Build Status | Coverage | Documentation | CodeStyle |
---|---|---|---|
StateSpaceLearning.jl is a package for modeling and forecasting time series in a high-dimension regression framework.
using StateSpaceLearning
y = randn(100)
# Instantiate Model
model = StructuralModel(y)
# Fit Model
fit!(model)
# Point Forecast
prediction = StateSpaceLearning.forecast(model, 12) #Gets a 12 steps ahead prediction
# Scenarios Path Simulation
simulation = StateSpaceLearning.simulate(model, 12, 1000) #Gets 1000 scenarios path of 12 steps ahead predictions
y::Vector
: Vector of data.level::Bool
: Boolean where to consider intercept in the model (default: true)stochastic_level::Bool
: Boolean where to consider stochastic level component in the model (default: true)trend::Bool
: Boolean where to consider trend component in the model (default: true)stochastic_trend::Bool
: Boolean where to consider stochastic trend component in the model (default: true)seasonal::Bool
: Boolean where to consider seasonal component in the model (default: true)stochastic_seasonal::Bool
: Boolean where to consider stochastic seasonal component in the model (default: true)freq_seasonal::Int
: Seasonal frequency to be considered in the model (default: 12)outlier::Bool
: Boolean where to consider outlier component in the model (default: true)ζ_ω_threshold::Int
: Argument to stabilizestochastic trend
andstochastic seasonal
components (default: 12)
Current features include:
- Estimation
- Components decomposition
- Forecasting
- Completion of missing values
- Predefined models, including:
- Outlier detection
- Outlier robust models
Quick example of fit and forecast for the air passengers time-series.
using StateSpaceLearning
using CSV
using DataFrames
using Plots
airp = CSV.File(StateSpaceLearning.AIR_PASSENGERS) |> DataFrame
log_air_passengers = log.(airp.passengers)
steps_ahead = 30
model = StructuralModel(log_air_passengers)
fit!(model)
prediction_log = StateSpaceLearning.forecast(model, steps_ahead) # arguments are the output of the fitted model and number of steps ahead the user wants to forecast
prediction = exp.(prediction_log)
plot_point_forecast(airp.passengers, prediction)
N_scenarios = 1000
simulation = StateSpaceLearning.simulate(model, steps_ahead, N_scenarios) # arguments are the output of the fitted model, number of steps ahead the user wants to forecast and number of scenario paths
plot_scenarios(airp.passengers, exp.(simulation))
Quick example on how to perform component extraction in time series utilizing StateSpaceLearning.
using CSV
using DataFrames
using Plots
airp = CSV.File(StateSpaceLearning.AIR_PASSENGERS) |> DataFrame
log_air_passengers = log.(airp.passengers)
model = StructuralModel(log_air_passengers)
fit!(model)
level = model.output.components["μ1"]["Values"] + model.output.components["ξ"]["Values"]
slope = model.output.components["ν1"]["Values"] + model.output.components["ζ"]["Values"]
seasonal = model.output.components["γ1_12"]["Values"] + model.output.components["ω_12"]["Values"]
trend = level + slope
plot(trend, w=2 , color = "Black", lab = "Trend Component", legend = :outerbottom)
plot(seasonal, w=2 , color = "Black", lab = "Seasonal Component", legend = :outerbottom)
Quick example on how to perform best subset selection in time series utilizing StateSpaceLearning.
using StateSpaceLearning
using CSV
using DataFrames
using Random
Random.seed!(2024)
airp = CSV.File(StateSpaceLearning.AIR_PASSENGERS) |> DataFrame
log_air_passengers = log.(airp.passengers)
X = rand(length(log_air_passengers), 10) # Create 10 exogenous features
β = rand(3)
y = log_air_passengers + X[:, 1:3]*β # add to the log_air_passengers series a contribution from only 3 exogenous features.
model = StructuralModel(y; Exogenous_X = X)
fit!(model; α = 1.0, information_criteria = "bic", ϵ = 0.05, penalize_exogenous = true, penalize_initial_states = true)
Selected_exogenous = model.output.components["Exogenous_X"]["Selected"]
In this example, the selected exogenous features were 1, 2, 3, as expected.
Quick example of completion of missing values for the air passengers time-series (artificial NaN values are added to the original time-series).
using CSV
using DataFrames
using Plots
airp = CSV.File(StateSpaceLearning.AIR_PASSENGERS) |> DataFrame
log_air_passengers = log.(airp.passengers)
airpassengers = AbstractFloat.(airp.passengers)
log_air_passengers[60:72] .= NaN
model = StructuralModel(log_air_passengers)
fit!(model)
fitted_completed_missing_values = ones(144).*NaN; fitted_completed_missing_values[60:72] = exp.(model.output.fitted[60:72])
real_removed_valued = ones(144).*NaN; real_removed_valued[60:72] = deepcopy(airp.passengers[60:72])
airpassengers[60:72] .= NaN
plot(airpassengers, w=2 , color = "Black", lab = "Historical", legend = :outerbottom)
plot!(real_removed_valued, lab = "Real Removed Values", w=2, color = "red")
plot!(fitted_completed_missing_values, lab = "Fit in Sample completed values", w=2, color = "blue")
Quick example of outlier detection for an altered air passengers time-series (artificial NaN values are added to the original time-series).
using CSV
using DataFrames
using Plots
airp = CSV.File(StateSpaceLearning.AIR_PASSENGERS) |> DataFrame
log_air_passengers = log.(airp.passengers)
log_air_passengers[60] = 10
log_air_passengers[30] = 1
log_air_passengers[100] = 2
model = StructuralModel(log_air_passengers)
fit!(model)
detected_outliers = findall(i -> i != 0, model.output.components["o"]["Coefs"])
plot(log_air_passengers, w=2 , color = "Black", lab = "Historical", legend = :outerbottom)
scatter!([detected_outliers], log_air_passengers[detected_outliers], lab = "Detected Outliers")
Quick example on how to use StateSpaceLearning to initialize StateSpaceModels
using CSV
using DataFrames
using StateSpaceModels
airp = CSV.File(StateSpaceLearning.AIR_PASSENGERS) |> DataFrame
log_air_passengers = log.(airp.passengers)
model = StructuralModel(log_air_passengers)
fit!(model)
residuals_variances = model.output.residuals_variances
ss_model = BasicStructural(log_air_passengers, 12)
set_initial_hyperparameters!(ss_model, Dict("sigma2_ε" => residuals_variances["ε"],
"sigma2_ξ" =>residuals_variances["ξ"],
"sigma2_ζ" =>residuals_variances["ζ"],
"sigma2_ω" =>residuals_variances["ω_12"]))
StateSpaceModels.fit!(ss_model)
The paper has two experiments (results for the M4 competition and a simulation study). To reproduce each experiment follow the instructions below:
To reproduce M4 paper results you can clone the repository and run the following commands on terminal:
julia paper_tests/m4_test/m4_test.jl
python paper_tests/m4_test/m4_test.py
The results for SSL model in terms of MASE and sMAPE for all 48000 series will be stored in folder "paper_tests/m4_test/results_SSL". The average results of MASE, sMAPE and OWA will be saved in file "paper_tests/m4_test/metric_results/SSL_METRICS_RESULTS.csv".
The results for SS model in terms of MASE and sMAPE for all 48000 series will be stored in folder "paper_tests/m4_test/results_SS". The average results of MASE, sMAPE and OWA will be saved in file "paper_tests/m4_test/metric_results/SS_METRICS_RESULTS.csv".
To reproduce the simulation results you can clone the repository and run the following commands on terminal:
julia paper_tests/simulation_test/simulation.jl 0
As this test takes a long time, you may want to run it in parallel, for that you can change the last argument to be number of workers to use in the parallelization:
julia paper_tests/simulation_test/simulation.jl 3
The results will be saved in two separated files: "paper_tests/simulation_test/results_metrics/metrics_confusion_matrix.csv" and "paper_tests/simulation_test/results_metrics/metrics_bias_mse.csv"
- PRs such as adding new models and fixing bugs are very welcome!
- For nontrivial changes, you'll probably want to first discuss the changes via issue.