-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpretrained_teacher.py
66 lines (59 loc) · 2.69 KB
/
pretrained_teacher.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision.transforms as transforms
from torch.utils.data import DataLoader
from torchvision.datasets import ImageFolder
# 定义数据集
train_transforms=transforms.Compose([
transforms.Resize((256, 256)),
transforms.CenterCrop((256, 256)),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])])
#train_dataset = ImageFolder(root='/media/densogup-1/8T/jyp/myad/data/ILSVRC2012_img_train', transform=train_transforms)
#train_dataset = datasets.ImageNet(root='./data', train=True, transform=train_transforms)
train_dataset = ImageFolder(root='/media/densogup-1/8T/jyp/myad/data/carpet/img', transform=train_transforms)
train_loader = DataLoader(train_dataset, batch_size=16, shuffle=True, num_workers=4)
# 定义 teacher 网络
class TeacherNet(nn.Module):
def __init__(self):
super(TeacherNet, self).__init__()
self.conv1 = nn.Conv2d(3, 128, kernel_size=4, stride=1, padding=3)
self.pool1 = nn.AvgPool2d(kernel_size=2, stride=2, padding=1)
self.conv2 = nn.Conv2d(128, 256, kernel_size=4, stride=1, padding=3)
self.pool2 = nn.AvgPool2d(kernel_size=2, stride=2, padding=1)
self.conv3 = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1)
self.conv4 = nn.Conv2d(256, 384, kernel_size=4, stride=1)
def forward(self, x):
x = nn.functional.relu(self.conv1(x))
x = self.pool1(x)
x = nn.functional.relu(self.conv2(x))
x = self.pool2(x)
x = nn.functional.relu(self.conv3(x))
x = self.conv4(x)
return x
# 定义优化器和损失函数
lr = 0.0001
num_epochs = 10
teacher_net = TeacherNet()
teacher_net = teacher_net.cuda()
optimizer = optim.Adam(teacher_net.parameters(), lr=lr,weight_decay=0.00001)
#criterion = nn.CrossEntropyLoss()
criterion = nn.MSELoss()
# 数据集上训练 teacher 网络
for epoch in range(num_epochs):
for i, (images, labels) in enumerate(train_loader):
images = images.cuda()
labels = labels.cuda()
optimizer.zero_grad()
outputs = teacher_net(images)
#labels = labels.view(-1,1)
labels = labels.expand_as(outputs)
print(outputs.size(), labels.size())
loss = criterion(outputs, labels.float())
loss.backward()
optimizer.step()
if (i+1) % 100 == 0:
print('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}'.format(epoch+1, num_epochs, i+1, len(train_loader), loss.item()))
# 保存预训练的 teacher 网络权重为 pth 文件
torch.save(teacher_net.state_dict(), 'teacher_net.pth')