args.vocab_path,
mean_std_filepath=args.mean_std_path,
augmentation_config='{}',
specgram_type=args.specgram_type,
keep_transcription_text=True,
place = place,
is_training = False)
batch_reader = data_generator.batch_reader_creator(
manifest_path=args.test_manifest,
batch_size=args.batch_size,
sortagrad=False,
shuffle_method=None)
ds2_model = DeepSpeech2Model(
vocab_size=data_generator.vocab_size,
num_conv_layers=args.num_conv_layers,
num_rnn_layers=args.num_rnn_layers,
rnn_layer_size=args.rnn_layer_size,
use_gru=args.use_gru,
share_rnn_weights=args.share_rnn_weights,
place=place,
init_from_pretrained_model=args.model_path)
# decoders only accept string encoded in utf-8
vocab_list = [chars.encode("utf-8") for chars in data_generator.vocab_list]
if args.decoding_method == "ctc_beam_search":
ds2_model.init_ext_scorer(args.alpha, args.beta, args.lang_model_path,
vocab_list)
errors_func = char_errors if args.error_rate_type == 'cer' else word_errors
errors_sum, len_refs, num_ins = 0.0, 0, 0
ds2_model.logger.info("start evaluation ...")
for infer_data in batch_reader():
probs_split = ds2_model.infer_batch_probs(
infer_data=infer_data,
feeding_dict=data_generator.feeding)
if args.decoding_method == "ctc_greedy":
result_transcripts = ds2_model.decode_batch_greedy(
probs_split=probs_split,
vocab_list=vocab_list)
else:
result_transcripts = ds2_model.decode_batch_beam_search(
probs_split=probs_split,
beam_alpha=args.alpha,
beam_beta=args.beta,
beam_size=args.beam_size,
cutoff_prob=args.cutoff_prob,
cutoff_top_n=args.cutoff_top_n,
vocab_list=vocab_list,
num_processes=args.num_proc_bsearch)
target_transcripts = infer_data[1]
for target, result in zip(target_transcripts, result_transcripts):
errors, len_ref = errors_func(target, result)
errors_sum += errors
len_refs += len_ref
num_ins += 1
print("Error rate [%s] (%d/?) = %f" %
(args.error_rate_type, num_ins, errors_sum / len_refs))
print("Final error rate [%s] (%d/%d) = %f" %
(args.error_rate_type, num_ins, num_ins, errors_sum / len_refs))
ds2_model.logger.info("finish evaluation")
def main():
print_arguments(args)
evaluate()
if __name__ == '__main__':
main()