You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Thank you for your excellent work. Could you provide other examples similar to the sample code of mnist autoencoder, such as dagmm, Donut, LSTMAD? I tried it myself but found some problems
import pandas as pd
import tensorflow as tf
from sklearn.metrics import roc_auc_score
from src.algorithms import AutoEncoder
from src.datasets import Dataset
class MNIST(Dataset):
"""0 is the outlier class. The training set is free of outliers."""
def __init__(self, seed):
super().__init__(name="MNIST", file_name='') # We do not need to load data from a file
self.seed = seed
def load(self):
# 0 is the outlier, all other digits are normal
OUTLIER_CLASS = 0
mnist = tf.keras.datasets.mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()
# Label outliers with 1 and normal digits with 0
y_train, y_test = (y_train == OUTLIER_CLASS), (y_test == OUTLIER_CLASS)
x_train = x_train[~y_train] # Remove outliers from the training set
x_train, x_test = x_train / 255, x_test / 255
x_train, x_test = x_train.reshape(-1, 784), x_test.reshape(-1, 784)
self._data = tuple(pd.DataFrame(data=data) for data in [x_train, y_train, x_test, y_test])
Thank you for your excellent work. Could you provide other examples similar to the sample code of mnist autoencoder, such as dagmm, Donut, LSTMAD? I tried it myself but found some problems
import pandas as pd
import tensorflow as tf
from sklearn.metrics import roc_auc_score
from src.algorithms import AutoEncoder
from src.datasets import Dataset
class MNIST(Dataset):
"""0 is the outlier class. The training set is free of outliers."""
x_train, y_train, x_test, y_test = MNIST(seed=0).data()
Use fewer instances for demonstration purposes
x_train, y_train = x_train[:1000], y_train[:1000]
x_test, y_test = x_test[:100], y_test[:100]
model = AutoEncoder(sequence_length=1, num_epochs=40, hidden_size=10, lr=1e-4)
model.fit(x_train)
error = model.predict(x_test)
print(roc_auc_score(y_test, error)) # e.g. 0.8614
The text was updated successfully, but these errors were encountered: