forked from PaddlePaddle/PaddleOCR
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfce_postprocess.py
executable file
·241 lines (200 loc) · 8.44 KB
/
fce_postprocess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
# copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This code is refer from:
https://github.com/open-mmlab/mmocr/blob/v0.3.0/mmocr/models/textdet/postprocess/wrapper.py
"""
import cv2
import paddle
import numpy as np
from numpy.fft import ifft
from ppocr.utils.poly_nms import poly_nms, valid_boundary
def fill_hole(input_mask):
h, w = input_mask.shape
canvas = np.zeros((h + 2, w + 2), np.uint8)
canvas[1:h + 1, 1:w + 1] = input_mask.copy()
mask = np.zeros((h + 4, w + 4), np.uint8)
cv2.floodFill(canvas, mask, (0, 0), 1)
canvas = canvas[1:h + 1, 1:w + 1].astype(np.bool)
return ~canvas | input_mask
def fourier2poly(fourier_coeff, num_reconstr_points=50):
""" Inverse Fourier transform
Args:
fourier_coeff (ndarray): Fourier coefficients shaped (n, 2k+1),
with n and k being candidates number and Fourier degree
respectively.
num_reconstr_points (int): Number of reconstructed polygon points.
Returns:
Polygons (ndarray): The reconstructed polygons shaped (n, n')
"""
a = np.zeros((len(fourier_coeff), num_reconstr_points), dtype='complex')
k = (len(fourier_coeff[0]) - 1) // 2
a[:, 0:k + 1] = fourier_coeff[:, k:]
a[:, -k:] = fourier_coeff[:, :k]
poly_complex = ifft(a) * num_reconstr_points
polygon = np.zeros((len(fourier_coeff), num_reconstr_points, 2))
polygon[:, :, 0] = poly_complex.real
polygon[:, :, 1] = poly_complex.imag
return polygon.astype('int32').reshape((len(fourier_coeff), -1))
class FCEPostProcess(object):
"""
The post process for FCENet.
"""
def __init__(self,
scales,
fourier_degree=5,
num_reconstr_points=50,
decoding_type='fcenet',
score_thr=0.3,
nms_thr=0.1,
alpha=1.0,
beta=1.0,
box_type='poly',
**kwargs):
self.scales = scales
self.fourier_degree = fourier_degree
self.num_reconstr_points = num_reconstr_points
self.decoding_type = decoding_type
self.score_thr = score_thr
self.nms_thr = nms_thr
self.alpha = alpha
self.beta = beta
self.box_type = box_type
def __call__(self, preds, shape_list):
score_maps = []
for key, value in preds.items():
if isinstance(value, paddle.Tensor):
value = value.numpy()
cls_res = value[:, :4, :, :]
reg_res = value[:, 4:, :, :]
score_maps.append([cls_res, reg_res])
return self.get_boundary(score_maps, shape_list)
def resize_boundary(self, boundaries, scale_factor):
"""Rescale boundaries via scale_factor.
Args:
boundaries (list[list[float]]): The boundary list. Each boundary
with size 2k+1 with k>=4.
scale_factor(ndarray): The scale factor of size (4,).
Returns:
boundaries (list[list[float]]): The scaled boundaries.
"""
boxes = []
scores = []
for b in boundaries:
sz = len(b)
valid_boundary(b, True)
scores.append(b[-1])
b = (np.array(b[:sz - 1]) *
(np.tile(scale_factor[:2], int(
(sz - 1) / 2)).reshape(1, sz - 1))).flatten().tolist()
boxes.append(np.array(b).reshape([-1, 2]))
return np.array(boxes, dtype=np.float32), scores
def get_boundary(self, score_maps, shape_list):
assert len(score_maps) == len(self.scales)
boundaries = []
for idx, score_map in enumerate(score_maps):
scale = self.scales[idx]
boundaries = boundaries + self._get_boundary_single(score_map,
scale)
# nms
boundaries = poly_nms(boundaries, self.nms_thr)
boundaries, scores = self.resize_boundary(
boundaries, (1 / shape_list[0, 2:]).tolist()[::-1])
boxes_batch = [dict(points=boundaries, scores=scores)]
return boxes_batch
def _get_boundary_single(self, score_map, scale):
assert len(score_map) == 2
assert score_map[1].shape[1] == 4 * self.fourier_degree + 2
return self.fcenet_decode(
preds=score_map,
fourier_degree=self.fourier_degree,
num_reconstr_points=self.num_reconstr_points,
scale=scale,
alpha=self.alpha,
beta=self.beta,
box_type=self.box_type,
score_thr=self.score_thr,
nms_thr=self.nms_thr)
def fcenet_decode(self,
preds,
fourier_degree,
num_reconstr_points,
scale,
alpha=1.0,
beta=2.0,
box_type='poly',
score_thr=0.3,
nms_thr=0.1):
"""Decoding predictions of FCENet to instances.
Args:
preds (list(Tensor)): The head output tensors.
fourier_degree (int): The maximum Fourier transform degree k.
num_reconstr_points (int): The points number of the polygon
reconstructed from predicted Fourier coefficients.
scale (int): The down-sample scale of the prediction.
alpha (float) : The parameter to calculate final scores. Score_{final}
= (Score_{text region} ^ alpha)
* (Score_{text center region}^ beta)
beta (float) : The parameter to calculate final score.
box_type (str): Boundary encoding type 'poly' or 'quad'.
score_thr (float) : The threshold used to filter out the final
candidates.
nms_thr (float) : The threshold of nms.
Returns:
boundaries (list[list[float]]): The instance boundary and confidence
list.
"""
assert isinstance(preds, list)
assert len(preds) == 2
assert box_type in ['poly', 'quad']
cls_pred = preds[0][0]
tr_pred = cls_pred[0:2]
tcl_pred = cls_pred[2:]
reg_pred = preds[1][0].transpose([1, 2, 0])
x_pred = reg_pred[:, :, :2 * fourier_degree + 1]
y_pred = reg_pred[:, :, 2 * fourier_degree + 1:]
score_pred = (tr_pred[1]**alpha) * (tcl_pred[1]**beta)
tr_pred_mask = (score_pred) > score_thr
tr_mask = fill_hole(tr_pred_mask)
tr_contours, _ = cv2.findContours(
tr_mask.astype(np.uint8), cv2.RETR_TREE,
cv2.CHAIN_APPROX_SIMPLE) # opencv4
mask = np.zeros_like(tr_mask)
boundaries = []
for cont in tr_contours:
deal_map = mask.copy().astype(np.int8)
cv2.drawContours(deal_map, [cont], -1, 1, -1)
score_map = score_pred * deal_map
score_mask = score_map > 0
xy_text = np.argwhere(score_mask)
dxy = xy_text[:, 1] + xy_text[:, 0] * 1j
x, y = x_pred[score_mask], y_pred[score_mask]
c = x + y * 1j
c[:, fourier_degree] = c[:, fourier_degree] + dxy
c *= scale
polygons = fourier2poly(c, num_reconstr_points)
score = score_map[score_mask].reshape(-1, 1)
polygons = poly_nms(np.hstack((polygons, score)).tolist(), nms_thr)
boundaries = boundaries + polygons
boundaries = poly_nms(boundaries, nms_thr)
if box_type == 'quad':
new_boundaries = []
for boundary in boundaries:
poly = np.array(boundary[:-1]).reshape(-1, 2).astype(np.float32)
score = boundary[-1]
points = cv2.boxPoints(cv2.minAreaRect(poly))
points = np.int0(points)
new_boundaries.append(points.reshape(-1).tolist() + [score])
boundaries = new_boundaries
return boundaries