diff --git a/models/ai_models/computer_vision.py b/models/ai_models/computer_vision.py new file mode 100644 index 0000000..3074bc6 --- /dev/null +++ b/models/ai_models/computer_vision.py @@ -0,0 +1,66 @@ +# Import necessary libraries +import cv2 +import numpy as np +from sklearn.svm import SVC + +# Define a class for computer vision models +class ComputerVision: + def __init__(self, model_type): + self.model_type = model_type + self.model = self._create_model() + + def _create_model(self): + # Create a computer vision model using OpenCV and scikit-learn + if self.model_type == 'face_detection': + return cv2.dnn.readNetFromCaffe('face_detection_model.prototxt', 'face_detection_model.caffemodel') + elif self.model_type == 'object_detection': + return cv2.dnn.readNetFromDarknet('yolov3.cfg', 'yolov3.weights') + elif self.model_type == 'image_classification': + return SVC(kernel='linear', probability=True) + + def detect_faces(self, image): + # Detect faces in an image using the face detection model + blob = cv2.dnn.blobFromImage(image, 1, (300, 300), (104, 177, 123)) + self.model.setInput(blob) + detections = self.model.forward() + faces = [] + for i in range(detections.shape[2]): + confidence = detections[0, 0, i, 2] + if confidence > 0.5: + x1 = int(detections[0, 0, i, 3] * image.shape[1]) + y1 = int(detections[0, 0, i, 4] * image.shape[0]) + x2 = int(detections[0, 0, i, 5] * image.shape[1]) + y2 = int(detections[0, 0, i, 6] * image.shape[0]) + faces.append((x1, y1, x2, y2)) + return faces + + def detect_objects(self, image): + # Detect objects in an image using the object detection model + blob = cv2.dnn.blobFromImage(image, 1/255, (416, 416), [0,0,0], 1, crop=False) + self.model.setInput(blob) + outputs = self.model.forward(self.model.getUnconnectedOutLayersNames()) + objects = [] + for output in outputs: + for detection in output: + scores = detection[5:] + class_id = np.argmax(scores) + confidence = scores[class_id] + if confidence > 0.5: + x1 = int(detection[0] * image.shape[1]) + y1 = int(detection[1] * image.shape[0]) + x2 = int(detection[2] * image.shape[1]) + y2 = int(detection[3] * image.shape[0]) + objects.append((x1, y1,x2, y2, class_id, confidence)) + return objects + + def classify_image(self, image): + # Classify an image using the image classification model + # Implement feature extraction and classification logic here + pass + +# Define a function to load a computer vision model +def load_computer_vision(model_path): + # Load the computer vision model from a file + model = ComputerVision('face_detection') + model.model = cv2.dnn.readNetFromCaffe(model_path) + return model