-
Notifications
You must be signed in to change notification settings - Fork 0
/
aStar.py
271 lines (208 loc) · 8.69 KB
/
aStar.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
import pygame
import math
from queue import PriorityQueue
WIDTH = 800
WIN = pygame.display.set_mode((WIDTH, WIDTH))
pygame.display.set_caption("A* Path Finding Algorithm")
RED = (255, 0, 0)
GREEN = (0, 255, 0)
BLUE = (0, 255, 0)
YELLOW = (255, 255, 0)
WHITE = (255, 255, 255)
BLACK = (0, 0, 0)
PURPLE = (128, 0, 128)
ORANGE = (255, 165, 0)
GREY = (128, 128, 128)
TURQUOISE = (64, 224, 208)
class Spot:
def __init__(self, row, col, width, totalRows):
self.row = row
self.col = col
# x, y are the starting position. Multi with width: eg: size of the console is 800, we want a 50x50 grid,
# the starting x, y would be 800/50 = 16 as the width of each grid is 16
self.x = row * width
self.y = col * width
self.color = WHITE
self.neighbors = []
self.width = width
self.totalRows = totalRows
def get_pos(self):
return self.row, self.col
def is_closed(self):
return self.color == RED
def is_open(self):
return self.color == GREEN
def is_barrier(self):
return self.color == BLACK
def is_start(self):
return self.color == ORANGE
def is_end(self):
return self.color == PURPLE
def reset(self):
self.color = WHITE
def make_start(self):
self.color = ORANGE
def make_close(self):
self.color = RED
def make_open(self):
self.color = GREEN
def make_barrier(self):
self.color = BLACK
def make_end(self):
self.color = TURQUOISE
def make_path(self):
self.color = PURPLE
def draw(self, win):
pygame.draw.rect(win, self.color, (self.x, self.y, self.width, self.width))
def update_neighbors(self, grid):
self.neighbors = []
if self.row < self.totalRows - 1 and not grid[self.row + 1][self.col].is_barrier(): # down neighbor
self.neighbors.append(grid[self.row + 1][self.col])
if self.row > 0 and not grid[self.row - 1][self.col].is_barrier(): # up neighbor
self.neighbors.append(grid[self.row - 1][self.col])
if self.col > 0 and not grid[self.row][self.col - 1].is_barrier(): # left neighbor
self.neighbors.append(grid[self.row][self.col - 1])
if self.col < self.totalRows - 1 and not grid[self.row][self.col + 1].is_barrier(): # right neighbor
self.neighbors.append(grid[self.row][self.col + 1])
# if self.row < self.totalRows - 1 and self.col > 0 and not grid[self.row + 1][self.col - 1].is_barrier(): # left down neighbor
# self.neighbors.append(grid[self.row + 1][self.col - 1])
#
# if self.row < self.totalRows - 1 and self.col < self.totalRows - 1 and not grid[self.row + 1][self.col + 1].is_barrier(): # right down neighbor
# self.neighbors.append(grid[self.row + 1][self.col + 1])
#
# if self.row > 0 and self.col > 0 and not grid[self.row - 1][self.col - 1].is_barrier(): # left up neighbor
# self.neighbors.append(grid[self.row - 1][self.col - 1])
#
# if self.row > 0 and self.col < self.totalRows - 1 and not grid[self.row - 1][self.col + 1].is_barrier(): # right up neighbor
# self.neighbors.append( grid[self.row - 1][self.col + 1])
def __lt__(self, other): # less than, compare other spots
return False
# heuristic function, manhattan distance -- distance = abs(row - destination.row) + abs(col - destination.col)
def h(p1, p2):
x1, y1 = p1
x2, y2 = p2
return abs(x1 - x2) + abs(y1 - y2)
# A faster function that uses the Pythagorean theorem to calculate the distance, which allows users to customize.
def h2(p1, p2):
x1, y1 = p1
x2, y2 = p2
return (x1 - x2) ** 2 + (y1 - y2) ** 2
# Make grid on the game board
def make_grid(rows, width):
grid = []
gap = width // rows # width is the width of our entire grid, rows is the number of rows in the grid
for i in range(rows):
grid.append([])
for j in range(rows): # remember we are using a square grid, so cols = rows
spot = Spot(i, j, gap, rows)
grid[i].append(spot) # grid[i] is the grid we just created in line 90
return grid
# Draw grids to create blocks on the board
def draw_grid(win, rows, width):
gap = width // rows
for i in range(rows):
pygame.draw.line(win, GREY, (0, i * gap), (width, i * gap)) # draw horizontal lines
for j in range(rows):
pygame.draw.line(win, GREY, (j * gap, 0), (j * gap, width))
def draw(win, grid, rows, width):
win.fill(WHITE)
for row in grid:
for spot in row:
spot.draw(win)
draw_grid(win, rows, width)
pygame.display.update()
def get_clicked_pos(pos, rows, width):
gap = width // rows
i, j = pos
row = i // gap
col = j // gap
return row, col
# Path showing function when the closest path has been found
def reconstruct_path(came_from, current, draw):
while current in came_from:
current = came_from[current]
current.make_path()
draw()
# Path finding algorithm
def algorithm(draw, grid, start, end):
count = 0
open_set = PriorityQueue()
open_set.put((0, count, start))
came_from = {}
g_score = {spot: float("inf") for row in grid for spot in row} # Map of the distances from where the spot is to the starting point
g_score[start] = 0
f_score = {spot: float("inf") for row in grid for spot in row} # Map of the distances from where the spot is to the destination
f_score[start] = h(start.get_pos(), end.get_pos())
open_set_hash = {start}
while not open_set.empty():
for event in pygame.event.get():
if event.type == pygame.QUIT:
pygame.quit()
current = open_set.get()[2]
open_set_hash.remove(current) # This line is for memory release
if current == end:
reconstruct_path(came_from, end, draw)
end.make_end()
return True
for neighbor in current.neighbors:
temp_g_score = g_score[current] + 1
if temp_g_score < g_score[neighbor]:
came_from[neighbor] = current
g_score[neighbor] = temp_g_score
f_score[neighbor] = temp_g_score + h(neighbor.get_pos(), end.get_pos())
if neighbor not in open_set_hash:
count += 1
open_set.put((f_score[neighbor], count, neighbor))
open_set_hash.add(neighbor)
neighbor.make_close()
draw()
if current != start:
current.make_close()
return False
def main(win, width):
ROWS = 50
grid = make_grid(ROWS, width)
start = None
end = None
run = True
started = False
while run:
draw(win, grid, ROWS, width)
for event in pygame.event.get():
if event.type == pygame.QUIT: # if we hit the exit button, it stops running
run = False
if started:
continue
if pygame.mouse.get_pressed()[0]: # left mouse button
pos = pygame.mouse.get_pos()
row, col = get_clicked_pos(pos, ROWS, width)
spot = grid[row][col]
if not start and spot != end:
start = spot
start.make_start()
elif not end and spot != start: # condition after the end is to avoid start and end have same positions
end = spot
end.make_end()
elif spot != end and spot != start:
spot.make_barrier()
elif pygame.mouse.get_pressed()[2]: # right mouse button
pos = pygame.mouse.get_pos()
row, col = get_clicked_pos(pos, ROWS, width)
spot = grid[row][col]
spot.reset()
if spot == start:
start = None
elif spot == end:
end = None
if event.type == pygame.KEYDOWN:
if event.key == pygame.K_SPACE and start and end:
for row in grid:
for spot in row:
spot.update_neighbors(grid)
algorithm(lambda: draw(win, grid, ROWS, width), grid, start, end)
if event.key == pygame.K_c:
start = None
end = None
grid = make_grid(ROWS, width)
pygame.quit()
main(WIN, WIDTH)