-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfilter.py
402 lines (333 loc) · 13.3 KB
/
filter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
#!/usr/bin/env pythonw3
# Author: Armit
# Create Time: 2022/10/28
# inspect into the feature maps of inputs filtered by conv2d layer
import os
import tkinter as tk
import tkinter.ttk as ttk
import tkinter.messagebox as tkmsg
import tkinter.filedialog as tkfdlg
from PIL import Image, ImageTk
from collections import Counter
from traceback import print_exc
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision.transforms as T
import matplotlib.pyplot as plt
from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg
import numpy as np
from modules.model import MODELS, get_model, get_first_conv2d_layer
from modules.data import DATASETS, get_dataloader, normalize
from modules.env import device
from modules.pgd import pgd
from modules.util import minmax_norm_channel_wise
WINDOW_TITLE = 'conv2d filter'
IMAGE_MAX_SIZE = 512
CONTROL_WIDTH = 140
WINDOW_SIZE = (IMAGE_MAX_SIZE+CONTROL_WIDTH+40, 650)
HIST_FIG_SIZE = (1.5, 1)
RESAMPLE_METHOD = Image.Resampling.NEAREST
NUM_CLASSES = 1000
assert IMAGE_MAX_SIZE < min(*WINDOW_SIZE)
CHANNEL_NORMS = ['MinMax', 'Clip', 'None']
DEFAULT_MODEL = MODELS[0]
DEFAULT_DATASET = DATASETS[-1]
DEFAULT_CHANNEL_NORM = CHANNEL_NORMS[0]
avg_pool = nn.AvgPool2d(kernel_size=2, stride=2).to(device) # fix shape between original and feature map
rgb2grey = T.Grayscale()
to_tenosr = T.ToTensor()
class App:
def __init__(self):
self.cur_model = None # str
self.cur_dataset = None # str
self.cur_mode = 'rgb' # 'grey' | 'rgb'
self.datagen = None # iter(DataLoader)
self.model = None # nn.Module, the whole model
self.layer = None # nn.Conv2d; fisrt conv layer in model [C_out=64, C_in=3, K_w, K_h]
self.src = None # torch.Tensor; raw image tensor [B=1, C=3, H, W]
self.tgt = None # torch.Tensor; truth label if available [B=1]
self.tgt_atk = None # torch.Tensor; attack label if available [B=1]
self.src_half = None # torch.Tensor; raw image tensor half size [B=1, C=3, H/2, W/2]
self.src_grey = None # torch.Tensor; raw image tensor half size (grey scale) [B=1, C=1, H/2, W/2]
self.out = None # torch.Tensor; output feature map tensor [B=1, C=64, H/2, W/2]
self.prob = None # torch.Tensor; predicted probo distribution [B=1, N_CLASS=1000]
self.setup_gui()
self.init_workspace()
try:
self.wnd.mainloop()
except KeyboardInterrupt:
self.wnd.destroy()
except: print_exc()
def init_workspace(self):
self._change_dataset()
self._change_model()
def setup_gui(self):
# window
wnd = tk.Tk()
W, H = wnd.winfo_screenwidth(), wnd.winfo_screenheight()
w, h = WINDOW_SIZE
wnd.geometry(f'{w}x{h}+{(W-w)//2}+{(H-h)//2}')
wnd.resizable(False, False)
wnd.title(WINDOW_TITLE)
self.wnd = wnd
# left: control
frm1 = ttk.Frame(wnd)
frm1.pack(side=tk.LEFT, anchor=tk.W, expand=tk.YES, fill=tk.Y)
if True:
frm11 = ttk.LabelFrame(frm1, text='Model')
frm11.pack()
if True:
self.var_model = tk.StringVar(frm11, value=DEFAULT_MODEL)
cb = ttk.Combobox(frm11, state='readonly', values=MODELS, textvariable=self.var_model)
cb.bind('<<ComboboxSelected>>', lambda evt: self._change_model())
cb.pack()
self.var_model_info = tk.StringVar(frm11, value='')
lb = ttk.Label(frm11, textvariable=self.var_model_info, foreground='red')
lb.pack()
frm12 = ttk.LabelFrame(frm1, text='Color Mode')
frm12.pack()
if True:
frm121 = ttk.LabelFrame(frm12, text='Grey')
frm121.pack()
if True:
def show_grey_fn(evt):
self.cur_mode = 'grey'
self._show()
self.var_I = tk.IntVar(frm121, value=-1)
self.cb_I = ttk.Combobox(frm121, state='readonly', values=-1, textvariable=self.var_I)
self.cb_I.bind('<<ComboboxSelected>>', show_grey_fn)
self.cb_I.pack(expand=tk.YES, fill=tk.X)
frm122 = ttk.LabelFrame(frm12, text='RGB')
frm122.pack()
if True:
frm1221 = ttk.Frame(frm122)
frm1221.pack()
if True:
def show_rgb_fn(ch):
self.cur_mode = 'rgb'
self._show()
self.var_R = tk.IntVar(frm1221, value=-1)
self.cb_R = ttk.Combobox(frm1221, state='readonly', values=-1, textvariable=self.var_R, width=4)
self.cb_R.bind('<<ComboboxSelected>>', lambda evt: show_rgb_fn('R'))
self.cb_R.pack(side=tk.LEFT, expand=tk.NO)
self.var_G = tk.IntVar(frm1221, value=-1)
self.cb_G = ttk.Combobox(frm1221, state='readonly', values=-1, textvariable=self.var_G, width=4)
self.cb_G.bind('<<ComboboxSelected>>', lambda evt: show_rgb_fn('G'))
self.cb_G.pack(side=tk.LEFT, expand=tk.NO)
self.var_B = tk.IntVar(frm1221, value=-1)
self.cb_B = ttk.Combobox(frm1221, state='readonly', values=-1, textvariable=self.var_B, width=4)
self.cb_B.bind('<<ComboboxSelected>>', lambda evt: show_rgb_fn('B'))
self.cb_B.pack(side=tk.LEFT, expand=tk.NO)
frm123 = ttk.LabelFrame(frm12, text='Channel Norm')
frm123.pack()
if True:
self.var_channel_norm = tk.StringVar(frm123, value=DEFAULT_CHANNEL_NORM)
cb = ttk.Combobox(frm123, state='readonly', values=CHANNEL_NORMS, textvariable=self.var_channel_norm)
cb.bind('<<ComboboxSelected>>', lambda evt: self._show())
cb.pack(side=tk.LEFT, expand=tk.NO)
btn = ttk.Button(frm12, text='Reset', command=self._reset)
btn.pack(expand=tk.YES, fill=tk.X)
frm13 = ttk.LabelFrame(frm1, text='Data')
frm13.pack()
if True:
frm131 = ttk.LabelFrame(frm13, text='Dataset')
frm131.pack(expand=tk.YES, fill=tk.X)
if True:
self.var_dataset = tk.StringVar(frm131, value=DEFAULT_DATASET)
cb = ttk.Combobox(frm131, state='readonly', values=DATASETS, textvariable=self.var_dataset)
cb.bind('<<ComboboxSelected>>', lambda evt: self._change_dataset())
cb.pack(expand=tk.YES, fill=tk.X)
btn = ttk.Button(frm131, text='Next', command=self._next)
btn.pack(expand=tk.YES, fill=tk.X)
frm132 = ttk.LabelFrame(frm13, text='Local File')
frm132.pack(expand=tk.YES, fill=tk.X)
if True:
self.var_fp_info = tk.StringVar(frm132, '')
self.lb_fp_info = ttk.Label(frm132, textvariable=self.var_fp_info, wraplength=CONTROL_WIDTH, foreground='blue')
btn = ttk.Button(frm132, text='Open..', command=self._open)
btn.pack(expand=tk.YES, fill=tk.X)
frm16 = ttk.LabelFrame(frm1, text='Attack')
frm16.pack()
if True:
ATK_TGT = ['random', 'second prob', 'least prob']
self.var_atk_tgt = tk.StringVar(frm16, value=ATK_TGT[0])
cb = ttk.Combobox(frm16, values=ATK_TGT, textvariable=self.var_atk_tgt)
cb.pack(expand=tk.YES, fill=tk.X)
btn = ttk.Button(frm16, text='PGD Attack!', command=self._attack)
btn.pack(expand=tk.YES, fill=tk.X)
frm14 = ttk.LabelFrame(frm1, text='Stats')
frm14.pack(expand=tk.YES, fill=tk.X)
if True:
self.var_img_stats = tk.StringVar(frm14, '')
lb = ttk.Label(frm14, textvariable=self.var_img_stats)
lb.pack()
frm15 = ttk.LabelFrame(frm1, text='Hist')
frm15.pack()
if True:
fig, ax = plt.subplots()
fig.set_size_inches(HIST_FIG_SIZE)
fig.tight_layout()
cvs = FigureCanvasTkAgg(fig, frm15)
cvs.draw()
cvs.get_tk_widget().pack(fill=tk.BOTH, expand=tk.YES)
self.ax = ax
self.fig = fig
self.cvs = cvs
# right: display
frm2 = ttk.Frame(wnd)
frm2.pack(side=tk.RIGHT, anchor=tk.CENTER, expand=tk.YES, fill=tk.Y)
if True:
self.lb_img = ttk.Label(frm2, image=None)
self.lb_img.pack(anchor=tk.CENTER, expand=tk.YES, fill=tk.BOTH)
def _change_model(self):
name = self.var_model.get()
if name == self.cur_model: return
try:
self.model = get_model(name).to(device).eval()
self.layer = get_first_conv2d_layer(self.model)
W = self.layer.weight
in_channels = W.shape[1]
assert in_channels == 3 # must be compatible with RGB
n_filters = W.shape[0]
self.var_model_info.set(f'found {n_filters} filters')
vals = list(range(-1, n_filters))
self.cb_I.config(values=vals)
self.cb_R.config(values=vals)
self.cb_G.config(values=vals)
self.cb_B.config(values=vals)
self._forward()
self.cur_model = name
except:
print_exc()
def _change_dataset(self):
name = self.var_dataset.get()
if name == self.cur_dataset: return
try:
self.datagen = iter(get_dataloader(name))
self._next()
self.cur_dataset = name
except:
print_exc()
def _mk_imgs(self, x, y=None):
self.src = x
self.src_half = avg_pool(self.src)
self.src_grey = rgb2grey(self.src_half)
self.tgt = y
def _forward(self):
if None in [self.layer, self.src]: return
with torch.inference_mode():
x_norm = normalize(self.src, self.cur_dataset)
self.out = self.layer(x_norm)
self.prob = F.softmax(self.model(x_norm), dim=-1)
self._show()
def _next(self):
self.lb_fp_info.pack_forget()
x, y = next(self.datagen)
x, y = x.to(device), y.to(device)
self.tgt_atk = None
self._mk_imgs(x, y)
self._forward()
def _open(self):
fp = tkfdlg.askopenfilename()
if not fp or not os.path.exists(fp):
tkmsg.showerror('Error', 'File not exists!')
return
self.var_fp_info.set(os.path.basename(fp))
self.lb_fp_info.pack()
img = Image.open(fp).convert('RGB')
x = to_tenosr(img).unsqueeze_(0).to(device)
self.tgt_atk = None
self._mk_imgs(x)
self._forward()
def _reset(self):
self.var_I.set(-1)
self.var_R.set(-1)
self.var_G.set(-1)
self.var_B.set(-1)
self.cur_mode = 'rgb'
self._show()
def _update_stats(self, img: Image):
x = np.asarray(img, dtype=np.uint8)
x_f = x / 255.0
try: H, W, C = x.shape
except: (H, W), C = x.shape, 1
prob = self.prob[0]
info = [
f'truth: {self.tgt.item()}' if self.tgt else None,
f'attack: {self.tgt_atk.item()}' if self.tgt_atk else None,
f'pred: {prob.argmax()} ({prob[prob.argmax()]:.2%})',
f'size: {W} x {H} x {C}',
f'mean: {x_f.mean():.7f}',
f'std: {x_f.std():.7f}',
]
self.var_img_stats.set('\n'.join([f for f in info if f]))
self.ax.cla()
self.ax.axis('off')
self.ax.hist(x.flatten(), bins=256)
self.fig.tight_layout(pad=0.1)
if C == 3:
def plot_ch(ch, color):
cntr = Counter(x[:, :, ch].flatten())
self.ax.plot([cntr.get(i, 0) for i in range(256)], color)
plot_ch(0, 'r')
plot_ch(1, 'g')
plot_ch(2, 'b')
self.cvs.draw()
def _attack(self):
atk_tgt = self.var_atk_tgt.get().strip()
if atk_tgt.isdigit():
atk_tgt = int(atk_tgt)
if 0 <= atk_tgt < NUM_CLASSES:
y = torch.LongTensor([atk_tgt])
else:
tkmsg.showerror('Error', f'wrong class id {atk_tgt}')
return
elif atk_tgt == 'random':
y = torch.randint(0, NUM_CLASSES, [1])
else:
logits = self.model(normalize(self.src, self.cur_dataset))[0]
if atk_tgt == 'second prob':
logits[logits.argmax()] = logits.min() - 1
y = logits.argmax().unsqueeze(0)
elif atk_tgt == 'least prob':
y = logits.argmin().unsqueeze(0)
self.tgt_atk = y.to(device)
x = pgd(self.model, self.src, self.tgt_atk, normalizer=lambda x: normalize(x, self.cur_dataset))
self._mk_imgs(x, self.tgt)
self._forward()
def _show(self):
if self.cur_mode == 'grey':
f = self.var_I.get()
if f == -1:
x = self.src_grey # [B=1, C=1, H, W]
else:
x = self.out[:, f:f+1, :, :] # [B=1, C=1, H, W]
elif self.cur_mode == 'rgb':
fR = self.var_R.get()
if fR == -1: R = self.src_half[:, 0, :, :] # [B=1, H, W]
else: R = self.out[:, fR, :, :]
fG = self.var_G.get()
if fG == -1: G = self.src_half[:, 1, :, :]
else: G = self.out[:, fG, :, :]
fB = self.var_B.get()
if fB == -1: B = self.src_half[:, 2, :, :]
else: B = self.out[:, fB, :, :]
x = torch.stack([R, G, B], axis=1) # [B=1, C=3, H, W]
else: return
ch_norm = self.var_channel_norm.get()
if ch_norm == 'MinMax': x = minmax_norm_channel_wise(x)
elif ch_norm == 'Clip': x = x.clamp(0.0, 1.0)
im = x.permute([0, 2, 3, 1]).squeeze().detach().cpu().numpy() # [H, W, C=3] or [H, W]
img = Image.fromarray((im * 255).astype(np.uint8))
self._update_stats(img)
h, w = img.size
if h > w: size = (IMAGE_MAX_SIZE, IMAGE_MAX_SIZE * w // h)
elif w > h: size = (IMAGE_MAX_SIZE * h // w, IMAGE_MAX_SIZE)
else: size = (IMAGE_MAX_SIZE, IMAGE_MAX_SIZE)
img = img.resize(size, resample=RESAMPLE_METHOD)
imgtk = ImageTk.PhotoImage(img)
self.lb_img.imgtk = imgtk # avoid gc
self.lb_img.config(image=imgtk)
if __name__ == '__main__':
App()