-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsolve.py
74 lines (62 loc) · 2.99 KB
/
solve.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
#STEP 4: Use the model to predict captcha
from keras.models import load_model
from imutils import paths
import numpy
import cv2
import pickle
import os.path
import csv
import common
model_savefile = "model.hdf5"
model_labelfile = "labels.dat"
captcha_src = "captchas_solve"
conf_out = "confidence.csv"
def solve(inmodelfile, inlabelfile, incaptchas, outconfcsv):
if os.path.exists(outconfcsv):
os.remove(outconfcsv)
with open(outconfcsv, mode="w") as conf_csv:
writer = csv.writer(conf_csv, delimiter=",", quotechar='"', quoting=csv.QUOTE_MINIMAL)
writer.writerow(["CAPTCHA","PREDICTED","CORRECT","CONF1","CONF2","CONF3","CONF4","AVG"])
with open(inlabelfile, "rb") as labels:
lb = pickle.load(labels)
model = load_model(inmodelfile)
captchas = list(paths.list_images(incaptchas))
for captcha in captchas:
image, filename, filename_letters = common.openimage(captcha)
image = common.addborder(image, 10, 10)
# https://docs.opencv.org/3.0-beta/doc/py_tutorials/py_imgproc/py_thresholding/py_thresholding.html
thresh = cv2.threshold(image, 0, 255, cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU)[1]
# https://docs.opencv.org/3.0.0/d4/d73/tutorial_py_contours_begin.html
contours = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)[1]
letters = []
for contour in contours:
letters.append(cv2.boundingRect(contour))
if len(letters) != len(filename_letters):
print("detected {}, not {} letters in {}".format(len(letters), len(filename_letters), filename))
continue
letters = sorted(letters, key=lambda rect: rect[0])
output = cv2.merge([image] * 3)
predictions = []
confidence = []
avg = 0
for rect, letter in zip(letters, filename_letters):
x, y, w, h = rect
letter_img = image[y - 2:y + h + 2, x - 2:x + w + 2]
letter_img = cv2.resize(letter_img, (common.IMAGE_SIZE, common.IMAGE_SIZE))
letter_img = numpy.expand_dims(letter_img, axis=2)
letter_img = numpy.expand_dims(letter_img, axis=0)
prediction = model.predict(letter_img)
letter = lb.inverse_transform(prediction)[0]
conf = numpy.amax(prediction)
confidence.append(conf)
avg += conf
predictions.append(letter)
cv2.rectangle(output, (x - 2, y - 2), (x + w + 4, y + h + 4), (0, 255, 0), 1)
cv2.putText(output, letter, (x - 5, y - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.55, (0, 255, 0), 2)
captcha_text = "".join(predictions)
avg /= len(confidence)
confidence.append(avg)
with open(outconfcsv, mode="a") as conf_csv:
writer = csv.writer(conf_csv, delimiter=",", quotechar='"', quoting=csv.QUOTE_MINIMAL)
writer.writerow([filename_letters, captcha_text, filename_letters == captcha_text] + confidence)
#solve(model_savefile, model_labelfile, captcha_src, conf_out)