forked from poanetwork/hbbft
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbroadcast.rs
475 lines (419 loc) · 17.9 KB
/
broadcast.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
use std::collections::BTreeMap;
use std::sync::Arc;
use std::{fmt, result};
use byteorder::{BigEndian, ByteOrder};
use hex_fmt::{HexFmt, HexList};
use log::{debug, warn};
use rand::Rng;
use reed_solomon_erasure as rse;
use reed_solomon_erasure::ReedSolomon;
use super::merkle::{Digest, MerkleTree, Proof};
use super::message::HexProof;
use super::{Error, FaultKind, Message, Result};
use crate::fault_log::Fault;
use crate::{ConsensusProtocol, NetworkInfo, NodeIdT, Target};
type RseResult<T> = result::Result<T, rse::Error>;
/// Broadcast algorithm instance.
#[derive(Debug)]
pub struct Broadcast<N> {
/// Shared network data.
netinfo: Arc<NetworkInfo<N>>,
/// The ID of the sending node.
proposer_id: N,
/// The Reed-Solomon erasure coding configuration.
coding: Coding,
/// If we are the proposer: whether we have already sent the `Value` messages with the shards.
value_sent: bool,
/// Whether we have already multicast `Echo`.
echo_sent: bool,
/// Whether we have already multicast `Ready`.
ready_sent: bool,
/// Whether we have already output a value.
decided: bool,
/// The proofs we have received via `Echo` messages, by sender ID.
echos: BTreeMap<N, Proof<Vec<u8>>>,
/// The root hashes we received via `Ready` messages, by sender ID.
readys: BTreeMap<N, Vec<u8>>,
}
/// A `Broadcast` step, containing at most one output.
pub type Step<N> = crate::CpStep<Broadcast<N>>;
impl<N: NodeIdT> ConsensusProtocol for Broadcast<N> {
type NodeId = N;
type Input = Vec<u8>;
type Output = Self::Input;
type Message = Message;
type Error = Error;
type FaultKind = FaultKind;
fn handle_input<R: Rng>(&mut self, input: Self::Input, _rng: &mut R) -> Result<Step<N>> {
self.broadcast(input)
}
fn handle_message<R: Rng>(
&mut self,
sender_id: &Self::NodeId,
message: Message,
_rng: &mut R,
) -> Result<Step<N>> {
self.handle_message(sender_id, message)
}
fn terminated(&self) -> bool {
self.decided
}
fn our_id(&self) -> &N {
self.netinfo.our_id()
}
}
impl<N: NodeIdT> Broadcast<N> {
/// Creates a new broadcast instance to be used by node `our_id` which expects a value proposal
/// from node `proposer_id`.
pub fn new(netinfo: Arc<NetworkInfo<N>>, proposer_id: N) -> Result<Self> {
let parity_shard_num = 2 * netinfo.num_faulty();
let data_shard_num = netinfo.num_nodes() - parity_shard_num;
let coding =
Coding::new(data_shard_num, parity_shard_num).map_err(|_| Error::InvalidNodeCount)?;
Ok(Broadcast {
netinfo,
proposer_id,
coding,
value_sent: false,
echo_sent: false,
ready_sent: false,
decided: false,
echos: BTreeMap::new(),
readys: BTreeMap::new(),
})
}
/// Initiates the broadcast. This must only be called in the proposer node.
pub fn broadcast(&mut self, input: Vec<u8>) -> Result<Step<N>> {
if *self.our_id() != self.proposer_id {
return Err(Error::InstanceCannotPropose);
}
if self.value_sent {
return Err(Error::MultipleInputs);
}
self.value_sent = true;
// Split the value into chunks/shards, encode them with erasure codes.
// Assemble a Merkle tree from data and parity shards. Take all proofs
// from this tree and send them, each to its own node.
let (proof, step) = self.send_shards(input)?;
let our_id = &self.our_id().clone();
Ok(step.join(self.handle_value(our_id, proof)?))
}
/// Handles a message received from `sender_id`.
///
/// This must be called with every message we receive from another node.
pub fn handle_message(&mut self, sender_id: &N, message: Message) -> Result<Step<N>> {
if !self.netinfo.is_node_validator(sender_id) {
return Err(Error::UnknownSender);
}
match message {
Message::Value(p) => self.handle_value(sender_id, p),
Message::Echo(p) => self.handle_echo(sender_id, p),
Message::Ready(ref hash) => self.handle_ready(sender_id, hash),
}
}
/// Returns the proposer's node ID.
pub fn proposer_id(&self) -> &N {
&self.proposer_id
}
/// Breaks the input value into shards of equal length and encodes them --
/// and some extra parity shards -- with a Reed-Solomon erasure coding
/// scheme. The returned value contains the shard assigned to this
/// node. That shard doesn't need to be sent anywhere. It gets recorded in
/// the broadcast instance.
fn send_shards(&mut self, mut value: Vec<u8>) -> Result<(Proof<Vec<u8>>, Step<N>)> {
let data_shard_num = self.coding.data_shard_count();
let parity_shard_num = self.coding.parity_shard_count();
// Insert the length of `v` so it can be decoded without the padding.
let payload_len = value.len() as u32;
value.splice(0..0, 0..4); // Insert four bytes at the beginning.
BigEndian::write_u32(&mut value[..4], payload_len); // Write the size.
let value_len = value.len(); // This is at least 4 now, due to the payload length.
// Size of a Merkle tree leaf value: the value size divided by the number of data shards,
// and rounded up, so that the full value always fits in the data shards. Always at least 1.
let shard_len = (value_len + data_shard_num - 1) / data_shard_num;
// Pad the last data shard with zeros. Fill the parity shards with zeros.
value.resize(shard_len * (data_shard_num + parity_shard_num), 0);
// Divide the vector into chunks/shards.
let shards_iter = value.chunks_mut(shard_len);
// Convert the iterator over slices into a vector of slices.
let mut shards: Vec<&mut [u8]> = shards_iter.collect();
// Construct the parity chunks/shards. This only fails if a shard is empty or the shards
// have different sizes. Our shards all have size `shard_len`, which is at least 1.
self.coding.encode(&mut shards).expect("wrong shard size");
debug!(
"{}: Value: {} bytes, {} per shard. Shards: {:0.10}",
self,
value_len,
shard_len,
HexList(&shards)
);
// Create a Merkle tree from the shards.
let mtree = MerkleTree::from_vec(shards.into_iter().map(|shard| shard.to_vec()).collect());
// Default result in case of `proof` error.
let mut result = Err(Error::ProofConstructionFailed);
assert_eq!(self.netinfo.num_nodes(), mtree.values().len());
let mut step = Step::default();
// Send each proof to a node.
for (index, id) in self.netinfo.all_ids().enumerate() {
let proof = mtree.proof(index).ok_or(Error::ProofConstructionFailed)?;
if *id == *self.our_id() {
// The proof is addressed to this node.
result = Ok(proof);
} else {
// Rest of the proofs are sent to remote nodes.
let msg = Target::Node(id.clone()).message(Message::Value(proof));
step.messages.push(msg);
}
}
result.map(|proof| (proof, step))
}
/// Handles a received echo and verifies the proof it contains.
fn handle_value(&mut self, sender_id: &N, p: Proof<Vec<u8>>) -> Result<Step<N>> {
// If the sender is not the proposer or if this is not the first `Value`, ignore.
if *sender_id != self.proposer_id {
let fault_kind = FaultKind::ReceivedValueFromNonProposer;
return Ok(Fault::new(sender_id.clone(), fault_kind).into());
}
if self.echo_sent {
if self.echos.get(self.our_id()) == Some(&p) {
warn!(
"Node {:?} received Value({:?}) multiple times from {:?}.",
self.our_id(),
HexProof(&p),
sender_id
);
return Ok(Step::default());
} else {
return Ok(Fault::new(sender_id.clone(), FaultKind::MultipleValues).into());
}
}
// If the proof is invalid, log the faulty node behavior and ignore.
if !self.validate_proof(&p, &self.our_id()) {
return Ok(Fault::new(sender_id.clone(), FaultKind::InvalidProof).into());
}
// Otherwise multicast the proof in an `Echo` message, and handle it ourselves.
self.send_echo(p)
}
/// Handles a received `Echo` message.
fn handle_echo(&mut self, sender_id: &N, p: Proof<Vec<u8>>) -> Result<Step<N>> {
// If the sender has already sent `Echo`, ignore.
if let Some(old_p) = self.echos.get(sender_id) {
if *old_p == p {
warn!(
"Node {:?} received Echo({:?}) multiple times from {:?}.",
self.our_id(),
HexProof(&p),
sender_id,
);
return Ok(Step::default());
} else {
return Ok(Fault::new(sender_id.clone(), FaultKind::MultipleEchos).into());
}
}
// If the proof is invalid, log the faulty-node behavior, and ignore.
if !self.validate_proof(&p, sender_id) {
return Ok(Fault::new(sender_id.clone(), FaultKind::InvalidProof).into());
}
let hash = *p.root_hash();
// Save the proof for reconstructing the tree later.
self.echos.insert(sender_id.clone(), p);
if self.ready_sent || self.count_echos(&hash) < self.netinfo.num_correct() {
return self.compute_output(&hash);
}
// Upon receiving `N - f` `Echo`s with this root hash, multicast `Ready`.
self.send_ready(&hash)
}
/// Handles a received `Ready` message.
fn handle_ready(&mut self, sender_id: &N, hash: &Digest) -> Result<Step<N>> {
// If the sender has already sent a `Ready` before, ignore.
if let Some(old_hash) = self.readys.get(sender_id) {
if old_hash == hash {
warn!(
"Node {:?} received Ready({:?}) multiple times from {:?}.",
self.our_id(),
hash,
sender_id
);
return Ok(Step::default());
} else {
return Ok(Fault::new(sender_id.clone(), FaultKind::MultipleReadys).into());
}
}
self.readys.insert(sender_id.clone(), hash.to_vec());
let mut step = Step::default();
// Upon receiving f + 1 matching Ready(h) messages, if Ready
// has not yet been sent, multicast Ready(h).
if self.count_readys(hash) == self.netinfo.num_faulty() + 1 && !self.ready_sent {
// Enqueue a broadcast of a Ready message.
step.extend(self.send_ready(hash)?);
}
Ok(step.join(self.compute_output(hash)?))
}
/// Sends an `Echo` message and handles it. Does nothing if we are only an observer.
fn send_echo(&mut self, p: Proof<Vec<u8>>) -> Result<Step<N>> {
self.echo_sent = true;
if !self.netinfo.is_validator() {
return Ok(Step::default());
}
let echo_msg = Message::Echo(p.clone());
let step: Step<_> = Target::All.message(echo_msg).into();
let our_id = &self.our_id().clone();
Ok(step.join(self.handle_echo(our_id, p)?))
}
/// Sends a `Ready` message and handles it. Does nothing if we are only an observer.
fn send_ready(&mut self, hash: &Digest) -> Result<Step<N>> {
self.ready_sent = true;
if !self.netinfo.is_validator() {
return Ok(Step::default());
}
let ready_msg = Message::Ready(*hash);
let step: Step<_> = Target::All.message(ready_msg).into();
let our_id = &self.our_id().clone();
Ok(step.join(self.handle_ready(our_id, hash)?))
}
/// Checks whether the conditions for output are met for this hash, and if so, sets the output
/// value.
fn compute_output(&mut self, hash: &Digest) -> Result<Step<N>> {
if self.decided
|| self.count_readys(hash) <= 2 * self.netinfo.num_faulty()
|| self.count_echos(hash) < self.coding.data_shard_count()
{
return Ok(Step::default());
}
// Upon receiving 2f + 1 matching Ready(h) messages, wait for N − 2f Echo messages.
let mut leaf_values: Vec<Option<Box<[u8]>>> = self
.netinfo
.all_ids()
.map(|id| {
self.echos.get(id).and_then(|p| {
if p.root_hash() == hash {
Some(p.value().clone().into_boxed_slice())
} else {
None
}
})
})
.collect();
if let Some(value) = self.decode_from_shards(&mut leaf_values, hash) {
self.decided = true;
Ok(Step::default().with_output(value))
} else {
let fault_kind = FaultKind::BroadcastDecoding;
Ok(Fault::new(self.proposer_id.clone(), fault_kind).into())
}
}
/// Interpolates the missing shards and glues together the data shards to retrieve the value.
/// This returns `None` if reconstruction failed or the reconstructed shards don't match the
/// root hash. This can only happen if the proposer provided invalid shards.
fn decode_from_shards(
&self,
leaf_values: &mut [Option<Box<[u8]>>],
root_hash: &Digest,
) -> Option<Vec<u8>> {
// Try to interpolate the Merkle tree using the Reed-Solomon erasure coding scheme.
self.coding.reconstruct_shards(leaf_values).ok()?;
// Collect shards for tree construction.
let shards: Vec<Vec<u8>> = leaf_values
.iter()
.filter_map(|l| l.as_ref().map(|v| v.to_vec()))
.collect();
debug!("{}: Reconstructed shards: {:0.10}", self, HexList(&shards));
// Construct the Merkle tree.
let mtree = MerkleTree::from_vec(shards);
// If the root hash of the reconstructed tree does not match the one
// received with proofs then abort.
if mtree.root_hash() != root_hash {
return None; // The proposer is faulty.
}
// Reconstruct the value from the data shards:
// Concatenate the leaf values that are data shards The first four bytes are
// interpreted as the payload size, and the padding beyond that size is dropped.
let count = self.coding.data_shard_count();
let mut bytes = mtree.into_values().into_iter().take(count).flatten();
let payload_len = match (bytes.next(), bytes.next(), bytes.next(), bytes.next()) {
(Some(b0), Some(b1), Some(b2), Some(b3)) => {
BigEndian::read_u32(&[b0, b1, b2, b3]) as usize
}
_ => return None, // The proposer is faulty: no payload size.
};
let payload: Vec<u8> = bytes.take(payload_len).collect();
debug!("{}: Glued data shards {:0.10}", self, HexFmt(&payload));
Some(payload)
}
/// Returns `true` if the proof is valid and has the same index as the node ID.
fn validate_proof(&self, p: &Proof<Vec<u8>>, id: &N) -> bool {
self.netinfo.node_index(id) == Some(p.index()) && p.validate(self.netinfo.num_nodes())
}
/// Returns the number of nodes that have sent us an `Echo` message with this hash.
fn count_echos(&self, hash: &Digest) -> usize {
self.echos
.values()
.filter(|p| p.root_hash() == hash)
.count()
}
/// Returns the number of nodes that have sent us a `Ready` message with this hash.
fn count_readys(&self, hash: &Digest) -> usize {
self.readys
.values()
.filter(|h| h.as_slice() == hash)
.count()
}
}
impl<N: NodeIdT> fmt::Display for Broadcast<N> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> result::Result<(), fmt::Error> {
write!(f, "{:?} Broadcast({:?})", self.our_id(), self.proposer_id)
}
}
/// A wrapper for `ReedSolomon` that doesn't panic if there are no parity shards.
#[derive(Debug)]
enum Coding {
/// A `ReedSolomon` instance with at least one parity shard.
ReedSolomon(Box<ReedSolomon>),
/// A no-op replacement that doesn't encode or decode anything.
Trivial(usize),
}
impl Coding {
/// Creates a new `Coding` instance with the given number of shards.
fn new(data_shard_num: usize, parity_shard_num: usize) -> RseResult<Self> {
Ok(if parity_shard_num > 0 {
let rs = ReedSolomon::new(data_shard_num, parity_shard_num)?;
Coding::ReedSolomon(Box::new(rs))
} else {
Coding::Trivial(data_shard_num)
})
}
/// Returns the number of data shards.
fn data_shard_count(&self) -> usize {
match *self {
Coding::ReedSolomon(ref rs) => rs.data_shard_count(),
Coding::Trivial(dsc) => dsc,
}
}
/// Returns the number of parity shards.
fn parity_shard_count(&self) -> usize {
match *self {
Coding::ReedSolomon(ref rs) => rs.parity_shard_count(),
Coding::Trivial(_) => 0,
}
}
/// Constructs (and overwrites) the parity shards.
fn encode(&self, slices: &mut [&mut [u8]]) -> RseResult<()> {
match *self {
Coding::ReedSolomon(ref rs) => rs.encode(slices),
Coding::Trivial(_) => Ok(()),
}
}
/// If enough shards are present, reconstructs the missing ones.
fn reconstruct_shards(&self, shards: &mut [Option<Box<[u8]>>]) -> RseResult<()> {
match *self {
Coding::ReedSolomon(ref rs) => rs.reconstruct_shards(shards),
Coding::Trivial(_) => {
if shards.iter().all(Option::is_some) {
Ok(())
} else {
Err(rse::Error::TooFewShardsPresent)
}
}
}
}
}