-
Notifications
You must be signed in to change notification settings - Fork 107
/
fast_tsne.R
272 lines (253 loc) · 11.1 KB
/
fast_tsne.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
# Note: this script should be sourced as: source('<path to file>', chdir=T)
FAST_TSNE_SCRIPT_DIR <<- getwd()
message("FIt-SNE R wrapper loading.")
message("FIt-SNE root directory was set to ", FAST_TSNE_SCRIPT_DIR)
# Compute FIt-SNE of a dataset
# dims - dimensionality of the embedding. Default 2.
# perplexity - perplexity is used to determine the
# bandwidth of the Gaussian kernel in the input
# space. Default 30.
# theta - Set to 0 for exact. If non-zero, then will use either
# Barnes Hut or FIt-SNE based on nbody_algo. If Barnes Hut, then
# this determins the accuracy of BH approximation.
# Default 0.5.
# max_iter - Number of iterations of t-SNE to run.
# Default 750.
# fft_not_bh - if theta is nonzero, this determines whether to
# use FIt-SNE or Barnes Hut approximation. Default is FIt-SNE.
# set to be True for FIt-SNE
# ann_not_vptree - use vp-trees (as in bhtsne) or approximate nearest neighbors (default).
# set to be True for approximate nearest neighbors
# exaggeration_factor - coefficient for early exaggeration
# (>1). Default 12.
# no_momentum_during_exag - Set to 0 to use momentum
# and other optimization tricks. 1 to do plain,vanilla
# gradient descent (useful for testing large exaggeration
# coefficients)
# stop_early_exag_iter - When to switch off early exaggeration.
# Default 250.
# start_late_exag_iter - When to start late exaggeration. 'auto' means
# that late exaggeration is not used, unless late_exag_coeff>0. In that
# case, start_late_exag_iter is set to stop_early_exag_iter. Otherwise,
# set to equal the iteration at which late exaggeration should begin.
# Default 'auto'
# late_exag_coeff - Late exaggeration coefficient.
# Set to -1 to not use late exaggeration.
# Default -1
# learning_rate - Set to desired learning rate or 'auto', which
# sets learning rate to N/exaggeration_factor where N is the sample size, or to 200 if
# N/exaggeration_factor < 200.
# Default 'auto'
# max_step_norm - Maximum distance that a point is allowed to move on
# one iteration. Larger steps are clipped to this value. This prevents
# possible instabilities during gradient descent. Set to -1 to switch it
# off. Default: 5
# nterms - If using FIt-SNE, this is the number of
# interpolation points per sub-interval
# intervals_per_integer - See min_num_intervals
# min_num_intervals - Let maxloc = ceil(max(max(X)))
# and minloc = floor(min(min(X))). i.e. the points are in
# a [minloc]^no_dims by [maxloc]^no_dims interval/square.
# The number of intervals in each dimension is either
# min_num_intervals or ceil((maxloc -
# minloc)/intervals_per_integer), whichever is
# larger. min_num_intervals must be an integer >0,
# and intervals_per_integer must be >0. Default:
# min_num_intervals=50, intervals_per_integer =
# 1
#
# sigma - Fixed sigma value to use when perplexity==-1
# Default -1 (None)
# K - Number of nearest neighbours to get when using fixed sigma
# Default -30 (None)
#
# initialization - 'pca', 'random', or N x no_dims array to intialize the solution.
# Default: 'pca'
#
# load_affinities -
# If 1, input similarities are loaded from a file and not computed
# If 2, input similarities are saved into a file.
# If 0, affinities are neither saved nor loaded
#
# perplexity_list - if perplexity==0 then perplexity combination will
# be used with values taken from perplexity_list. Default: NULL
# df - Degree of freedom of t-distribution, must be greater than 0.
# Values smaller than 1 correspond to heavier tails, which can often
# resolve substructure in the embedding. See Kobak et al. (2019) for
# details. Default is 1.0
#
fftRtsne <- function(X,
dims = 2, perplexity = 30, theta = 0.5,
max_iter = 750,
fft_not_bh = TRUE,
ann_not_vptree = TRUE,
stop_early_exag_iter = 250,
exaggeration_factor = 12.0, no_momentum_during_exag = FALSE,
start_late_exag_iter = -1, late_exag_coeff = 1.0,
mom_switch_iter = 250, momentum = 0.5, final_momentum = 0.8, learning_rate = 'auto',
n_trees = 50, search_k = -1, rand_seed = -1,
nterms = 3, intervals_per_integer = 1, min_num_intervals = 50,
K = -1, sigma = -30, initialization = 'pca',max_step_norm = 5,
data_path = NULL, result_path = NULL,
load_affinities = NULL,
fast_tsne_path = NULL, nthreads = 0, perplexity_list = NULL,
get_costs = FALSE, df = 1.0) {
version_number <- '1.2.1'
if (is.null(fast_tsne_path)) {
if (.Platform$OS.type == "unix") {
fast_tsne_path <- file.path(FAST_TSNE_SCRIPT_DIR, "bin", "fast_tsne")
} else {
fast_tsne_path <- file.path(FAST_TSNE_SCRIPT_DIR, "bin", "FItSNE.exe")
}
}
if (is.null(data_path)) {
data_path <- tempfile(pattern = 'fftRtsne_data_', fileext = '.dat')
}
if (is.null(result_path)) {
result_path <- tempfile(pattern = 'fftRtsne_result_', fileext = '.dat')
}
if (is.null(fast_tsne_path)) {
fast_tsne_path <- system2('which', 'fast_tsne', stdout = TRUE)
}
fast_tsne_path <- normalizePath(fast_tsne_path)
if (!file_test('-x', fast_tsne_path)) {
stop(fast_tsne_path, " does not exist or is not executable; check your fast_tsne_path parameter")
}
is.wholenumber <- function(x, tol = .Machine$double.eps^0.5) abs(x - round(x)) < tol
if (!is.numeric(theta) || (theta < 0.0) || (theta > 1.0) ) { stop("Incorrect theta.")}
if (nrow(X) - 1 < 3 * perplexity) { stop("Perplexity is too large.")}
if (!is.matrix(X)) { stop("Input X is not a matrix")}
if (!(max_iter > 0)) { stop("Incorrect number of iterations.")}
if (!is.wholenumber(stop_early_exag_iter) || stop_early_exag_iter < 0) { stop("stop_early_exag_iter should be a positive integer")}
if (!is.numeric(exaggeration_factor)) { stop("exaggeration_factor should be numeric")}
if (!is.numeric(df)) { stop("df should be numeric")}
if (!is.wholenumber(dims) || dims <= 0) { stop("Incorrect dimensionality.")}
if (search_k == -1) {
if (perplexity > 0) {
search_k <- n_trees * perplexity * 3
} else if (perplexity == 0) {
search_k <- n_trees * max(perplexity_list) * 3
} else {
search_k <- n_trees * K
}
}
if (is.character(learning_rate) && learning_rate =='auto') {
learning_rate = max(200, nrow(X)/exaggeration_factor)
}
if (is.character(start_late_exag_iter) && start_late_exag_iter =='auto') {
if (late_exag_coeff > 0) {
start_late_exag_iter = stop_early_exag_iter
}else {
start_late_exag_iter = -1
}
}
if (is.character(initialization) && initialization =='pca') {
if (rand_seed != -1) {
set.seed(rand_seed)
}
if ("rsvd" %in% utils::installed.packages()) {
message('Using rsvd() to compute the top PCs for initialization.')
X_c <- scale(X, center=T, scale=F)
rsvd_out <- rsvd::rsvd(X_c, k=dims)
X_top_pcs <- rsvd_out$u %*% diag(rsvd_out$d, nrow=dims)
}else if("irlba" %in% utils::installed.packages()) {
message('Using irlba() to compute the top PCs for initialization.')
X_colmeans <- colMeans(X)
irlba_out <- irlba::irlba(X,nv=dims, center=X_colmeans)
X_top_pcs <- irlba_out$u %*% diag(irlba_out$d, nrow=dims)
}else{
stop("By default, FIt-SNE initializes the embedding with the
top PCs. We use either rsvd or irlba for fast computation.
To use this functionality, please install the rsvd package
with install.packages('rsvd') or the irlba package with
install.packages('ilrba'). Otherwise, set initialization
to NULL for random initialization, or any N by dims matrix
for custom initialization.")
}
initialization <- 0.0001*(X_top_pcs/sd(X_top_pcs[,1]))
}else if (is.character(initialization) && initialization == 'random'){
message('Random initialization')
initialization = NULL
}
if (fft_not_bh) {
nbody_algo <- 2
} else {
nbody_algo <- 1
}
if (is.null(load_affinities)) {
load_affinities <- 0
} else {
if (load_affinities == 'load') {
load_affinities <- 1
} else if (load_affinities == 'save') {
load_affinities <- 2
} else {
load_affinities <- 0
}
}
if (ann_not_vptree) {
knn_algo <- 1
} else {
knn_algo <- 2
}
tX <- as.numeric(t(X))
f <- file(data_path, "wb")
n <- nrow(X)
D <- ncol(X)
writeBin(as.integer(n), f, size = 4)
writeBin(as.integer(D), f, size = 4)
writeBin(as.numeric(theta), f, size = 8) #theta
writeBin(as.numeric(perplexity), f, size = 8)
if (perplexity == 0) {
writeBin(as.integer(length(perplexity_list)), f, size = 4)
writeBin(perplexity_list, f)
}
writeBin(as.integer(dims), f, size = 4)
writeBin(as.integer(max_iter), f, size = 4)
writeBin(as.integer(stop_early_exag_iter), f, size = 4)
writeBin(as.integer(mom_switch_iter), f, size = 4)
writeBin(as.numeric(momentum), f, size = 8)
writeBin(as.numeric(final_momentum), f, size = 8)
writeBin(as.numeric(learning_rate), f, size = 8)
writeBin(as.numeric(max_step_norm), f, size = 8)
writeBin(as.integer(K), f, size = 4) #K
writeBin(as.numeric(sigma), f, size = 8) #sigma
writeBin(as.integer(nbody_algo), f, size = 4) #not barnes hut
writeBin(as.integer(knn_algo), f, size = 4)
writeBin(as.numeric(exaggeration_factor), f, size = 8) #compexag
writeBin(as.integer(no_momentum_during_exag), f, size = 4)
writeBin(as.integer(n_trees), f, size = 4)
writeBin(as.integer(search_k), f, size = 4)
writeBin(as.integer(start_late_exag_iter), f, size = 4)
writeBin(as.numeric(late_exag_coeff), f, size = 8)
writeBin(as.integer(nterms), f, size = 4)
writeBin(as.numeric(intervals_per_integer), f, size = 8)
writeBin(as.integer(min_num_intervals), f, size = 4)
writeBin(tX, f)
writeBin(as.integer(rand_seed), f, size = 4)
writeBin(as.numeric(df), f, size = 8)
writeBin(as.integer(load_affinities), f, size = 4)
if (!is.null(initialization) ) { writeBin( c(t(initialization)), f) }
close(f)
flag <- system2(command = fast_tsne_path,
args = c(version_number, data_path, result_path, nthreads))
if (flag != 0) {
stop('tsne call failed')
}
f <- file(result_path, "rb")
n <- readBin(f, integer(), n = 1, size = 4)
d <- readBin(f, integer(), n = 1, size = 4)
Y <- readBin(f, numeric(), n = n * d)
Y <- t(matrix(Y, nrow = d))
if (get_costs) {
readBin(f, integer(), n = 1, size = 4)
costs <- readBin(f, numeric(), n = max_iter, size = 8)
Yout <- list(Y = Y, costs = costs)
} else {
Yout <- Y
}
close(f)
file.remove(data_path)
file.remove(result_path)
Yout
}