forked from imran1289-ah/EmotionDetector
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluation.py
178 lines (143 loc) · 6.38 KB
/
evaluation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
import torch
import numpy as np
import pandas as pd
from torchvision.datasets import ImageFolder
from torchvision.transforms import Compose, ToTensor, Normalize, Resize
from torch.utils.data import DataLoader, SubsetRandomSampler, Subset
from sklearn.model_selection import KFold
from sklearn.metrics import accuracy_score, precision_recall_fscore_support, confusion_matrix
import torch.nn as nn
import time
# Import your model definitions
from cnn_model import CNN
from cnn_model2 import CNNVariant2
from cnn_model3 import CNNVariant3
def calculate_metrics(y_true, y_pred):
precision, recall, fscore, _ = precision_recall_fscore_support(y_true, y_pred, average="macro")
micro_precision, micro_recall, micro_fscore, _ = precision_recall_fscore_support(y_true, y_pred, average="micro")
accuracy = accuracy_score(y_true, y_pred)
# Return metrics as a dictionary
return {
"Precision": precision,
"Recall": recall,
"F-Score": fscore,
"Micro Precision": micro_precision,
"Micro Recall": micro_recall,
"Micro F-Score": micro_fscore,
"Accuracy": accuracy,
}
def evaluate_model(model, test_loader, device):
model.eval()
test_predictions = []
test_true_labels = []
with torch.no_grad():
for images, labels in test_loader:
images, labels = images.to(device), labels.to(device)
outputs = model(images)
_, predicted = torch.max(outputs.data, 1)
test_predictions.extend(predicted.cpu().numpy())
test_true_labels.extend(labels.cpu().numpy())
metrics = calculate_metrics(test_true_labels, test_predictions)
return metrics
def k_fold_train_and_validate(model_class, dataset, k=10, num_epochs=10, batch_size=32, device='cpu'):
kfold = KFold(n_splits=k, shuffle=True, random_state=42)
fold_results = []
for fold, (train_ids, test_ids) in enumerate(kfold.split(np.arange(len(dataset)))):
print(f"Starting fold {fold+1}")
# Timing starts here
fold_start_time = time.time()
# Create SubsetRandomSamplers for training and validation datasets
train_subsampler = Subset(dataset, train_ids)
val_subsampler = Subset(dataset, test_ids)
# Create data loaders for training and validation
train_loader = DataLoader(train_subsampler, batch_size=batch_size, shuffle=True)
val_loader = DataLoader(val_subsampler, batch_size=batch_size, shuffle=False)
# Initialize model for the current fold
model = model_class().to(device)
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
# Training loop for the current fold
for epoch in range(num_epochs):
model.train()
total_loss = 0
for images, labels in train_loader:
images, labels = images.to(device), labels.to(device)
optimizer.zero_grad()
outputs = model(images)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
total_loss += loss.item()
print(f"Fold {fold+1}, Epoch {epoch+1}, Training loss: {total_loss/len(train_loader)}")
# Validation loop for the current fold
model.eval()
with torch.no_grad():
correct = 0
total = 0
for images, labels in val_loader:
images, labels = images.to(device), labels.to(device)
outputs = model(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
accuracy = 100 * correct / total
# Timing ends here
fold_end_time = time.time()
fold_elapsed_time = fold_end_time - fold_start_time
print(f"Fold {fold+1} completed in {fold_elapsed_time:.2f} seconds. Validation Accuracy: {accuracy}%")
fold_metrics = evaluate_model(model, val_loader, device)
fold_metrics['Fold'] = fold + 1
fold_results.append(fold_metrics)
return fold_results
def main():
# Load and transform the dataset
transform = Compose([
ToTensor(),
Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
Resize((256, 256)),
])
image_path = "dataset"
dataset = ImageFolder(root=image_path, transform=transform)
# Check device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")
models = {
"CNN": CNN,
"CNN Variant 2": CNNVariant2,
"CNN Variant 3": CNNVariant3,
}
# Dictionary to collect metrics for all models
all_metrics = {
"Model": [],
"Fold": [],
"Accuracy": [],
"Macro Precision": [],
"Macro Recall": [],
"Macro F-Score": [],
"Micro Precision": [],
"Micro Recall": [],
"Micro F-Score": [],
}
for name, model_class in models.items():
print(f"\nTraining and evaluating model: {name}")
# Perform k-fold training and validation
fold_metrics_list = k_fold_train_and_validate(model_class, dataset, k=10, num_epochs=10, batch_size=32, device=device)
for fold_metrics in fold_metrics_list:
all_metrics["Model"].append(name)
all_metrics["Fold"].append(fold_metrics['Fold']) # Assuming fold number is stored in fold_metrics
all_metrics["Accuracy"].append(fold_metrics["Accuracy"])
all_metrics["Macro Precision"].append(fold_metrics["Precision"])
all_metrics["Macro Recall"].append(fold_metrics["Recall"])
all_metrics["Macro F-Score"].append(fold_metrics["F-Score"])
all_metrics["Micro Precision"].append(fold_metrics["Micro Precision"])
all_metrics["Micro Recall"].append(fold_metrics["Micro Recall"])
all_metrics["Micro F-Score"].append(fold_metrics["Micro F-Score"])
# Convert collected metrics into a DataFrame for easier analysis and export
metrics_df = pd.DataFrame(all_metrics)
print(metrics_df)
# Calculate and print the average metrics for each model
average_metrics_df = metrics_df.groupby("Model").mean().reset_index()
print("\nAverage Metrics for Each Model Across All Folds:")
print(average_metrics_df)
if __name__ == "__main__":
main()