This repo contains my tensorflow codes
- mnist training - python mnist_train.py
Required training and test/validation data is automatically downloaded by code. - mnist test - python mnist_test.py
Image input as arg (not yet implemented, arg for input image, change in code for now)
- emotion training - python emo_train.py
Required training and test/validation data can be downloaded from
- https://inclass.kaggle.com/c/facial-keypoints-detector/data --> ./data/ Image input as arg (not yet implemented, arg for input image, change in code for now)
- Download model weights from http://www.vlfeat.org/matconvnet/models/beta16/imagenet-vgg-verydeep-19.mat
- VGG19 STYLE TRANSFER can be executed by -
python style-transfer-main.py --style ./imgstyle/StyleImage.jpg --content ./imgcontent/ContentImage.jpg --out ./output/ --epochs 100000 --print-iterations 100 --learning-rate 10
- VGG19 Style Transfer can be also executed by vgg19-style-transfer/Style_Transfer.ipynb IPYTHONG NOTEBOOK
- Please change values for --epochs and --print-iterations as per your requirement.
- https://arxiv.org/abs/1708.04538
- Download model weights from http://www.vlfeat.org/matconvnet/models/beta16/imagenet-vgg-verydeep-19.mat
- Download COCO training images from http://msvocds.blob.core.windows.net/coco2014/train2014.zip
- Trained model to download https://drive.google.com/file/d/1cr3S_1GNLLkAtpJ1Cnf0HJi1aZmMUT8i/view?usp=sharing
python style-transfer-Noise-train.py --style imgstyle\udnie.jpg --chkpnt chkpnt_udnie_batch_16\ --test-image testImage\Kishwar.jpg --print-iterations 500 --chkpnt-iterations 2000 --epochs 3 --learning-rate 0.001 --batch-size 16 --content D:\train2014\train2014\
python style-transfer-Noise-test.py --chkpnt chkpnt_udnie_batch_16\ --cam-url 255 --in-path testImage\ContentImage.jpg --out-path output\Output.jpg
python style-transfer-Noise-test.py --chkpnt chkpnt_udnie_batch_16\ --cam-url http://192.168.0.3:8080/video/
python style-transfer-Noise-test.py --chkpnt chkpnt_udnie_batch_16\ --cam-url 0
- Code generates required training data from given positive, negative and background samples.
- Total number of 2000 samples are generated
- Model output at 97.91% accuracy: rnn-trigger-word-lilly/keras/raw_data/chime/chime_output.wav
- Trained model: rnn-trigger-word-lilly/keras/raw_data/chime/chimModel_loss_0_0715.h5 [loss - 0.0715]
- MODEL
Youtube video can be found at Youtube
-
Step 1: Generate New data using Generate_Voice_Data.py
- Before running / executing file please change
WAVE_OUTPUT_FILENAME = "data/right/file-right-t-"
--> Example for keyword "RIGHT" - Please create required directories manually as code will not generate any directory.
- Before running / executing file please change
-
Step 2: Update config.ini with correct path and keywords.
-
Step 3: Run Voice-Controlled-Car.ipynb to start training.
-
Step 4: Save model after training.
-
Step 5: Change IP to correct IP of car in Test-Voice-Control-Car-Model.py.
- NEXT IN QUEUE..
STYLE-TRANSFER FOR AUDIO - VOICE CLONING (Python 3.5, Tensorflow LATEST) - Expected to be finished 30/11/2018
- IN QUEUE