-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtest_separation.py
142 lines (112 loc) · 4.92 KB
/
test_separation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
from functools import partial
import os
import torch
import pytorch_lightning as pl
from pytorch_lightning.plugins import DDPPlugin
from pytorch_lightning.callbacks import LearningRateMonitor, ModelCheckpoint
from End2End.Data import DataModuleEnd2End, End2EndBatchDataPreprocessor, FullPreprocessor
from End2End.tasks.separation import Separation
import End2End.models.separation as SeparationModel
from End2End.MIDI_program_map import (
MIDI_Class_NUM,
MIDIClassName2class_idx,
class_idx2MIDIClass,
)
from End2End.data.augmentors import Augmentor
from End2End.lr_schedulers import get_lr_lambda
import End2End.losses as Losses
# Libraries related to hydra
import hydra
from hydra.utils import to_absolute_path
@hydra.main(config_path="End2End/config/", config_name="separation_config")
def main(cfg):
r"""Train an instrument classification system, evluate, and save checkpoints.
Args:
workspace: str, path
config_yaml: str, path
gpus: int
mini_data: bool
Returns:
None
"""
cfg.datamodule.waveform_hdf5s_dir = to_absolute_path(os.path.join('hdf5s', 'waveforms'))
if cfg.MIDI_MAPPING.type=='plugin_names':
cfg.MIDI_MAPPING.plugin_labels_num = PLUGIN_LABELS_NUM
cfg.MIDI_MAPPING.NAME_TO_IX = PLUGIN_LB_TO_IX
cfg.MIDI_MAPPING.IX_TO_NAME = PLUGIN_IX_TO_LB
cfg.datamodule.notes_pkls_dir = to_absolute_path('instruments_classification_notes3/')
elif cfg.MIDI_MAPPING.type=='MIDI_class':
cfg.MIDI_MAPPING.plugin_labels_num = MIDI_Class_NUM
cfg.MIDI_MAPPING.NAME_TO_IX = MIDIClassName2class_idx
cfg.MIDI_MAPPING.IX_TO_NAME = class_idx2MIDIClass
cfg.datamodule.notes_pkls_dir = to_absolute_path('instruments_classification_notes_MIDI_class/')
else:
raise ValueError(f"Please choose the correct MIDI_MAPPING.type")
Model = getattr(SeparationModel, cfg.separation.model.type)
if cfg.separation.model.type=='CondUNet':
model = Model(**cfg.separation.model.args)
cfg.transcription = False
elif cfg.separation.model.type=='TCondUNet':
model = Model(**cfg.separation.model.args, spec_cfg=cfg.separation.feature)
cfg.transcription = True
else:
raise ValueError("please choose the correct model type")
# augmentor
augmentor = Augmentor(augmentation=cfg.augmentation) if cfg.augmentation else None
# data module
data_module = DataModuleEnd2End(**cfg.datamodule,augmentor=augmentor, MIDI_MAPPING=cfg.MIDI_MAPPING)
data_module.setup('test')
experiment_name = (
f"Eval-{cfg.separation.model.type}-"
f"{cfg.MIDI_MAPPING.type}-"
f"{cfg.inst_sampler.mode}_{cfg.inst_sampler.temp}_"
f"{cfg.inst_sampler.samples}p_{cfg.inst_sampler.neg_samples}"
f"noise{cfg.inst_sampler.audio_noise}-"
f"csize={MIDI_Class_NUM}-"
f"bz={cfg.batch_size}"
)
DataPreprocessor = End2EndBatchDataPreprocessor
# loss function
loss_function = getattr(Losses, cfg.separation.model.loss_types)
# callbacks
# save checkpoint callback
logger = pl.loggers.TensorBoardLogger(save_dir='.', name=experiment_name)
# learning rate reduce function.
lr_lambda = partial(get_lr_lambda, **cfg.scheduler.args)
checkpoint_path = to_absolute_path(cfg.separation.evaluation.checkpoint_path)
# pl_model = Separation.load_from_checkpoint(checkpoint_path,
# network=model,
# loss_function=loss_function,
# lr_lambda=None,
# batch_data_preprocessor=DataPreprocessor(**cfg.separation.batchprocess),
# cfg=cfg
# )
ckpt = torch.load(checkpoint_path)
new_state_dict = {}
for key in ckpt['state_dict'].keys():
if 'separation_model' in key:
new_key = '.'.join(key.split('.')[2:])
new_state_dict[new_key] = ckpt['state_dict'][key]
if 'network' in key:
new_key = '.'.join(key.split('.')[1:])
new_state_dict[new_key] = ckpt['state_dict'][key]
model.load_state_dict(new_state_dict)
pl_model = Separation(
network=model,
loss_function=loss_function,
lr_lambda=None,
batch_data_preprocessor=DataPreprocessor(**cfg.separation.batchprocess),
cfg=cfg
)
if cfg.trainer.gpus==0: # If CPU is used, disable syncbatch norm
cfg.trainer.sync_batchnorm=False
trainer = pl.Trainer(
**cfg.trainer,
callbacks=None,
plugins=[DDPPlugin(find_unused_parameters=False)],
logger=logger
)
# Fit, evaluate, and save checkpoints.
trainer.test(pl_model, data_module)
if __name__ == '__main__':
main()