diff --git a/README.md b/README.md new file mode 100644 index 0000000..2a74684 --- /dev/null +++ b/README.md @@ -0,0 +1,80 @@ +**致谢:该代码是对yjxiong代码的改进,弥补了里面的些许错误,非常感谢yjxiong的开源精神** +###**前言**: +该代码是在caffe框架运行,是yjxiong的https://github.com/yjxiong/caffe 的一些改进,caffe是用的他的修改版,即里面包含了openmpi多线程,具体使用方法参考上面的网址。 +由于他的caffe里面东西较多,在亲自移植代码后,发现有许多小错误,对其进行了修改。 +该代码在移植的过程中,使用了4块GTX1080Ti的显卡。 +###**使用**: +大部分跟yjxiong所言一致,只是有部分地方进行了修正。 + +- models/action_recognition文件夹下有多个prototxt文件,其中flow.solver文件有两个,New版本是我修改后的版本,是与论文一致的版本。不带New的版本是原版的solver文件。区别在于是否将图片resize成340*256和scale_ratios是否含有0.66。原版将其省略,而我将其加上。虽然准确率并没有太大的变化。因此,**使用带New的**. + +- action_python/下有许多测试文件,测试temporal net使用**demoTemporal.py**,测试spatial net使用**demoSpatial.py**。测试temporal+spatial使用**demoTemporalSpatial.py**。文件全部调用的是VideoSpatialPredictionTest.py 和VideoTemporalPredictionTest.py 。原版的有一些错误,因此改成使用后缀有Test的。 + +- examples/action_recognition/dataset_file_examples/ 下的txt文件修改。因为用之前我的github中的denseflow提取出的rgb图和optical flow 图的个数与txt中的个数不能对应。对原版的txt文件中视频提取图片的帧数进行了修改。否则,若提取的图片小于txt文件中的视频帧数,网络输入图片的时候,将会出现找不到某些图片的报错。**因此,使用后缀带new的。** + +上面三个是本系统的关键,另外还对caffe的源码进行了修改,这跟https://github.com/yjxiong/caffe 所说的修改是一致的。 + + +最终可以根据本代码直接进行,进行训练的时候,在caffe根目录下,输入mpirun -np 4 ./install/bin/caffe train --solver= -weights=< Pretrained caffemodel>即可运行。 +(当然,要提取安装openmpi)。 + +具体的准确率情况参考csdn博客:http://blog.csdn.net/small_ARM/article/details/78283205 + + +###**Citation** + +You are encouraged to also cite one of the following papers if you find this repo helpful + + + +> @article{MultiGPUCaffe2015, + author = {Limin Wang and + Yuanjun Xiong and + Zhe Wang and + Yu Qiao}, + title = {Towards Good Practices for Very Deep Two-Stream ConvNets}, + journal = {CoRR}, + volume = {abs/1507.02159}, + year = {2015}, + url = {http://arxiv.org/abs/1507.02159}, +} + + + + + + + +Following is the original README of Caffe. + +###**Caffe** + + +Caffe is a deep learning framework made with expression, speed, and modularity in mind. It is developed by the Berkeley Vision and Learning Center (BVLC) and community contributors. + +Check out the project site for all the details like + + DIY Deep Learning for Vision with Caffe + Tutorial Documentation + BVLC reference models and the community model zoo + Installation instructions + +and step-by-step examples. + +Join the chat at https://gitter.im/BVLC/caffe + +Please join the caffe-users group or gitter chat to ask questions and talk about methods and models. Framework development discussions and thorough bug reports are collected on Issues. + +Happy brewing! +###**License and Citation** + +Caffe is released under the BSD 2-Clause license. The BVLC reference models are released for unrestricted use. + +Please cite Caffe in your publications if it helps your research: + +> @article{jia2014caffe, + Author = {Jia, Yangqing and Shelhamer, Evan and Donahue, Jeff and Karayev, Sergey and Long, Jonathan and Girshick, Ross and Guadarrama, Sergio and Darrell, Trevor}, + Journal = {arXiv preprint arXiv:1408.5093}, + Title = {Caffe: Convolutional Architecture for Fast Feature Embedding}, + Year = {2014} +}