forked from polyaB/nn_anopheles
-
Notifications
You must be signed in to change notification settings - Fork 0
/
explore_model_aalb_test2.py
187 lines (162 loc) · 8.22 KB
/
explore_model_aalb_test2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
import os
import sys
import pickle
source_path = os.path.dirname(os.path.abspath(sys.argv[0])) + "/basenji/source"
source_path2 = os.path.dirname(os.path.abspath(sys.argv[0])) + "/basenji/basenji"
sys.path.append(source_path)
sys.path.append(source_path2)
import json
import subprocess
os.environ["CUDA_VISIBLE_DEVICES"] = '-1' ### run on CPU
import tensorflow as tf
print(tf.__version__)
if tf.__version__[0] == '1':
tf.compat.v1.enable_eager_execution()
import numpy as np
import pandas as pd
import pysam
import matplotlib.pyplot as plt
from cooltools.lib.numutils import set_diag
from source.common_functions import str2hash
import dataset, dna_io, seqnn
# model_dir = './explore_best_model/'
model_dir = '/mnt/scratch/ws/psbelokopytova/202103211631polina/nn_anopheles/dataset_like_Akita/data/Aalb_2048bp_repeat/train_out_test2/'
train_out = pd.read_csv("/mnt/scratch/ws/psbelokopytova/202103211631polina/nn_anopheles/dataset_like_Akita/data/Aalb_2048bp_repeat/train_out_test2/model2.out", sep=" ", names=range(24))
fasta_file = "/mnt/scratch/ws/psbelokopytova/202103211631polina/nn_anopheles/input/genomes/AalbS2_V4.fa"
params_file = model_dir+'params.json'
for i in range(0,48,3):
model_file = model_dir+'model_check_epoch'+str(i)+'.h5'
# model_file = model_dir+'model_best.h5'
with open(params_file) as params_open:
params = json.load(params_open)
params_model = params['model']
params_train = params['train']
seqnn_model = seqnn.SeqNN(params_model)
### restore model ###
seqnn_model.restore(model_file)
print('successfully loaded')
### names of targets ###
data_dir ='/mnt/scratch/ws/psbelokopytova/202103211631polina/nn_anopheles/dataset_like_Akita/data/Aalb_2048'
# data_dir ='/mnt/scratch/ws/psbelokopytova/202103211631polina/nn_anopheles/dataset_like_Akita/data/Aste_2048_globaloe'
hic_targets = pd.read_csv(data_dir+'/targets.txt',sep='\t')
hic_file_dict_num = dict(zip(hic_targets['index'].values, hic_targets['file'].values) )
hic_file_dict = dict(zip(hic_targets['identifier'].values, hic_targets['file'].values) )
hic_num_to_name_dict = dict(zip(hic_targets['index'].values, hic_targets['identifier'].values) )
# read data parameters
data_stats_file = '%s/statistics.json' % data_dir
with open(data_stats_file) as data_stats_open:
data_stats = json.load(data_stats_open)
seq_length = data_stats['seq_length']
target_length = data_stats['target_length']
hic_diags = data_stats['diagonal_offset']
target_crop = data_stats['crop_bp'] // data_stats['pool_width']
target_length1 = data_stats['seq_length'] // data_stats['pool_width']
### load data ###
sequences = pd.read_csv(data_dir+'/sequences.bed', sep='\t', names=['chr','start','stop','type'])
sequences_test = sequences.iloc[sequences['type'].values=='test']
sequences_test.reset_index(inplace=True, drop=True)
print("going to load test dataset")
test_data = dataset.SeqDataset(data_dir, 'test', batch_size=8)
# test_targets is a float array with shape
# [#regions, #pixels, target #target datasets]
# representing log(obs/exp)data, where #pixels
# corresponds to the number of entries in the flattened
# upper-triangular representation of the matrix
# test_inputs are 1-hot encoded arrays with shape
# [#regions, 2^20 bp, 4 nucleotides datasets]
test_inputs, test_targets = test_data.numpy(return_inputs=True, return_outputs=True)
# print(test_targets)
### for converting from flattened upper-triangluar vector to symmetric matrix ###
def from_upper_triu(vector_repr, matrix_len, num_diags):
z = np.zeros((matrix_len,matrix_len))
triu_tup = np.triu_indices(matrix_len,num_diags)
z[triu_tup] = vector_repr
for i in range(-num_diags+1,num_diags):
set_diag(z, np.nan, i)
return z + z.T
target_length1_cropped = target_length1 - 2*target_crop
print('flattened representation length:', target_length)
print('symmetrix matrix size:', '('+str(target_length1_cropped)+','+str(target_length1_cropped)+')')
fig2_examples = [
#Aalb
# '2L:36888576-37937152',
# '2L:24403968-25452544',
'2L:12992512-14041088',
# '2R:40747008-41795584',
# '3R:26742784-27791360',
# '3R:25497600-26546176',
# '3R:25530368-26578944',
# '3R:25563136-26611712',
# '3R:25595904-6644480',
# '3R:25628672-26677248',
# '3R:26939392-27987968',
# 'X:2482176-3530752'
#Aste
# '2R:32083968-33132544',
# '2R:32116736-33165312',
]
# 'chr11:75429888-76478464',
# 'chr15:63281152-64329728'
fig2_inds = []
for seq in fig2_examples:
print(seq)
# print(np.unique(sequences_test['chr'].values))
chrm,start,stop = seq.split(':')[0], seq.split(':')[1].split('-')[0], seq.split(':')[1].split('-')[1]
# print(np.where(sequences_test['chr'].values== chrm))
# print(np.where(sequences_test['start'].values== int(start)))
# print(np.where(sequences_test['stop'].values== int(stop )))
test_ind = np.where( (sequences_test['chr'].values== chrm) *
(sequences_test['start'].values== int(start))*
(sequences_test['stop'].values== int(stop )) )[0][0]
fig2_inds.append(test_ind)
print(fig2_inds)
### make predictions and plot the three examples above ###
target_index = 0 #Aalb
for test_index in fig2_inds:
chrm, seq_start, seq_end = sequences_test.iloc[test_index][0:3]
myseq_str = chrm + ':' + str(seq_start) + '-' + str(seq_end)
print(' ')
print(myseq_str)
test_target = test_targets[test_index:test_index + 1, :, :]
fasta_open = pysam.Fastafile(fasta_file)
seq = fasta_open.fetch(chrm, seq_start, seq_end).upper()
# with open(data_dir+"/prediction/" + "exploreseq" + str(seq_start) + "-" + str(seq_end) + ".pickle", 'wb') as f:
# pickle.dump(seq, f)
# print(seq)
seq_1hot = dna_io.dna_1hot(seq)
# print(seq[21680:21687])
# print(seq_1hot[21680:21687][:])
# with open(data_dir+"/prediction/" + "explore" + str(seq_start) + "-" + str(seq_end) + ".pickle", 'wb') as f:
# pickle.dump(seq_1hot, f)
test_pred = seqnn_model.model.predict(np.expand_dims(seq_1hot, 0))
# test_pred = seqnn_model.model.predict(test_inputs[test_index:test_index + 1, :, :])
# print("inputs")
# print(test_inputs[test_index:test_index + 1, :, :])
# print(seq_1hot)
plt.figure(figsize=(8, 4))
target_index = 0
vmin = -2
vmax = 2
# plot pred
mat = from_upper_triu(test_pred[:, :, target_index], target_length1_cropped, hic_diags)
print(target_index, target_length1_cropped, hic_diags)
print(mat)
plt.subplot(121)
im = plt.matshow(mat, fignum=False, cmap='RdBu_r')#, vmax=vmax, vmin=vmin)
plt.colorbar(im, fraction=.04, pad=0.05)#, ticks=[-2, -1, 0, 1, 2])
plt.title('pred-' + str(hic_num_to_name_dict[target_index]+myseq_str), y=1.15)
plt.ylabel(myseq_str)
# plt.clf()
# plot target
plt.subplot(122)
mat = from_upper_triu(test_target[:, :, target_index], target_length1_cropped, hic_diags)
# print(mat)
# print(np.max(mat))
# print(np.min(mat))
im = plt.matshow(mat, fignum=False, cmap='RdBu_r')#, vmax=vmax, vmin=vmin)
plt.colorbar(im, fraction=.04, pad=0.05)#, ticks=[-2, -1, 0, 1, 2])
plt.title('target-' + str(hic_num_to_name_dict[target_index]+myseq_str), y=1.15)
plt.tight_layout()
plt.suptitle("epoch " + str(i) + "; valid loss " + str(train_out.iloc[i, 15]) + "; valid Pearson "+str(train_out.iloc[i, 18]))
plt.savefig(model_dir+"prediction_"+str(chrm)+"_"+str(seq_start)+"_"+str(seq_end)+"epoch"+str(i)+"_"+str2hash(model_file)+".png")
plt.clf()