diff --git a/advanced_ai_pilot/advanced_ai_pilot.py b/advanced_ai_pilot/advanced_ai_pilot.py new file mode 100644 index 0000000..8eaa54d --- /dev/null +++ b/advanced_ai_pilot/advanced_ai_pilot.py @@ -0,0 +1,71 @@ +import numpy as np +from tensorflow.keras.models import Model +from tensorflow.keras.layers import Input, Dense, LSTM + +class AdvancedAIPilot: + def __init__(self, num_inputs, num_outputs): + self.num_inputs = num_inputs + self.num_outputs = num_outputs + + def create_neural_network(self): + """ +Create a neural network using Keras. + + Returns: + Model: The created neural network. + """ + inputs = Input(shape=(self.num_inputs,)) + x = Dense(64, activation="relu")(inputs) + x = LSTM(64)(x) + outputs = Dense(self.num_outputs, activation="softmax")(x) + model = Model(inputs=inputs, outputs=outputs) + return model + + def train_neural_network(self, model, X_train, y_train): + """ + Train a neural network using Keras. + + Args: + model (Model): The neural network to train. + X_train (numpy array): The training input data. + y_train (numpy array): The training output data. + """ + model.compile(loss="categorical_crossentropy", optimizer="adam", metrics=["accuracy"]) + model.fit(X_train, y_train, epochs=100, batch_size=128) + + def use_neural_network(self, model, input_data): + """ + Use a trained neural network to make predictions. + + Args: + model (Model): The trained neural network. + input_data (numpy array): The input data to make predictions on. + + Returns: + numpy array: The predicted output data. + """ + predictions = model.predict(input_data) + return predictions + + def optimize_neural_network(self, model, X_train, y_train): + """ + Optimize a neural network using a genetic algorithm. + + Args: + model (Model): The neural network to optimize. + X_train (numpy array): The training input data. + y_train (numpy array): The training output data. + + Returns: + Model: The optimized neural network. + """ + from scipy.optimize import differential_evolution + def objective_function(params): + model.set_weights(params) + loss = model.evaluate(X_train, y_train) + return loss + bounds = [(0, 1) for _ in range(model.count_params())] + result = differential_evolution(objective_function, bounds) + optimized_weights = result.x + model.set_weights(optimized_weights) + return model