-
Notifications
You must be signed in to change notification settings - Fork 7
/
DPO.py
241 lines (212 loc) · 8 KB
/
DPO.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
import os
import sys
from typing import List
import fire
import torch
import transformers
#import kosy_transformers
from datasets import load_dataset, Dataset
from transformers import TrainerCallback, TrainingArguments, TrainerState, TrainerControl
from transformers.trainer_utils import PREFIX_CHECKPOINT_DIR
from torch.nn import functional as F
from peft import (
LoraConfig,
get_peft_model,
prepare_model_for_int8_training,
set_peft_model_state_dict
)
from transformers import LlamaForCausalLM, LlamaTokenizer
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
from trl import DPOTrainer
#os.environ["TOKENIZERS_PARALLELISM"] = "false"
def train(
# model/data params
base_model: str = "",
data_path: str = "",
output_dir: str = "",
# training hyperparams
batch_size: int = 128,
micro_batch_size: int = 8,
num_epochs: int = 1,
learning_rate: float = 3e-4,
cutoff_len: int = 4096,
val_set_size: int = 0,
lr_scheduler: str = "cosine",
warmup_ratio: float = 0.1,
# lora hyperparams
lora_r: int = 16,
lora_alpha: int = 16,
lora_dropout: float = 0.05,
# from peft docs: ["q_proj", "k_proj", "v_proj", "o_proj", "fc_in", "fc_out", "wte", "gate_proj", "down_proj", "up_proj"]
lora_target_modules: List[str] = ["gate_proj", "down_proj", "up_proj"],
# llm hyperparams
train_on_inputs: bool = False, # if False, masks out inputs in loss
add_eos_token: bool = False,
group_by_length: bool = False, # faster, but produces an odd training loss curve
# wandb params
#wandb_project: str = "",
#wandb_run_name: str = "",
#wandb_watch: str = "", # options: false | gradients | all
#wandb_log_model: str = "", # options: false | true
resume_from_checkpoint: str = None, # either training checkpoint or final adapter
prompt_template_name: str = "alpaca",
# NEFTune params
noise_alpha: int = 5
):
if int(os.environ.get("LOCAL_RANK", 0)) == 0:
print(
f"Params using prompt template {prompt_template_name}:\n"
f"base_model: {base_model}\n"
f"data_path: {data_path}\n"
f"output_dir: {output_dir}\n"
f"batch_size: {batch_size}\n"
f"micro_batch_size: {micro_batch_size}\n"
f"num_epochs: {num_epochs}\n"
f"learning_rate: {learning_rate}\n"
f"cutoff_len: {cutoff_len}\n"
f"val_set_size: {val_set_size}\n"
f"lr_scheduler: {lr_scheduler}\n"
f"warmup_ratio: {warmup_ratio}\n"
f"lora_r: {lora_r}\n"
f"lora_alpha: {lora_alpha}\n"
f"lora_dropout: {lora_dropout}\n"
f"lora_target_modules: {lora_target_modules}\n"
f"train_on_inputs: {train_on_inputs}\n"
f"add_eos_token: {add_eos_token}\n"
f"group_by_length: {group_by_length}\n"
#f"wandb_project: {wandb_project}\n"
#f"wandb_run_name: {wandb_run_name}\n"
#f"wandb_watch: {wandb_watch}\n"
#f"wandb_log_model: {wandb_log_model}\n"
f"resume_from_checkpoint: {resume_from_checkpoint or False}\n"
)
assert (
base_model
), "Please specify a --base_model, e.g. --base_model='huggyllama/llama-7b'"
from huggingface_hub import login
login(token='[...your_token...]')
gradient_accumulation_steps = batch_size // micro_batch_size
device_map = "auto"
world_size = int(os.environ.get("WORLD_SIZE", 1))
ddp = world_size != 1 # world_size = 1
if ddp:
device_map = {"": int(os.environ.get("LOCAL_RANK") or 0)} # auto
gradient_accumulation_steps = gradient_accumulation_steps // world_size
print("gradient_accumulation_steps: ", gradient_accumulation_steps)
print("############DDP:",ddp) # False
# Check if parameter passed or if set within environ
'''
use_wandb = len(wandb_project) > 0 or (
"WANDB_PROJECT" in os.environ and len(os.environ["WANDB_PROJECT"]) > 0
)
# Only overwrite environ if wandb param passed
if len(wandb_project) > 0:
os.environ["WANDB_PROJECT"] = wandb_project
if len(wandb_watch) > 0:
os.environ["WANDB_WATCH"] = wandb_watch
if len(wandb_log_model) > 0:
os.environ["WANDB_LOG_MODEL"] = wandb_log_model
'''
#model = LlamaForCausalLM.from_pretrained(
# base_model,
# load_in_8bit=True, # LoRA
# #load_in_4bit=True, # QLoRA
# torch_dtype=torch.float16,
# device_map=device_map)
# Original
#tokenizer = LlamaTokenizer.from_pretrained(base_model)
# 1. Define policy and reference models
model = AutoModelForCausalLM.from_pretrained(
base_model, # location of saved SFT model
low_cpu_mem_usage=True,
torch_dtype=torch.float16,
device_map = device_map
)
#model_ref = AutoModelForCausalLM.from_pretrained(
# base_model, # same model as the main one
# low_cpu_mem_usage=True,
# torch_dtype=torch.float16,
# load_in_4bit=True,
# quantization_config=bnb_config
#)
tokenizer = AutoTokenizer.from_pretrained(base_model)
print(type(model))
print(model)
print("length of tokenizer:",len(tokenizer))
bos = tokenizer.bos_token_id
eos = tokenizer.eos_token_id
pad = tokenizer.pad_token_id
print("pre-trained model's BOS EOS and PAD token id:",bos,eos,pad," => It should be 1 2 None")
tokenizer.pad_token_id = 0 # unk. we want this to be different from the eos token
tokenizer.padding_side = "right"
# 2. Define dataset
def return_prompt_and_responses(samples):
return {
"prompt": "### User:\n" + samples["question"] + "\n\n### Assistant:\n",
"chosen": samples["chosen"],
"rejected": samples["rejected"],
}
dataset = load_dataset(data_path)
train_dataset = dataset.map(return_prompt_and_responses)
train_dataset = train_dataset.filter(
lambda x: len(x["prompt"]) + len(x["chosen"]) <= cutoff_len
and len(x["prompt"]) + len(x["rejected"]) <= cutoff_len
)
train_dataset = train_dataset["train"].shuffle()
#print(tokenizer.decode(train_dataset))
print(train_dataset['prompt'][0])
print(train_dataset['chosen'][0])
print(train_dataset['rejected'][0])
# 3. Define hyperparameters
training_args = TrainingArguments(
num_train_epochs= num_epochs,
per_device_train_batch_size=micro_batch_size,
#per_device_eval_batch_size=script_args.per_device_eval_batch_size,
#max_steps=1000,
logging_steps=1,
save_steps=10,
save_total_limit=2,
gradient_accumulation_steps=gradient_accumulation_steps,
#gradient_checkpointing=script_args.gradient_checkpointing,
learning_rate=learning_rate,
#evaluation_strategy="steps",
#eval_steps=script_args.eval_steps,
output_dir=output_dir,
#report_to=script_args.report_to,
lr_scheduler_type=lr_scheduler,
warmup_ratio=warmup_ratio,
optim='paged_adamw_32bit', # rmsprop
bf16=True,
remove_unused_columns=False,
run_name="dpo_kyujin",
)
peft_config = LoraConfig(
r=lora_r,
lora_alpha=lora_alpha,
lora_dropout=lora_dropout,
target_modules=lora_target_modules,
bias="none",
task_type="CAUSAL_LM",
)
# DPO trainer
dpo_trainer = DPOTrainer(
model,
ref_model = None, #model_ref,
args=training_args,
beta=0.1, # fix
train_dataset=train_dataset,
#eval_dataset=eval_dataset,
tokenizer=tokenizer,
peft_config=peft_config,
)
if torch.__version__ >= "2" and sys.platform != "win32":
model = torch.compile(model)
# train
dpo_trainer.train()
dpo_trainer.save_model(output_dir)
# save
output_dir = os.path.join(output_dir, "final_checkpoint")
dpo_trainer.model.save_pretrained(output_dir)
if __name__ == "__main__":
torch.cuda.empty_cache()
fire.Fire(train)