forked from polyaB/nn_anopheles
-
Notifications
You must be signed in to change notification settings - Fork 0
/
draw_graphs_of_training.py
17 lines (16 loc) · 1.12 KB
/
draw_graphs_of_training.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
train1 = pd.read_csv("Z:/scratch/202105171236data_Polina/nn_anopheles/dataset_like_Akita/data/Aalb_2048bp_repeat/train_out_test5_fix_random3/model_stat.txt", sep="\t")
# train2 = pd.read_csv("Z:/scratch/202105171236data_Polina/nn_anopheles/dataset_like_Akita/data/Aalb_2048bp_repeat/train_out_test2_fix_random3/model23.txt", sep=" ", names=range(24))
# train3 = pd.read_csv("Z:/scratch/202105171236data_Polina/nn_anopheles/dataset_like_Akita/data/Aalb_2048bp_repeat/train_out_test3_fix_random3/model33.txt", sep=" ", names=range(24))
# global_oe = pd.read_csv("./model_graphs/aalb_globaloe_without_x.txt", sep=" ", names=range(24))
# print(best[10])
plt.plot(train1["epoch"], np.log(train1["train_loss_epoch"]), linestyle='solid', label = 'train_loss')
plt.plot(train1["epoch"], np.log(train1["valid_loss_epoch"]), linestyle='dashed', label = 'valid_loss')
# plt.plot(train3[1], train3[15], linestyle='dashdot', label = 'train33')
# plt.plot(global_oe[1], global_oe[18], linestyle='dotted', label = 'global_oe')
plt.legend()
plt.title("train_loss_epoch")
plt.show()
# print(best)