-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain.py
299 lines (246 loc) · 10.1 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
import os
import yaml
import argparse
from src.models.Detection.Faster_RCNN import Faster_RCNN
from src.models.Segmentation.MaskRCNN import Mask_RCNN
from src.models.Segmentation.DeepLab import DeepLab
from src.dataset.bdd_detetcion import BDDDetection
from src.dataset.bdd_instance_segmentation import BDDInstanceSegmentation
from src.dataset.bdd_drivable_segmentation import BDDDrivableSegmentation
from src.config.defaults import cfg
from src.utils.DataLoaders import get_loader
import torch
from pytorch_lightning import Trainer
from pytorch_lightning.utilities.model_summary import ModelSummary
from pytorch_lightning.callbacks.early_stopping import EarlyStopping
from pytorch_lightning.callbacks import ModelCheckpoint
from pytorch_lightning.loggers import WandbLogger
from pytorch_lightning.loggers import CSVLogger
def get_datasets(model, relative_path, obj_cls):
if model == 'fasterrcnn':
# Training dataset
bdd_train_params = {
'cfg': cfg,
'stage': 'train',
'relative_path': relative_path,
'obj_cls': obj_cls,
}
bdd_train = BDDDetection(**bdd_train_params)
# Validation dataset
bdd_val_params = {
'cfg': cfg,
'stage': 'val',
'relative_path': relative_path,
'obj_cls': obj_cls,
}
bdd_val = BDDDetection(**bdd_val_params)
elif model == 'deeplab':
# Training dataset
bdd_train_params = {
'cfg': cfg,
'stage': 'train',
'relative_path': relative_path,
'obj_cls': obj_cls,
'image_size': img_size
}
bdd_train = BDDDrivableSegmentation(**bdd_train_params)
# Validation dataset
bdd_val_params = {
'cfg': cfg,
'stage': 'val',
'relative_path': relative_path,
'obj_cls': obj_cls,
'image_size': img_size
}
bdd_val = BDDDrivableSegmentation(**bdd_val_params)
elif model == 'maskrcnn':
# Training dataset
bdd_train_params = {
'cfg': cfg,
'stage': 'train',
'relative_path': relative_path,
'obj_cls': obj_cls,
'image_size': img_size
}
bdd_train = BDDInstanceSegmentation(**bdd_train_params)
# Validation dataset
bdd_val_params = {
'cfg': cfg,
'stage': 'val',
'relative_path': relative_path,
'obj_cls': obj_cls,
'image_size': img_size
}
bdd_val = BDDInstanceSegmentation(**bdd_val_params)
return bdd_train, bdd_val
def get_loaders(bdd_train, batch_size, pin_memory, num_workers):
train_dataloader_args = {
'dataset': bdd_train,
'batch_size': batch_size,
'shuffle': True,
'collate_fn': bdd_train.collate_fn,
'pin_memory': pin_memory,
'num_workers': num_workers
}
train_dataloader = get_loader(**train_dataloader_args)
# val dataloader
val_dataloader_args = {
'dataset': bdd_val,
'batch_size': batch_size,
'shuffle': False,
'collate_fn': bdd_train.collate_fn,
'pin_memory': pin_memory,
'num_workers': num_workers
}
val_dataloader = get_loader(**val_dataloader_args)
return train_dataloader, val_dataloader
def get_model(model_name, num_classes, backbone, lr, version):
if model_name == 'fasterrcnn':
faster_rcnn_params = {
'cfg': cfg,
'num_classes': num_classes,
'backbone': backbone,
'learning_rate': lr,
'weight_decay': 1e-3,
'pretrained': True,
'pretrained_backbone': True,
}
model = Faster_RCNN(**faster_rcnn_params)
elif model_name == 'deeplab':
deeplab_params = {
'cfg': cfg,
'num_classes': num_classes,
'backbone': backbone,
'learning_rate': lr,
'weight_decay': 1e-3,
'pretrained': True,
'pretrained_backbone': True,
}
model = DeepLab(**deeplab_params)
elif model_name == 'maskrcnn':
mask_rcnn_params = {
'cfg': cfg,
'num_classes': num_classes,
'version': version,
'learning_rate': lr,
'weight_decay': 1e-3,
'pretrained': True,
'pretrained_backbone': True,
}
model = Mask_RCNN(**mask_rcnn_params)
return model
if __name__ == '__main__':
# Define the parser
parser = argparse.ArgumentParser()
parser.add_argument('--batch-size', type=int, default=16, help='total batch size for all GPUs')
parser.add_argument('--img-size', type=int, default=640, help='train, val image size (pixels)')
parser.add_argument('--data', type=str, default="./data/fasterrcnn.yaml", help='data.yaml path')
parser.add_argument('--weights', type=str, default=None, help='train from checkpoint')
parser.add_argument('--backbone', type=str, default='resnet50',
help='choose the backbone you want to use - default: resnet50')
parser.add_argument('--version', type=str, default='v2', choices=['v1', 'v2'], help='Version of MaskRCNN')
parser.add_argument('--lr', type=float, default=1e-5, help='learning rate')
parser.add_argument('--total_epochs', type=int, default=100, help='total_epochs')
parser.add_argument('--num_workers', type=int, default=4, help='num_workers')
parser.add_argument('--pin_memory', type=bool, default=False, help='pin_memory')
parser.add_argument('--logger_path', type=str, help='where you want to log your data')
parser.add_argument('--checkpoint_path', type=str, default='./checkpoints',
help="Path where you want to checkpoint.")
parser.add_argument('--name', type=str, default='version1', help='name of the model you want to save')
parser.add_argument('--project', type=str, default='Master Thesis', help='name of the Project to save in wandb')
parser.add_argument('--model', type=str, default='fasterrcnn', choices=['fasterrcnn', 'deeplab', 'maskrcnn'],
help='the model and task you want to perform')
# Fetch the params from the parser
args = parser.parse_args()
batch_size = args.batch_size # Batch Size
img_size = args.img_size # Image size
lr = args.lr # Learning Rate
weights = args.weights # Check point to continue training
backbone = args.backbone # Check point to continue training
version = args.version # version of MaskRCNN you want to use
total_epochs = args.total_epochs # number of epochs
num_workers = args.num_workers # number of workers
pin_memory = args.pin_memory # pin memory
model_name = args.model # the name of the model: fastercnn, maskrcnn, deeplab
logger_path = args.logger_path # where you want to save the logs
checkpoint_path = args.checkpoint_path # path to checkpoints
name = args.name # name of the projects (version)
project = args.project # name of the projects
with open(args.data, 'r') as f:
data = yaml.safe_load(f) # data from .yaml file
obj_cls = data['classes'] # the classes we want to work one
relative_path = data['relative_path'] # relative path to the dataset
######################################## Datasets ########################################
bdd_train, bdd_val = get_datasets(model_name, relative_path, obj_cls)
print(50 * '#')
print(f"Training Images: {len(bdd_train)}. Validation Images: {len(bdd_val)}.")
print(50 * '#')
######################################## DataLoaders ########################################
train_dataloader, val_dataloader = get_loaders(bdd_train, batch_size, pin_memory, num_workers)
######################################## Model ########################################
# check device
device = torch.device('cpu')
if torch.cuda.is_available():
device = torch.device('cuda')
print(50 * '#')
print(f"We are using {device}")
print(50 * '#')
# check model
model = get_model(model_name, len(bdd_train.cls_to_idx), backbone, lr, version)
print(50 * '#')
ModelSummary(model) # print model summary
print(50 * '#')
######################################## Training ########################################
# Early Stopping
early_stop_params = {
'monitor': "val_loss",
'patience': 5,
'verbose': False,
'mode': "min"
}
early_stop_callback = EarlyStopping(**early_stop_params) # Early Stopping to avoid overfitting
# Checkpoint
checkpoint_params = {
'monitor': "val_loss",
'mode': 'min',
'every_n_train_steps': 0,
'every_n_epochs': 1,
'dirpath': checkpoint_path
}
checkpoint_callback = ModelCheckpoint(**checkpoint_params) # Model check
# Loggers
wandb_logger = WandbLogger(name=name, project=project, log_model='all')
csv_logger = CSVLogger(save_dir=logger_path, name=name)
if weights is not None:
training_params = {
'resume_from_checkpoint': weights,
'profiler': "simple",
"logger": [wandb_logger, csv_logger],
'accelerator': 'gpu',
'devices': 1,
'max_epochs': total_epochs,
'callbacks': [early_stop_callback, checkpoint_callback],
}
fit_params = {
'model': model,
'train_dataloaders': train_dataloader,
'val_dataloaders': val_dataloader,
'ckpt_path': weights,
}
else:
training_params = {
'profiler': "simple",
"logger": [csv_logger, wandb_logger],
'accelerator': 'gpu',
'devices': 1,
'max_epochs': total_epochs,
'callbacks': [early_stop_callback, checkpoint_callback],
}
fit_params = {
'model': model,
'train_dataloaders': train_dataloader,
'val_dataloaders': val_dataloader,
}
trainer = Trainer(**training_params)
trainer.fit(**fit_params)
print(f"Model's best weights: {checkpoint_callback.best_model_path}")