-
Notifications
You must be signed in to change notification settings - Fork 3
/
rotate.py
47 lines (41 loc) · 1.51 KB
/
rotate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
import numpy as np
def rotate(mesh):
# Extract vertices and normals
vertices = mesh.vertices
# Define rotation matrices
def rotate_y(vertices, angle):
angle_rad = np.radians(angle)
rotation_matrix = np.array([
[np.cos(angle_rad), 0, np.sin(angle_rad)],
[0, 1, 0],
[-np.sin(angle_rad), 0, np.cos(angle_rad)]
])
return np.dot(vertices, rotation_matrix.T)
def rotate_x(vertices, angle):
angle_rad = np.radians(angle)
rotation_matrix = np.array([
[1, 0, 0],
[0, np.cos(angle_rad), -np.sin(angle_rad)],
[0, np.sin(angle_rad), np.cos(angle_rad)]
])
return np.dot(vertices, rotation_matrix.T)
def rotate_z(vertices, angle):
angle_rad = np.radians(angle)
rotation_matrix = np.array([
[np.cos(angle_rad), -np.sin(angle_rad), 0],
[np.sin(angle_rad), np.cos(angle_rad), 0],
[0, 0, 1]
])
return np.dot(vertices, rotation_matrix.T)
# Rotate vertices to right orientation
vertices = rotate_y(vertices, 225)
vertices = rotate_x(vertices, 90)
vertices = rotate_z(vertices, -90)
vertices = rotate_y(vertices, 45)
vertices = rotate_z(vertices, 45)
vertices = rotate_x(vertices, 45)
vertices = rotate_y(vertices, 20)
vertices = rotate_x(vertices, -10)
# Update the mesh with the modified vertices
mesh.vertices = vertices
return mesh