-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain_regression.py
133 lines (118 loc) · 5.95 KB
/
main_regression.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
import torch
import numpy as np
from tqdm import tqdm
from sklearn.model_selection import train_test_split
from torch.utils.data import DataLoader
from utils.read_data import load_data_persistence
import wandb
from torchinfo import summary
from torchviz import make_dot
from models.graph_learning import HiPoNet, MLP
from argparse import ArgumentParser
import gc
gc.enable()
# Define the parameters using parser args
parser = ArgumentParser(description="Pointcloud net")
parser.add_argument('--raw_dir', type=str, default = 'melanoma_data_full', help="Directory where the raw data is stored")
parser.add_argument('--full', action='store_true')
parser.add_argument('--orthogonal', action='store_true')
parser.add_argument('--model', type=str, default = 'graph', help="Type of structure")
parser.add_argument('--num_weights', type=int, default=2, help="Number of weights")
parser.add_argument('--threshold', type=float, default= 0.5, help="Threshold for creating the graph")
parser.add_argument('--hidden_dim', type=int, default= 500, help="Hidden dim for the MLP")
parser.add_argument('--num_layers', type=int, default= 3, help="Number of MLP layers")
parser.add_argument('--lr', type=float, default= 1e-1, help="Learnign Rate")
parser.add_argument('--wd', type=float, default= 3e-3, help="Weight decay")
parser.add_argument('--num_epochs', type=int, default= 20, help="Number of epochs")
parser.add_argument('--batch_size', type=int, default= 128, help="Batch size")
parser.add_argument('--gpu', type=int, default= 0, help="GPU index")
args = parser.parse_args()
wandb.init(project='pointcloud-net-persistence-prediction',
config = vars(args))
if args.gpu != -1 and torch.cuda.is_available():
args.device = 'cuda:{}'.format(args.gpu)
else:
args.device = 'cpu'
loss_fn = torch.nn.MSELoss()
def test(model, mlp, PCs, labels, loader):
model.eval()
mlp.eval()
mse = 0
total = 0
with torch.no_grad():
for idx in (loader):
X = model([PCs[i].to(args.device) for i in idx], 5)
preds = mlp(X)
mse += (loss_fn(preds, labels[idx]) * len(idx))
total += len(idx)
return mse*1000/total
def train(model, mlp, PCs, labels):
print(args)
opt = torch.optim.AdamW(list(model.parameters())+list(mlp.parameters()), lr = args.lr, weight_decay = args.wd)
train_idx, test_idx = train_test_split(np.arange(len(labels)), test_size=0.2)
train_idx = torch.LongTensor(train_idx).to(args.device)
test_idx = torch.LongTensor(test_idx).to(args.device)
train_loader = DataLoader(train_idx, batch_size=args.batch_size, shuffle=True)
test_loader = DataLoader(test_idx, batch_size=args.batch_size)
labels = labels.to(args.device).float()
for k in range(len(model.layer.alphas)):
for d in range(len(model.layer.alphas[k])):
wandb.log({f'Alpha{k}_{d}':model.layer.alphas[k][d].item()}, step=0)
train_mse = test(model, mlp, PCs, labels, train_loader)
best_mse = test(model, mlp, PCs, labels, test_loader)
wandb.log({'Train MSE':train_mse.item(), 'Test MSE':best_mse.item()}, step=0)
with tqdm(range(args.num_epochs)) as tq:
for e, epoch in enumerate(tq):
t_loss = 0
model.train()
mlp.train()
for idx in (train_loader):
opt.zero_grad()
X = model([PCs[i].to(args.device) for i in idx], 5)
# X = model(idx, 0.000001)
logits = mlp(X)
loss = loss_fn(logits, labels[idx]) * 1000
if(args.orthogonal):
loss += 0.1*([email protected] - torch.eye(args.num_weights).to(args.device)).square().mean()
loss.backward()
for name, param in model.named_parameters():
if param.grad is not None:
wandb.log({f"{name}.grad": param.grad.norm()}, step=epoch+1)
opt.step()
t_loss += loss.item()
del(X, logits, loss)
torch.cuda.empty_cache()
gc.collect()
train_mse = test(model, mlp, PCs, labels, train_loader)
test_mse = test(model, mlp, PCs, labels, test_loader)
wandb.log({'Loss':t_loss, 'Train MSE':train_mse.item(), 'Test MSE':test_mse.item()}, step=epoch+1)
for k in range(len(model.layer.alphas)):
for d in range(len(model.layer.alphas[k])):
wandb.log({f'Alpha{k}_{d}':model.layer.alphas[k][d].item()}, step=epoch+1)
if test_mse < best_mse:
best_mse = test_mse
model_path = f"persistence_models/model_{args.num_weights}.pth"
# torch.save({
# 'epoch': epoch, # Save the current epoch number
# 'model_state_dict': model.state_dict(),
# 'mlp_state_dict': mlp.state_dict(),
# 'optimizer_state_dict': opt.state_dict(),
# 'best_mse': best_mse,
# 'args': args
# }, model_path)
tq.set_description("Train MSE = %.4f, Test MSE = %.4f, Best MSE = %.4f" % (train_mse.item(), test_mse.item(), best_mse))
print(f"Best MSE : {best_mse}")
if __name__ == '__main__':
PCs, labels, num_labels = load_data_persistence(args.raw_dir, args.full)
model = HiPoNet(args.model, PCs[0].shape[1], args.num_weights, args.threshold, args.device).to(args.device)
with torch.no_grad():
input_dim = model([PCs[0].to(args.device)], 10).shape[1]
mlp = MLP(input_dim, args.hidden_dim, num_labels, args.num_layers).to(args.device)
model_path = f"persistence_models/model_{args.raw_dir}_{args.num_weights}_{args.model}_{args.orthogonal}.pth"
torch.save({
'model_state_dict': model.state_dict(),
'mlp_state_dict': mlp.state_dict(),
'best_mse': 0,
'args': args
}, model_path)
train(model, mlp, PCs, labels)