-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtest_tseparation.py
127 lines (96 loc) · 4.12 KB
/
test_tseparation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
from functools import partial
import os
import pytorch_lightning as pl
from pytorch_lightning.plugins import DDPPlugin
from pytorch_lightning.callbacks import LearningRateMonitor, ModelCheckpoint
from End2End.Data import DataModuleEnd2End, End2EndBatchDataPreprocessor
from End2End.tasks.separation import Separation
from End2End.tasks.transcription import Transcription
from End2End.tasks.t_separation import TSeparation
import End2End.models.separation as SeparationModel
import End2End.models.transcription.combined as TranscriptionModel
from End2End.MIDI_program_map import (
MIDI_Class_NUM,
MIDIClassName2class_idx,
class_idx2MIDIClass,
)
from End2End.data.augmentors import Augmentor
from End2End.lr_schedulers import get_lr_lambda
from End2End.losses import get_loss_function
import End2End.losses as Losses
# Libraries related to hydra
import hydra
from hydra.utils import to_absolute_path
@hydra.main(config_path="End2End/config/", config_name="tseparation")
def main(cfg):
r"""Train an instrument classification system, evluate, and save checkpoints.
Args:
workspace: str, path
config_yaml: str, path
gpus: int
mini_data: bool
Returns:
None
"""
cfg.datamodule.waveform_hdf5s_dir = to_absolute_path(os.path.join('hdf5s', 'waveforms'))
checkpoint_path = to_absolute_path(cfg.checkpoint_path)
cfg.MIDI_MAPPING.plugin_labels_num = MIDI_Class_NUM
cfg.MIDI_MAPPING.NAME_TO_IX = MIDIClassName2class_idx
cfg.MIDI_MAPPING.IX_TO_NAME = class_idx2MIDIClass
cfg.datamodule.notes_pkls_dir = to_absolute_path('instruments_classification_notes_MIDI_class/')
experiment_name = (
f"Eval-TSeparation-"
f"{cfg.inst_sampler.samples}p{cfg.inst_sampler.neg_samples}n-"
f"ste_roll"
)
# augmentor
augmentor = Augmentor(augmentation=cfg.augmentation) if cfg.augmentation else None
# data module
data_module = DataModuleEnd2End(**cfg.datamodule,augmentor=augmentor, MIDI_MAPPING=cfg.MIDI_MAPPING)
data_module.setup('test')
lr_lambda = partial(get_lr_lambda, **cfg.scheduler.args)
# loss function
loss_function = getattr(Losses, cfg.separation.model.loss_types)
model = getattr(SeparationModel, cfg.separation.model.type)\
(**cfg.separation.model.args, spec_cfg=cfg.separation.feature)
separation_model = Separation(
network=model,
loss_function=loss_function,
lr_lambda=lr_lambda,
batch_data_preprocessor=None,
cfg=cfg
)
# defining transcription model
Model = getattr(TranscriptionModel, cfg.transcription.model.type)
model = Model(cfg, **cfg.transcription.model.args)
loss_function = get_loss_function(cfg.transcription.model.loss_types)
transcription_model = Transcription(
network=model,
loss_function=loss_function,
lr_lambda=lr_lambda,
batch_data_preprocessor=None,
cfg=cfg
)
# defining jointist
tseparation = TSeparation.load_from_checkpoint(
checkpoint_path,
transcription_model = transcription_model,
separation_model = separation_model,
batch_data_preprocessor = End2EndBatchDataPreprocessor(cfg.MIDI_MAPPING,
**cfg.inst_sampler,
transcription=True,
source_separation=True),
lr_lambda=lr_lambda,
cfg=cfg
)
# defining Trainer
logger = pl.loggers.TensorBoardLogger(save_dir='.', name=experiment_name)
trainer = pl.Trainer(
**cfg.trainer,
plugins=[DDPPlugin(find_unused_parameters=False)],
logger=logger
)
# Fit, evaluate, and save checkpoints.
trainer.test(tseparation, data_module)
if __name__ == '__main__':
main()